Impact of Long-Term Changes in Ambient Erythema-Effective UV Radiation on the Personal Exposure of Indoor and Outdoor Workers—Case Study at Selected Sites in Europe
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Status Quo and Changes in the Number of Days with the UVI ECs in the Period 2009–2019 Compared to 1983–2008
3.2. Impact of Long-Term Changes in Ambient UVD on Individual UVD in the Period 2009–2019 Compared to 1983–2008
4. Discussion
4.1. Comparison with Existing Studies
4.2. Holidays as a Potential to Compensate for Long-Term Changes
4.3. Limitations of the Study
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO World Health Organization. Global Solar UV Index: A Practical Guide. A Joint Recommendation of the World Health Organization, World Meteorological Organization, United Nations Environmental Programme, and the International Commission on Non-Ionizing Radiation Protection; World Health Organization: Geneva, Switzerland, 2002; ISBN 9241590076.
- Bais, A.F.; Bernhard, G.; McKenzie, R.L.; Aucamp, P.J.; Young, P.J.; Ilyas, M.; Jöckel, P.; Deushi, M. Ozone–climate interactions and effects on solar ultraviolet radiation. Photochem. Photobiol. Sci. 2019, 18, 602–640. [Google Scholar] [CrossRef] [PubMed]
- Fountoulakis, I.; Diémoz, H.; Siani, A.-M.; Laschewski, G.; Filippa, G.; Arola, A.; Bais, A.F.; De Backer, H.; Lakkala, K.; Webb, A.R.; et al. Solar UV irradiance in a changing climate: Trends in Europe and the significance of spectral monitoring in Italy. Environments 2019, 7, 1. [Google Scholar] [CrossRef]
- Vitt, R.; Laschewski, G.; Bais, A.F.; Diémoz, H.; Fountoulakis, I.; Siani, A.-M.; Matzarakis, A. UV-Index climatology for Europe based on satellite data. Atmosphere 2020, 11, 727. [Google Scholar] [CrossRef]
- Zerefos, C.; Fountoulakis, I.; Eleftheratos, K.; Kazantzidis, A. Long-term variability of human health-related solar ultraviolet-B radiation doses from the 1980s to the end of the 21st century. Physiol. Rev. 2023, 103, 1789–1826. [Google Scholar] [CrossRef]
- Lucas, R.M.; Yazar, S.; Young, A.R.; Norval, M.; de Gruijl, F.R.; Takizawa, Y.; Rhodes, L.E.; Sinclair, C.A.; Neale, R.E. Human health in relation to exposure to solar ultraviolet radiation under changing stratospheric ozone and climate. Photochem. Photobiol. Sci. 2019, 18, 641–680. [Google Scholar] [CrossRef]
- Neale, R.E.; Lucas, R.M.; Byrne, S.N.; Hollestein, L.; Rhodes, L.E.; Yazar, S.; Young, A.R.; Berwick, M.; Ireland, R.A.; Olsen, C.M. The effects of exposure to solar radiation on human health. Photochem. Photobiol. Sci. 2023, 22, 1011–1047. [Google Scholar] [CrossRef] [PubMed]
- Apalla, Z.; Lallas, A.; Sotiriou, E.; Lazaridou, E.; Ioannides, D. Epidemiological trends in skin cancer. Dermatol. Pract. Concept. 2017, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Caraban, B.M.; Aschie, M.; Deacu, M.; Cozaru, G.C.; Pundiche, M.B.; Orasanu, C.I.; Voda, R.I. A Narrative Review of Current Knowledge on Cutaneous Melanoma. Clin. Pract. 2024, 14, 214–241. [Google Scholar] [CrossRef]
- Conforti, C.; Zalaudek, I. Epidemiology and risk factors of melanoma: A review. Dermatol. Pract. Concept. 2021, 11, e2021161S. [Google Scholar] [CrossRef] [PubMed]
- Garbe, C.; Keim, U.; Gandini, S.; Amaral, T.; Katalinic, A.; Hollezcek, B.; Martus, P.; Flatz, L.; Leiter, U.; Whiteman, D. Epidemiology of cutaneous melanoma and keratinocyte cancer in white populations 1943–2036. Eur. J. Cancer 2021, 152, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Olsen, C.M.; Pandeya, N.; Ragaini, B.S.; Neale, R.E.; Whiteman, D.C. International patterns and trends in the incidence of melanoma and cutaneous squamous cell carcinoma, 1989–2020. Br. J. Dermatol. 2023, 190, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zeng, W.; Jiang, A.; He, Z.; Shen, X.; Dong, X.; Feng, J.; Lu, H. Global, regional and national incidence, mortality and disability-adjusted life-years of skin cancers and trend analysis from 1990 to 2019: An analysis of the Global Burden of Disease Study 2019. Cancer Med. 2021, 10, 4905–4922. [Google Scholar] [CrossRef] [PubMed]
- Baldermann, C.; Laschewski, G.; Grooß, J.-U. Impact of climate change on non-communicable diseases caused by altered UV radiation. J. Health Monit. 2023, 8, 57. [Google Scholar] [CrossRef] [PubMed]
- McKenzie, R.; Bernhard, G.; Liley, B.; Disterhoft, P.; Rhodes, S.; Bais, A.; Morgenstern, O.; Newman, P.; Oman, L.; Brogniez, C.; et al. Success of Montreal Protocol demonstrated by comparing high-quality UV measurements with “World Avoided” calculations from two chemistry-climate models. Sci. Rep. 2019, 9, 12332. [Google Scholar] [CrossRef]
- Herman, J.; Cede, A.; Huang, L.; Ziemke, J.; Torres, O.; Krotkov, N.; Kowalewski, M.; Blank, K. Global distribution and 14-year changes in erythemal irradiance, UV atmospheric transmission, and total column ozone for 2005–2018 estimated from OMI and EPIC observations. Atmos. Chem. Phys. 2020, 20, 8351–8380. [Google Scholar] [CrossRef]
- Fountoulakis, I.; Zerefos, C.S.; Bais, A.F.; Kapsomenakis, J.; Koukouli, M.-E.; Ohkawara, N.; Fioletov, V.; De Backer, H.; Lakkala, K.; Karppinen, T.; et al. Twenty-five years of spectral UV-B measurements over Canada, Europe and Japan: Trends and effects from changes in ozone, aerosols, clouds, and surface reflectivity. Comptes Rendus Geosci. 2018, 350, 393–402. [Google Scholar] [CrossRef]
- El Ghissassi, F.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; et al. A review of human carcinogens—Part D: Radiation. Lancet Oncol. 2009, 10, 751–752. [Google Scholar] [CrossRef]
- Diffey, B. A behavioral model for estimating population exposure to solar ultraviolet radiation. Photochem. Photobiol. 2008, 84, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Schmalwieser, A.W. Possibilities to estimate the personal UV radiation exposure from ambient UV radiation measurements. Photochem. Photobiol. Sci. 2020, 19, 1249–1261. [Google Scholar] [CrossRef] [PubMed]
- Harris, T.C.; Vuilleumier, L.; Backes, C.; Nenes, A.; Vernez, D. Satellite-based personal UV dose estimation. Atmosphere 2021, 12, 268. [Google Scholar] [CrossRef]
- Soueid, L.; Triguero-Mas, M.; Dalmau, A.; Barrera-Gómez, J.; Alonso, L.; Basagaña, X.; Thieden, E.; Wulf, H.; Diffey, B.; Young, A.; et al. Estimating personal solar ultraviolet radiation exposure through time spent outdoors, ambient levels and modelling approaches. Br. J. Dermatol. 2022, 186, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Modenese, A.; Korpinen, L.; Gobba, F. Solar radiation exposure and outdoor work: An underestimated occupational risk. Int. J. Environ. Res. Public Health 2018, 15, 2063. [Google Scholar] [CrossRef] [PubMed]
- Loney, T.; Paulo, M.; Modenese, A.; Gobba, F.; Tenkate, T.; Whiteman, D.; Green, A.; John, S. Global evidence on occupational sun exposure and keratinocyte cancers: A systematic review. Br. J. Dermatol. 2021, 184, 208–218. [Google Scholar] [CrossRef] [PubMed]
- Symanzik, C.; John, S.M. Prevention of Occupational Skin Cancer Caused by Solar Ultraviolet Radiation Exposure: Recent Achievements and Perspectives. Dermato 2024, 4, 46–59. [Google Scholar] [CrossRef]
- Godar, D.E. UV doses worldwide. Photochem. Photobiol. 2005, 81, 736–749. [Google Scholar] [PubMed]
- Vernez, D.; Milon, A.; Vuilleumier, L.; Bulliard, J.-L.; Koechlin, A.; Boniol, M.; Doré, J.F. A general model to predict individual exposure to solar UV by using ambient irradiance data. J. Exposure Sci. Environ. Epidemiol. 2015, 25, 113–118. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Laschewski, G.; Matzarakis, A. Weather-Related Human Outdoor Behavior with Respect to Solar Ultraviolet Radiation Exposure in a Changing Climate. Atmosphere 2022, 13, 1183. [Google Scholar] [CrossRef]
- Wittlich, M.; Westerhausen, S.; Strehl, B.; Versteeg, H.; Stöppelmann, W. The GENESIS-UV study on ultraviolet radiation exposure levels in 250 occupations to foster epidemiological and legislative efforts to combat nonmelanoma skin cancer. Br. J. Dermatol. 2023, 188, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Strehl, C.; Wittlich, M. Hautkrebs durch natürliche UV-Strahlung. Zentralblatt Arbeitsmedizin Arbeitsschutz Ergon. 2021, 71, 262–269. [Google Scholar] [CrossRef]
- Thieden, E.; Philipsen, P.A.; Heydenreich, J.; Wulf, H.C. UV radiation exposure related to age, sex, occupation, and sun behavior based on time-stamped personal dosimeter readings. Arch. Dermatol. 2004, 140, 197–203. [Google Scholar] [CrossRef]
- Eurostat: Tourism Statistics—Top Destinations. ISSN 2443-8219. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?oldid=652575 (accessed on 10 November 2024).
- Blumthaler, M. UV monitoring for public health. Int. J. Environ. Res. Public Health 2018, 15, 1723. [Google Scholar] [CrossRef]
- Matei, N.A.; García-León, D.; Dosio, A.; e Silva, F.B.; Barranco, R.R.; Ciscar, J.-C. Regional Impact of Climate Change on European Tourism Demand; JRC131508; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
Type of Exposure | Half-Year | Place of Stay | Probability Distribution | Mode [hours] | Standard Deviation [log] | |
---|---|---|---|---|---|---|
Working day | W1 | summer, winter | indoor | log ND | 0.5 | 0.3 |
W2 | summer, winter | outdoor | log ND | 8 | 0.5 | |
Weekend | W3 | summer | outdoor | log ND | 2 | 0.3 |
W3 | winter | outdoor | log ND | 1 | 0.3 | |
Holiday | H | summer | outdoor | ND | 5 | 1 * |
Holiday Scenario | Place of Stay and Duration in April/May | Place of Stay and Duration in June/July/August | Place of Stay and Duration in September | Total Duration |
---|---|---|---|---|
HA | place of residence 1 week | Spain 2 weeks | place of residence 1 week | 4 weeks |
HB | place of residence 1 week | place of residence 2 weeks | place of residence 1 week | 4 weeks |
HC | place of residence 1 week | Scandinavia 2 weeks | place of residence 1 week | 4 weeks |
Climate Zone | Humid Temperate | Humid Continental | Cold Steppe | Mediterranean | |||||
---|---|---|---|---|---|---|---|---|---|
Site | Bergen | Reading | Freiburg | Warsaw | Budapest | Bucharest | Madrid | Athens | |
EC | |||||||||
S | winter | spring | autumn | spring | winter | winter | winter | ||
M | spring | spring | spring | summer | summer | summer | winter | winter | |
L | summer | summer | spring | summer | summer | summer | spring | summer | |
X | - | summer | summer | summer | summer | spring | summer | ||
E | - | - | - | - | - | - | summer | summer |
Site (Latitude) | Exposure Scenario (Indoor Worker) | UVD Median [SED] | UVD Lower and Upper Quartile [SED] | UVD Change per Degree Decrease in Latitude [%] | UVD Change per Degree Increase in Latitude [%] | UVD Change 2009–2019 Compared to 1983–2008 [%] |
---|---|---|---|---|---|---|
Bergen (60.4° N) | I | 184 | 138, 245 | +1.7 | +0.4 | |
II | 135 | 98, 170 | +0.4 | |||
Reading (51.5° N) | I | 234 | 182,291 | +2.2 | +0.3 | |
II | 183 | 137, 232 | +0.4 | |||
III | 154 | 122, 185 | −1.9 | +0.8 | ||
Freiburg (48.0° N) | I | 263 | 199, 315 | +1.6 | +1.1 | |
II | 242 | 162, 277 | +1.7 | |||
III | 173 | 138, 213 | −1.9 | +2.3 | ||
Warsaw (52.5° N) | I | 228 | 172, 280 | +1.6 | +0.3 | |
II | 190 | 141, 239 | +0.7 | |||
III | 153 | 125, 183 | −2.4 | +0.3 | ||
Budapest (47.5° N) | I | 271 | 217, 333 | +1.6 | +0.5 | |
II | 238 | 181, 299 | +1.7 | |||
III | 192 | 152, 232 | −1.6 | +1.3 | ||
Bucharest (44.4° N) | I | 287 | 229, 349 | +1.5 | +1.9 | |
II | 265 | 205, 336 | +2.0 | |||
III | 212 | 172, 254 | −1.3 | +1.9 | ||
Madrid (40.4° N) | I | 365 | 290, 436 | ±0 | +0.4 | |
II | 365 | 271, 462 | +0.4 | |||
III | 280 | 224, 347 | −1.2 | +0.5 | ||
Athens (37.9° N) | I | 369 | 296, 444 | −2.3 | +0.1 | |
II | 384 | 288, 480 | +0.2 | |||
III | 294 | 234, 377 | −1.0 | +0.1 |
Site (Latitude) | Exposure Scenario (Outdoor Worker) | UVD Median [SED] | UVD Lower and Upper Quartile [SED] | UVD Change per Degree Decrease in Latitude [%] | UVD Change per Degree Increase in Latitude [%] | UVD Change 2009–2019 Compared to 1983–2008 [%] |
---|---|---|---|---|---|---|
Bergen (60.4° N) | I | 421 | 336, 504 | +0.8 | +1.6 | |
II | 361 | 276, 444 | +1.9 | |||
Reading (51.5° N) | I | 563 | 438, 684 | +0.7 | +1.6 | |
II | 513 | 392, 631 | +1.6 | |||
III | 478 | 364, 602 | −0.9 | +1.7 | ||
Freiburg (48.0° N) | I | 656 | 508, 792 | +0.6 | +2.7 | |
II | 622 | 472, 755 | +2.8 | |||
III | 580 | 423, 707 | −0.5 | +2.9 | ||
Warsaw (52.5° N) | I | 537 | 431, 685 | +0.3 | +1.2 | |
II | 519 | 400, 636 | +2.3 | |||
III | 465 | 354, 587 | −1.3 | +2.0 | ||
Budapest (47.5° N) | I | 690 | 543, 852 | +0.4 | +2.7 | |
II | 667 | 508, 811 | +3.2 | |||
III | 616 | 459, 768 | −0.6 | +3.2 | ||
Bucharest (44.4° N) | I | 765 | 601, 936 | +0.4 | +2.7 | |
II | 748 | 575, 912 | +3.1 | |||
III | 686 | 522, 857 | −0.5 | +3.1 | ||
Madrid (40.4° N) | I | 1050 | 782, 1299 | ±0 | +1.5 | |
II | 1050 | 797, 1276 | +1.6 | |||
III | 958 | 710, 1192 | −0.4 | +1.3 | ||
Athens (37.9° N) | I | 1062 | 816, 1318 | −0.5 | +0.5 | |
II | 1071 | 820, 1336 | +0.6 | |||
III | 977 | 730, 1238 | −0.4 | +0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laschewski, G. Impact of Long-Term Changes in Ambient Erythema-Effective UV Radiation on the Personal Exposure of Indoor and Outdoor Workers—Case Study at Selected Sites in Europe. Environments 2025, 12, 13. https://doi.org/10.3390/environments12010013
Laschewski G. Impact of Long-Term Changes in Ambient Erythema-Effective UV Radiation on the Personal Exposure of Indoor and Outdoor Workers—Case Study at Selected Sites in Europe. Environments. 2025; 12(1):13. https://doi.org/10.3390/environments12010013
Chicago/Turabian StyleLaschewski, Gudrun. 2025. "Impact of Long-Term Changes in Ambient Erythema-Effective UV Radiation on the Personal Exposure of Indoor and Outdoor Workers—Case Study at Selected Sites in Europe" Environments 12, no. 1: 13. https://doi.org/10.3390/environments12010013
APA StyleLaschewski, G. (2025). Impact of Long-Term Changes in Ambient Erythema-Effective UV Radiation on the Personal Exposure of Indoor and Outdoor Workers—Case Study at Selected Sites in Europe. Environments, 12(1), 13. https://doi.org/10.3390/environments12010013