Are Ecological Risk Indices for Trace Metals Relevant for Characterizing Polluted Substrates in the Katangese Copperbelt (DR Congo) and for Assessment of the Performance of Remediation Trials?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Source of Data on Metal Concentrations
2.3. Assessment of the Potential for Reducing the Ecological Risk Indices through Revegetation with Woody Species
2.4. Chemical Analysis
2.5. Calculation of Risk Indices
2.6. Statistical Analyses
3. Results
3.1. Concentration of Trace Metals in Mining Wastes and Contaminated Soils
3.2. Ecological Risk Associated with Trace Metal Concentrations
3.3. Impact on RI and BCF Values of the Localized Excavation and Replacement Approach for Revegetation
3.3.1. Profile of Edaphic Conditions and RI Values
3.3.2. Accumulation in Plant Tissues and Bioconcentration Factor Values at Kipushi
4. Discussion
4.1. Metal Concentrations and Ecological Risks Associated with Polluted Soil and Wastes in KCB
4.2. Revegetation on the Basis of Excavation and Replacement and Ecological Risk Index
4.3. Implications for Remediation of Polluted Soil
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kaniki, A.T. Caractérisation Environnementale des Rejets Minero-Metallurgiques du Copperbelt Congolais. Ph.D. Thesis, University of Liège, Liège, Belgium, 2008; p. 284. [Google Scholar]
- Kaniki, A.T.; Tumba, K. Management of mineral processing tailings and metallurgical slags of the Congolese copperbelt: Environmental stakes and perspectives. J. Clean. Prod. 2019, 210, 1406–1413. [Google Scholar] [CrossRef]
- Mambwe, P.; Shengo, M.; Kidyanyama, T.; Muchez, P.; Chabu, M. Geometallurgy of Cobalt Black Ores in the Katanga Copperbelt (Ruashi Cu-Co Deposit): A New Proposal for Enhancing Cobalt Recovery. Minerals 2022, 12, 295. [Google Scholar] [CrossRef]
- Narendrula, R.; Nkongolo, K.K.; Beckett, P. Comparative Soil Metal Analyses in Sudbury (Ontario, Canada) and Lubumbashi (Katanga, DR-Congo). Bull. Environ. Contam. Toxicol. 2012, 88, 187–192. [Google Scholar] [CrossRef]
- Pourret, O.; Lange, B.; Bonhoure, J.; Colinet, G.; Decrée, S.; Mahy, G.; Séleck, M.; Shutcha, M.; Faucon, M.-P. Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo). Appl. Geochem. 2016, 64, 43–55. [Google Scholar] [CrossRef]
- Mpinda, M.T.; Mujinya, B.B.; Mees, F.; Kasangij, P.K.; Van Ranst, E. Patterns and forms of copper and cobalt in Macrotermes falciger mounds of the Lubumbashi area, DR Congo. J. Geochem. Explor. 2022, 238, 107002. [Google Scholar] [CrossRef]
- Atibu, E.K.; Devarajan, N.; Thevenon, F.; Mwanamoki, P.M.; Tshibanda, J.B.; Mpiana, P.T.; Prabakar, K.; Mubedi, J.I.; Wildi, W.; Poté, J. Concentration of metals in surface water and sediment of Luilu and Musonoie Rivers, Kolwezi-Katanga, Democratic Republic of Congo. Appl. Geochem. 2013, 39, 26–32. [Google Scholar] [CrossRef]
- Mudimbi, K.D.; Kabamba, T.A.; Kodondi, K.-k.F.; Luboya, O.; Christian Kasongo, B.C.; Kabundi, K.D.; Kisunka, B.Y.; Musola, C.H.; Longanga, O.A.; Lukumwena, K. Impact of mining on water of the rivers Shinkolobwe, Lwisha in the province of Katanga (DRC). J. Med. Res. 2017, 3, 71–73. [Google Scholar]
- Muimba-Kankolongo, A.; Banza Lubaba Nkulu, C.; Mwitwa, J.; Kampemba, F.M.; Mulele Nabuyanda, M.; Haufroid, V.; Smolders, E.; Nemery, B. Contamination of water and food crops by trace elements in the African Copperbelt: A collaborative cross-border study in Zambia and the Democratic Republic of Congo. Environ. Adv. 2021, 16, 100103. [Google Scholar] [CrossRef]
- Langunu, S.; Imabo, P.M.I.; Bibi Fwanda, B.; Kilela Mwanasomwe, J.; Colinet, G.; Ngoy Shutcha, M. Accumulation of Trace Metals in Fruits from Mango and Syzygium guineense Growing in Residential Households from a Contaminated District of Lubumbashi (DR Congo): Is Fruit Consumption at Risk? Toxics 2023, 11, 620. [Google Scholar] [CrossRef] [PubMed]
- Manda, K.B.; Colinet, G.; André, L. Evaluation of trophic chain contamination by trace elements (Cu, Co, Zn, Pb, Cd, U, V and As) in the Upper Lufira basin (Katanga/D.R. Congo). Tropicultura 2010, 28, 246–252. [Google Scholar]
- Banza, C.L.N.; Nawrot, T.S.; Haufroid, V.; Decrée, S.; De Putter, T.; Smolders, E.; Kabyla, B.I.; Luboya, O.N.; Ilunga, A.N.; Mutombo, A.M.; et al. High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environ. Res. 2009, 109, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Cheyns, K.; Banza Lubaba Nkulu, C.; Ngombe, L.K.; Asosa, J.N.; Haufroid, V.; De Putter, T.; Nawrot, T.; Kimpanga, C.M.; Numbi, O.L.; Ilunga, B.K.; et al. Pathways of human exposure to cobalt in Katanga a mining area of the D.R. Congo. Sci. Total Environ. 2014, 490, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Squadrone, S.; Burioli, E.; Monaco, G.; Koya, M.K.; Prearo, M.; Gennero, S.; Dominici, A.; Abete, M.C. Human exposure to metals due to consumption of fish from an artificial lake basin close to an active mining area in Katanga (D.R. Congo). Sci. Total Environ. 2016, 568, 679–684. [Google Scholar] [CrossRef] [PubMed]
- Mukendi, R.-A.-M.; Banza, C.L.N.; Mukeng, C.-A.-K.; Ngwe, J.T.M.; Mwembo, A.N.-A.-N.; Kalenga, P.M.K. Human exposure to metallic traced elements and sperm alteration: A study conducted in the mining areas of Haut-Katanga in the Democratic Republic of Congo. Pan Afr. Med. J. 2018, 30, 35. [Google Scholar] [CrossRef] [PubMed]
- Van Brusselen, D.; Kayembe-Kitenge, T.; Mbuyi-Musanzayi, S.; Lubala Kasole, T.; Kabamba Ngombe, L.; Musa Obadia, P.; Kyanika Wa Mukoma, D.; Van Herck, K.; Avonts, D.; Devriendt, K.; et al. Metal mining and birth defects: A case-control study in Lubumbashi, Democratic Republic of the Congo. Lancet Planet. Health 2020, 4, e158–e167. [Google Scholar] [CrossRef] [PubMed]
- Banza, L.C.N.; Haufroid, L.; De Putter, V.; Saenen, T.; Kayembe-Kitenge, N.D.; Musa Obadia, T.; Kyanika Wa Mukoma, P.; Lunda Ilunga, J.-M.; Nawrot, D.; Luboya Numbi, T.S.; et al. Sustainability of artisanal mining of cobalt in DR Congo. Nat. Sustain. 2018, 9, 495–504. [Google Scholar] [CrossRef] [PubMed]
- Shutcha, M.N.; Mubemba, M.M.; Faucon, M.-P.; Luhembwe, M.N.; Visser, M.; Colinet, G.; Meerts, P. Phytostabilisation of Copper-Contaminated Soil in Katanga: An Experiment with Three Native Grasses and Two Amendments. Int. J. Phytoremediat. 2010, 12, 616–632. [Google Scholar] [CrossRef] [PubMed]
- Shutcha, M.N.; Faucon, M.-P.; Kamengwa Kissi, C.; Colinet, G.; Mahy, G.; Ngongo Luhembwe, M.; Visser, M.; Meerts, P. Three years of phytostabilisation experiment of bare acidic soil extremely contaminated by copper smelting using plant biodiversity of metal-rich soils in tropical Africa (Katanga, DR Congo). Ecol. Eng. 2015, 82, 81–90. [Google Scholar] [CrossRef]
- Boisson, S.; Collignon, J.; Langunu, S.; Lebrun, J.; Shutcha, M.N.; Mahy, G. Concilier la phytostabilisation des sols pollués avec la conservation de la flore cupro-cobalticole avec une stratégie nouvelle pour valoriser les écosystèmes extrêmes? In Territoires Périurbains: Développement, Enjeux et Perspectives Dans les Pays du Sud; Bogaert, J., Halleux, J.-M., Eds.; Les Presses Agronomiques de Gembloux: Gembloux, Belgium, 2015; pp. 127–138. [Google Scholar]
- Boisson, S.; Le Stradic, S.; Collignon, J.; Séleck, M.; Malaisse, F.; Ngoy Shutcha, M.; Faucon, M.-P.; Mahy, G. Potential of copper-tolerant grasses to implement phytostabilisation strategies on polluted soils in South D. R. Congo: Poaceae candidates for phytostabilisation. Environ. Sci. Pollut. Res. 2016, 23, 13693–13705. [Google Scholar] [CrossRef]
- Mwanasomwe, J.K.; Langunu, S.; Shutcha, M.N.; Colinet, G. Effects of 15-Year-Old Plantation on Soil Conditions, Spontaneous Vegetation, and the Trace Metal Content in Wood Products at Kipushi Tailings Dam. Front. Soil Sci. 2022, 2, 934491. [Google Scholar] [CrossRef]
- Mwanasomwe, J.K.; Langunu, S.; Nkulu, S.N.; Shutcha, M.N.; Colinet, G. Effect of Organic Amendment on the Physicochemical Characteristics of Tailings Dam Soil and Root Development of Tree Species, Fifteen Years After Planting. Front. Soil Sci. 2022, 2, 934999. [Google Scholar] [CrossRef]
- Kitobo, W. Dépollution et Valorisation des Rejets Miniers Sulfurés du Katanga: Cas des Tailings de l’Ancien Concentrateur de Kipushi. Ph.D. Thesis, Université de Liège, Liège, Belgium, 2009; p. 276. [Google Scholar]
- Ngenda, B.R. Study on the Valorization of Waste from the Usines à Zinc de Kolwezi, Democratic Republic of Congo. Ph.D. Thesis, Université Libre de Bruxelles, Brussels, Belgium, 2010. [Google Scholar]
- Tshibanda, K.D. Contribution à la Recherche d’un Modèle de Gestion d’un Passif Environnemental Issu d’un Traitement Métallurgique des Minerais Sulfurés Cuivre—Zinc en République Démocratique du Congo. Ph.D. Thesis, Université Libre de Bruxelles, Brussels, Belgium, 2012; p. 212. [Google Scholar]
- Håkanson, L. An ecological risk index for aquatic. Pollution control: A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar]
- Duodu, G.O.; Goonetilleke, A.; Ayoko, G.A. Comparison of pollution indexes for the assessment of heavy metal in Brisbane River sediment. Environ. Pollut. 2016, 219, 1077–1091. [Google Scholar] [CrossRef]
- Che Abdullah, M.I.; Md Sah AS, R.; Haris, H. Geoaccumulation Index and Enrichment Factor of Arsenic in Surface Sediment of Bukit Merah Reservoir, Malaysia. Trop. Life Sci. Res. 2020, 31, 109–125. [Google Scholar] [CrossRef]
- Zeng, X.; Deng, C.; Liang, Y.; Fu, J.; Zhang, S.; Ni, T. Ecological risk evaluation and sensitivity analysis of heavy metals on soil organisms under human activities in the Tibet Plateau, China. PLoS ONE 2023, 18, 0285116. [Google Scholar] [CrossRef]
- Liénard, A.; Colinet, G. Assessment of vertical contamination of Cd, Pb and Zn in soils around a former ore smelter in Wallonia, Belgium. Environ. Earth Sci. 2016, 75, 1322. [Google Scholar] [CrossRef]
- Karimi, A.; Naghizadeh, A.; Biglari, H.; Peirovi, R.; Ghasemi, A.; Zarei, A. Assessment of human health risks and pollution index for heavy metals in farmlands irrigated by effluents of stabilization ponds. Environ. Sci. Pollut. Res. 2020, 27, 10317–10327. [Google Scholar] [CrossRef]
- Nag, R.; O’Rourke, S.M.; Cummins, E. Risk factors and assessment strategies for the evaluation of human or environmental risk from metal(loid)s—A focus on Ireland. Sci. Total Environ. 2022, 802, 149839. [Google Scholar] [CrossRef] [PubMed]
- Ogarekpe, N.M.; Nnaji, C.C.; Oyebode, O.J.; Ekpenyong, M.G.; Ofem, O.I.; Tenebe, I.T.; Asitok, A.D. Groundwater quality index and potential human health risk assessment of heavy metals in water: A case study of Calabar metropolis, Nigeria. Environ. Nanotechnol. Monit. Manag. 2023, 19, 100780. [Google Scholar] [CrossRef]
- Vesković, J.; Bulatović, S.; Miletić, A.; Tadić, T.; Marković, B.; Nastasović, A.; Onjia, A. Source-specific probabilistic health risk assessment of potentially toxic elements in groundwater of a copper mining and smelter area. Stoch. Environ. Res. Risk Assess. 2024, 38, 1597–1612. [Google Scholar] [CrossRef]
- Li, R.; Dong, F.; Yang, G.; Zhang, W.; Zong, M.; Nie, X.; Zhou, L.; Babar, A.; Liu, J.; Ram, B.; et al. Characterization of Arsenic and Uranium PollutionSurrounding a Uranium Mine in Southwestern China and Phytoremediation Potential. Pol. J. Environ. Stud. 2019, 29, 173–185. [Google Scholar] [CrossRef] [PubMed]
- El-Amier, Y.A.; Bonanomi, G.; Al-Rowaily, S.L.; Abd-El Gawad, A.M. Ecological risk assessment of heavy metals along three main drains of the Nile Delta and potential phytoremediation by macrophytic plants. Plants 2020, 9, 910. [Google Scholar] [CrossRef] [PubMed]
- El-Amier, Y.A.; Bessa, A.Z.E.; Elsayed, A.; El-Esawi, M.A.; AL-Harbi, M.S.; Samra, B.N.; Kotb, W.K. Assessment of the Heavy Metals Pollution and Ecological Risk in Sediments of Mediterranean Sea Drain Estuaries in Egypt and Phytoremediation Potential of Two Emergent Plants. Sustainability 2021, 13, 12244. [Google Scholar] [CrossRef]
- Mazumder, P.; Das, A.; Khwairakpam, M.; Kalamdhad, A.S. A comprehensive insight into ecological risk assessment and remediation of metal contaminated coal mine soil: Towards a cleaner and sustainable environment. J. Clean. Prod. 2021, 324, 129185. [Google Scholar] [CrossRef]
- Ibrahim, M.; Young, A.C.; Chen, D.; Mughal, N. Potential ecological risk, in-situ phytoextraction potential of Lycopersicon esculentum, and pollution indexes of selected toxic metals in Hausawan—Kaba, Kano State, Nigeria. Environ. Chall. 2021, 4, 100113. [Google Scholar] [CrossRef]
- Shi, J.; Qian, W.; Jin, Z.; Zhou, Z.; Wang, X.; Yang, X. Evaluation of soil heavy metals pollution and the phytoremediation potential of copper-nickel mine tailings ponds. PLoS ONE 2023, 18, e0277159. [Google Scholar] [CrossRef] [PubMed]
- Cailteux, J.L.H.; Muchez, P.; De Cuyper, J.; Dewaele, S.; De Putter, T. Origin of the megabreccias in the Katanga Copperbelt (D.R.Congo). J. Afr. Earth Sci. 2018, 140, 76–93. [Google Scholar] [CrossRef]
- Mambwe, P.; Wennen, R.S.; Cailteux, J.; Mumba, C.; Dewaele, S.; Muchez, P. Review of the origin of breccias and their resource potential in the central Africa Copperbelt. Ore Geol. Rev. 2023, 156, 105389. [Google Scholar] [CrossRef]
- Saad, L.; Parmentier, I.; Colinet, G.; Malaisse, F.; Faucon, M.P.; Meerts, P.; Mahy, G. Investigating the vegetation-soil relationships on the copper-cobalt rock outcrops of Katanga (DR Congo), an essential step in a biodiversity conservation plan. Restor. Ecol. 2012, 20, 405–415. [Google Scholar] [CrossRef]
- Ngongo, M.L.; Van Ranst, E.; Baert, G.; Kasongo, E.L.; Verdoodt, A.; Mujinya, B.B.; Mukalay, J.M. Guide des Sols en R.D. Congo, Tome I: Etude et Gestion; UGent: Lubumbashi, Democratic Republic of the Congo; HoGent: Lubumbashi, Democratic Republic of the Congo; UNILU: Lubumbashi, Democratic Republic of the Congo, 2009; p. 262. [Google Scholar]
- Malaisse, F. How to Live and Survive in Zambezian Open Forest: Miombo Ecoregion; Presses Agronomiques de Gembloux: Gembloux, Belgium, 2010; p. 422. [Google Scholar]
- Mees, F.; Masalehdani, M.N.N.; De Putter, T.; D’Hollander, C.; Van Biezen, E.; Mujinya, B.B.; Potdevin, J.L.; Van Ranst, E. Concentrations and forms of heavy metals around two ore processing sites in Katanga, Democratic Republic of Congo. J. Afr. Earth Sci. 2013, 77, 22–30. [Google Scholar] [CrossRef]
- Pourret, O.; Lange, B.; Houben, D.; Colinet, G.; Shutcha, M.; Faucon, M.-P. Modeling of cobalt and copper speciation in metalliferous soils from Katanga (Democratic Republic of Congo). J. Geochem. Explor. 2015, 149, 87–96. [Google Scholar] [CrossRef]
- Faucon, M.P.; Shutcha, M.N.; Meerts, P. Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: Influence of washing and metal concentrations in soil. Plant Soil 2007, 301, 29–36. [Google Scholar] [CrossRef]
- Liu, M.; Yang, Y.; Yun, X.; Zhang, M.; Wang, J. Concentrations, distribution, sources, and ecological risk assessment of heavy metals in agricultural topsoil of the Three Gorges Dam region, China. Environ. Monit. Assess. 2015, 187, 147. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Kaur, P.; Singh Sidhu, G.P.; Bali, A.S.; Bhardwaj, R.; Thukral, A.K.; Cerda, A. Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere 2019, 216, 449–462. [Google Scholar] [CrossRef]
- Hamid, E.; Payandeh, K.; Karimi Nezhad, M.T.; Saadati, N. Potential ecological risk assessment of heavy metals (trace elements) in coastal soils of southwest Iran. Front. Public Health 2022, 10, 889130. [Google Scholar] [CrossRef]
- Yang, Y.; Liang, Y.; Ghosh, A.; Song, Y.; Chen, H.; Tang, M. Assessment of arbuscular mycorrhizal fungi status and heavy metal accumulation characteristics of tree species in a lead-zinc mine area: Potential applications for phytoremediation. Environ. Sci. Pollut. Res. 2015, 22, 13179–13193. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, Q.; Yu, H.; Huang, X.; Li, F. Interactive effects of multiple heavy metal(loid)s on their bioavailability in contaminated paddy soils in a large region. Sci. Total Environ. 2020, 708, 135126. [Google Scholar] [CrossRef]
- Hargarten, P.M.; Wheeler, D.C. Accounting for the uncertainty due to chemicals below the detection limit in mixture analysis. Environ. Res. 2020, 186, 109466. [Google Scholar] [CrossRef] [PubMed]
- Shutcha, M.N.; Mukobo, R.P.; Muyumba, K.D.; Mpundu, M.M.; Faucon, M.P.; Lubalega, K.T.; Ludovic, A.; Annabelle, J.; Vandenheede, N.; Pourret, O.; et al. Pedogeochemical background and mapping of soil pollution in Lubumbashi. In Anthropisation des paysages Katangais; Bogaert, J., Gilles, C., Gregory, M., Eds.; Les Presses Agronomiques de Gembloux: Gembloux, Belgium, 2018; pp. 215–228. [Google Scholar]
- Mpinda, M.T.; Kisimba, T.N.; Mwamba, T.M.; Kasongo, E.L.M.; Kaniki, A.T.; Mujinya, B.B. Baseline Concentrations of 11 Elements as a Function of Land uses in Surface Soils of the Katangese Copperbelt Area (D.R. Congo). Am. J. Environ. Sci. 2021, 17, 125–135. [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Pendias, H. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2001; p. 403. [Google Scholar]
- Kampunzu, A.B.; Cailteux, J.L.H.; Moine, B.; Loris, H.N.B.T. Geochemical characterization, provenance, source, and depositional environment of “Roches Argilo-Talqueuses” (RAT) and Mines Subgroups sedimentary rocks in the Neoproterozoic Katangan Belt (Congo): Lithostratigraphic implications”. J. Afr. Earth Sci. 2005, 42, 119–133. [Google Scholar] [CrossRef]
- Cailteux, J.L.H.; Kampunzu, A.B.; Lerouge, C.; Kaputo, A.K.; Milesi, J.P. Genesis of sediment-hosted stratiform copper-cobalt deposits, central African Copperbelt. J. Afr. Earth Sci. 2005, 42, 134–158. [Google Scholar] [CrossRef]
- Muchez, P.; André-Mayer, A.-S.; El Desouky, H.A.; Reisberg, L. Diagenetic origin of the stratiform Cu–Co deposit at Kamoto in the Central African Copperbelt. Miner. Deposita 2015, 50, 437–447. [Google Scholar] [CrossRef]
- Crundwell, F.; Moats, M.; Ramachandran, V. Extractive Metallurgy of Nickel, Cobalt and Platinum Metals; Elsevier: Oxford, UK, 2011; 610p. [Google Scholar]
- Bautista, R.G. Fundamentals of Hydrometallurgical Processes; Springer: Berlin/Heidelberg, Germany, 2013; p. 665. [Google Scholar]
- Bourgarit, D. Mineralogy of slags: A key approach for our understanding of ancient copper smelting processes. In The Contribution of Mineralogy to Cultural Heritage; Mineralogical Society of Great Britain and Ireland: London, UK, 2019; pp. 203–232. [Google Scholar] [CrossRef]
- Kitobo, W.; Kalenga, P.; Ilunga, N.A.; Luboya, O.; Frenay, J. Caractérisation de la mobilité des éléments traces métalliques contenus dans les rejets de l’Ancien Concentrateur de Kipushi en R.D. Congo. In Annales du Pôle Mines-Géologie; Université de Lubumbashi: Lubumbashi, Democratic Republic of the Congo, 2007; Volume 1, pp. 133–142. [Google Scholar]
- Muyumba, D.; Pourret, O.; Lienard, A.; Faucon, M.-P.; Mahy, G.; Ngong, N.M.; Colinet, G.C. Experimental evaluation of copper and cobalt phytoavailability in soils of metal-bearing ecosystems of the Katangan Copper Arc. In Anthropisation des Paysages Katangais; Bogaert, J., Gilles, C., Gregory, M., Eds.; Les Presses Agronomiques de Gembloux: Gembloux, Belgium, 2018; pp. 192–214. [Google Scholar]
- Mugoša, B.; Đurović, D.; Nedović-Vuković, M.; Barjaktarović-Labović, S.; Vrvić, M. Assessment of Ecological Risk of Heavy Metal Contamination in Coastal Municipalities of Montenegro. Int. J. Environ. Res. Public Health 2016, 13, 393. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution indexes as useful tools for the comprehensive evaluation of the degree of soil contamination-A review. Environ. Geochem. Health 2018, 40, 2395–2420. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Ren, B.; Hursthouse, A.; Zhou, Y. Trace Metal Pollution in Topsoil Surrounding the Xiangtan Manganese Mine Area (South-Central China): Source Identification, Spatial Distribution and Assessment of Potential Ecological Risks. Int. J. Environ. Res. Public Health 2018, 15, 2412. [Google Scholar] [CrossRef] [PubMed]
- Al-Robai, S.A. Ecological risk assessment of heavy metals in soils near a water dam in Baljurashi, Saudi Arabia, and their accumulation in Dodonaea viscosa. Sustainability 2023, 15, 15646. [Google Scholar] [CrossRef]
- Hoque, M.M.; Islam, A.; Islam, A.R.M.T.; Pal, S.C.; Mahammad, S.; Alam, E. Assessment of soil heavy metal pollution and associated ecological risk of agriculture dominated mid-channel bars in a subtropical river basin. Sci. Rep. 2023, 13, 11104. [Google Scholar] [CrossRef]
- Simon, L. Potentially harmful elements in agricultural soils. In PHE, the Environment and Human Health; Bini, C., Bech, J., Eds.; Springer: Dordrecht, The Netherlands, 2014; pp. 85–150. [Google Scholar]
- Oliva, S.R.; Mingorance, M.D. Assessment of Airborne Heavy Metal Pollution by Aboveground Plant Parts. Chemosphere 2006, 65, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Mwanasomwe, K.L. Amélioration du Procédé de Phytostabilisation Avec les Espèces Ligneuses Pour la Production des Services Écosystémiques en Milieux Pollués Urbains et Périurbains de L’arc Cuprifère Katangais. Ph.D. Thesis, Université de Liège, Liege, Belgium, 2022; p. 217. [Google Scholar]
- Kowalska, J.; Mazurek, R.; Gąsiorek, M.; Setlak, M.; Zaleski, T.; Waroszewski, J. Soil pollution indexes conditioned by medieval metallurgical activity—A case study from Krakow (Poland). Environ. Pollut. 2016, 218, 1023–1036. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals-Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Naveed, S.; Oladoye, P.O.; Alli, Y.A. Toxic heavy metals: A bibliographic review of risk assessment, toxicity, and phytoremediation technology. Sustain. Chem. Environ. 2023, 2, 100018. [Google Scholar] [CrossRef]
Reference | Aim of the Study | Analyses |
---|---|---|
Kaniki [1] | Environmental characterization of mining and metallurgical wastes | pH, As, Cd, Cu, Co, Fe, Pb, Mn, and Zn. Extraction with aqua regia |
Kitobo [24] | Remediation and reclamation of sulfide mine tailings | pH, As, Cu, Co, Pb, and Zn. Leaching test and extraction with HCl and NaOH |
Ngenda [25] | Feasibility of the valorization of wastes from the Kolwezi zinc plants | pH, As, Cu, Co, Pb, and Zn. Leaching test and with HCl and NaOH |
Tshibanda [26] | Improving the metallurgical treatment of Cu-Zn sulfides from mining wastes in Kolwezi. | As, Al, Cd, Co, Cu, Hg, Pb, Zn, Mn, Fe, Ti, S, and Ni. Leaching test and X-ray fluorescence analysis |
Narendrula et al. [4] | Assessing trace metal concentrations in polluted soils from smelting activities | pH, As, Al, Cd, Cu, Fe, Co, Pb, Zn, Mn, Mg, and Ni. Extraction with aqua regia |
Mees et al. [47] | Concentrations and forms of heavy metals around two ore processing sites | pH, As, Cr, Cd, Cu, Fe, Co, Pb, Zn, Mn, and Ni. Extraction with aqua regia |
Pourret et al. [48] | Modeling of cobalt and copper speciation in metalliferous soils | Co, Cu, Fe, Mn, Mg, and Ca. Extraction with HF + HClO4 + HCl |
Elements | Toxicological Response Factor |
---|---|
As | 10 |
Cd | 30 |
Co | 5 |
Cu | 5 |
Mn | 1 |
Pb | 5 |
Zn | 1 |
pHwater | pHKCl | Fe | As | Cd | Co | Cu | Mn | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|---|
n | 78 | 88 | 75 | 66 | 124 | 122 | 125 | 69 | 125 | 122 |
Mean | 6.2 | 5.8 | 64,764 | 1578 | 1751 | 826 | 12,657 | 939 | 2096 | 13,250 |
SD | 1.48 | 1.78 | 76,707 | 2695 | 4225 | 2673 | 14,048 | 1909 | 7613 | 41,111 |
Min | 4 | 3.5 | 9890 | <LOQ | <LOQ | 2.52 | 116 | 15 | <LOQ | 0.02 |
Q1 | 5.13 | 4.8 | 21,800 | 30.6 | <LOQ | 29.55 | 1317.5 | 109.5 | 31 | 15 |
Median | 5.87 | 5.4 | 37,850 | 314 | 28 | 94.13 | 7977 | 174 | 52 | 41 |
Q3 | 7.02 | 5.8 | 57,150 | 1420 | 245 | 351 | 19,513 | 750 | 712 | 694 |
Max | 10.6 | 11.7 | 320,000 | 12,159 | 17,414 | 23,000 | 75,000 | 9600 | 58,000 | 200,000 |
CV | 24 | 30 | 119 | 178 | 243 | 315 | 149 | 198 | 370 | 317 |
Skewness | 1.13 | 1.98 | 2.19 | 2.59 | 2.52 | 4.79 | 5.18 | 2.89 | 5.46 | 3.69 |
Kurtosis | 1.10 | 3.72 | 3.52 | 6.37 | 5.06 | 24.66 | 39.42 | 8.38 | 32.7 | 12.82 |
Reference | ||||||||||
Mean | 5.6 | 4.4 | 62,954 | - | 1.3 | 20 | 187 | 119 | 40 | 69 |
Min | 3.9 | 3.8 | 8971 | - | 0.1 | 0.1 | 3.1 | 4.3 | 0.3 | 2.0 |
Max | 7.3 | 5.8 | 112,000 | - | 1.9 | 38 | 456 | 370 | 82 | 180 |
IT | - | - | - | - | 5 | 40 | 200 | - | 100 | 300 |
Substrates | CF | DC | ||||||
---|---|---|---|---|---|---|---|---|
As | Cd | Co | Cu | Mn | Pb | Zn | ||
CFSCu | 0.001 | 7.7 | 2.9 | 59.2 | 1.1 | 0.5 | 0.4 | 72 |
CFSCuZn | 176 | 593 | 3.7 | 61 | 3.4 | 222 | 968 | 2027 |
COCoCu | 2.4 | 0.001 | 147 | 27.4 | 0.8 | 1 | 1.1 | 180 |
DP | 6.3 | 20.8 | 9.4 | 71.8 | 0.1 | 18.3 | 28.6 | 155 |
Sc | 0.1 | 0.001 | 131 | 39.6 | 7.6 | 21.3 | 138 | 338 |
SR | 36.5 | 5388 | 2.9 | 3.8 | 0.2 | 7.2 | 0.9 | 5440 |
Substrates | Er | RI | ||||||
---|---|---|---|---|---|---|---|---|
As | Cd | Co | Cu | Mn | Pb | Zn | ||
CFSCu | 0.001 | 233 | 15 | 296 | 1.1 | 2.9 | 0.4 | 549 |
CFSCuZn | 1760 | 17,792 | 18.8 | 305 | 3.4 | 1111 | 968 | 21,959 |
COCoCu | 24 | 0.04 | 736 | 137 | 0.8 | 5.2 | 1.1 | 905 |
DP | 63.6 | 625 | 47.4 | 359 | 0.1 | 94.4 | 28.6 | 1219 |
Sc | 1.6 | 0.04 | 657 | 198 | 7.6 | 107 | 138 | 1109 |
SR | 366 | 161,653 | 14.7 | 19.4 | 0.2 | 36.1 | 0.98 | 162,091 |
Kipushi | Penga Penga | Reference (Forest Soil) | |||
---|---|---|---|---|---|
Unamended | Rhizosphere | Unamended | Rhizosphere | ||
pHKCl | 7.9 ± 0.2 a | 7.0 ± 0.2 b | 5.8 ± 1.7 b | 7.7 ± 0.3 a | 4.4 (3.8–5.8) |
TOC (%) | 2.2 ± 0.3 b | 4.5 ± 1.9 a | 1.4 ± 0.5 | - | 2.3 (1–5) |
Ca (mg kg−1) | 10,060 ± 4002 a | 4098 ± 425 b | 11 ± 5.2 b | 75 ± 43.7 a | - |
Mg (mg kg−1) | 2790 ±1824 a | 2242 ± 352 b | 1.7 ± 0.5 | - | - |
P (mg kg−1) | 40 ± 14.1 b | 148 ± 79 a | 1.4 ± 0.5 | - | - |
K (mg kg−1) | 20 ± 1.4 b | 144 ± 49 a | 1.2 ± 1.1 b | 99 ± 36 a | - |
As (mg kg−1) | 2934 ± 2141 a | 314 ± 155 b | 1578 ± 2695 a | 12.8 ± 14.2 b | - |
Cd (mg kg−1) | 159 ± 77.4 a | 48 ± 16 b | 1751 ± 4225 a | 8.7 ± 12 b | - |
Cu (mg kg−1) | 9269 ± 1825 a | 3533 ± 814 b | 12,657 ± 14,048 a | 1379 ± 1371 b | 187 (20–456) |
Co (mg kg−1) | 102 ± 57.1 b | 932 ± 407 a | 826 ± 2673 a | 182 ± 113 b | 20 (7.1–38) |
Pb (mg kg−1) | 4291± 1113 a | 557 ± 230 b | 2096 ± 7613 a | 142 ± 131 b | 40 (7.0–82) |
Zn (mg kg−1) | 22,723 ± 11,670 a | 6725 ± 2650 b | 13,250 ± 4111 a | 467 ± 312 b | 69 (26–180) |
RI | 5704 ± 3222 a | 1522 ± 400 b | 1532 ± 503 a | 533 ± 493 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langunu, S.; Kilela Mwanasomwe, J.; Colinet, G.; Ngoy Shutcha, M. Are Ecological Risk Indices for Trace Metals Relevant for Characterizing Polluted Substrates in the Katangese Copperbelt (DR Congo) and for Assessment of the Performance of Remediation Trials? Environments 2024, 11, 122. https://doi.org/10.3390/environments11060122
Langunu S, Kilela Mwanasomwe J, Colinet G, Ngoy Shutcha M. Are Ecological Risk Indices for Trace Metals Relevant for Characterizing Polluted Substrates in the Katangese Copperbelt (DR Congo) and for Assessment of the Performance of Remediation Trials? Environments. 2024; 11(6):122. https://doi.org/10.3390/environments11060122
Chicago/Turabian StyleLangunu, Serge, Jacques Kilela Mwanasomwe, Gilles Colinet, and Mylor Ngoy Shutcha. 2024. "Are Ecological Risk Indices for Trace Metals Relevant for Characterizing Polluted Substrates in the Katangese Copperbelt (DR Congo) and for Assessment of the Performance of Remediation Trials?" Environments 11, no. 6: 122. https://doi.org/10.3390/environments11060122
APA StyleLangunu, S., Kilela Mwanasomwe, J., Colinet, G., & Ngoy Shutcha, M. (2024). Are Ecological Risk Indices for Trace Metals Relevant for Characterizing Polluted Substrates in the Katangese Copperbelt (DR Congo) and for Assessment of the Performance of Remediation Trials? Environments, 11(6), 122. https://doi.org/10.3390/environments11060122