Aquatic Bacterial Community Connectivity: The Effect of Hydrological Flow on Community Diversity and Composition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. DNA Extraction and Library Preparation
2.3. Data Processing
2.4. Statistical Analyses
2.4.1. Community Composition
2.4.2. Community Connectivity
3. Results
3.1. Bacterial Community Composition
3.2. Bacterial Community Connectivity
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Falkowski, P.G.; Fenchel, T.; Delong, E.F. The Microbial Engines That Drive Earth’s Biogeochemical Cycles. Science 2008, 320, 1034–1039. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, J.A.; Cram, J.A.; Needham, D.M. Marine Microbial Community Dynamics and Their Ecological Interpretation. Nat. Rev. Microbiol. 2015, 13, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Kaunzinger, C.M.K.; Morin, P.J. Productivity Controls Food-Chain Properties in Microbial Communities. Nature 1998, 395, 495–497. [Google Scholar] [CrossRef]
- Sadeghi, J.; Chaganti, S.R.; Shahraki, A.H.; Heath, D.D. Microbial Community and Abiotic Effects on Aquatic Bacterial Communities in North Temperate Lakes. Sci. Total Environ. 2021, 781, 146771. [Google Scholar] [CrossRef] [PubMed]
- Shahraki, A.H.; Chaganti, S.R.; Heath, D. Spatio-Temporal Dynamics of Bacterial Communities in the Shoreline of Laurentian Great Lake Erie and Lake St. Clair’s Large Freshwater Ecosystems. BMC Microbiol. 2021, 21, 253. [Google Scholar] [CrossRef] [PubMed]
- Pearman, J.K.; Thomson-Laing, G.; Thompson, L.; Waters, S.; Vandergoes, M.J.; Howarth, J.D.; Duggan, I.C.; Hogg, I.D.; Wood, S.A. Human Access and Deterministic Processes Play a Major Role in Structuring Planktonic and Sedimentary Bacterial and Eukaryotic Communities in Lakes. PeerJ 2022, 10, e14378. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Meng, Z.; Liu, X.; Zhang, X. Microbial Assembly, Interaction, Functioning, Activity and Diversification: A Review Derived from Community Compositional Data. Mar. Life Sci. Technol. 2019, 1, 112–128. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, S.; Liu, X.; Yao, P.; Ge, T.; Zhang, X.H. Spatiotemporal Dynamics of the Archaeal Community in Coastal Sediments: Assembly Process and Co-Occurrence Relationship. ISME J. 2020, 14, 1463–1478. [Google Scholar] [CrossRef]
- Curren, E.; Leong, S.C.Y. Natural and Anthropogenic Dispersal of Cyanobacteria: A Review. Hydrobiologia 2020, 847, 2801–2822. [Google Scholar] [CrossRef]
- Jiao, S.; Liu, Z.; Lin, Y.; Yang, J.; Chen, W.; Wei, G. Bacterial Communities in Oil Contaminated Soils: Biogeography and Co-Occurrence Patterns. Soil Biol. Biochem. 2016, 98, 64–73. [Google Scholar] [CrossRef]
- Comte, J.; Culley, A.I.; Lovejoy, C.; Vincent, W.F. Microbial Connectivity and Sorting in a High Arctic Watershed. ISME J. 2018, 12, 2988–3000. [Google Scholar] [CrossRef] [PubMed]
- Argiroff, W.A.; Zak, D.R.; Lanser, C.M.; Wiley, M.J. Microbial Community Functional Potential and Composition Are Shaped by Hydrologic Connectivity in Riverine Floodplain Soils. Microb. Ecol. 2017, 73, 630–644. [Google Scholar] [CrossRef] [PubMed]
- Paver, S.F.; Newton, R.J.; Coleman, M.L. Microbial Communities of the Laurentian Great Lakes Reflect Connectivity and Local Biogeochemistry. Environ. Microbiol. 2020, 22, 433–446. [Google Scholar] [CrossRef] [PubMed]
- Griffin, J.S.; Lu, N.; Sangwan, N.; Li, A.; Dsouza, M.; Stumpf, A.J.; Sevilla, T.; Culotti, A.; Keefer, L.L.; Kelly, J.J.; et al. Microbial Diversity in an Intensively Managed Landscape Is Structured by Landscape Connectivity. FEMS Microbiol. Ecol. 2017, 93, fix120. [Google Scholar] [CrossRef] [PubMed]
- Laperriere, S.M.; Hilderbrand, R.H.; Keller, S.R.; Trott, R.; Santoro, A.E. Headwater Stream Microbial Diversity and Function across Agricultural and Urban Land Use Gradients. Appl. Environ. Microbiol. 2020, 86, e00018-20. [Google Scholar] [CrossRef]
- Varliero, G.; Bienhold, C.; Schmid, F.; Boetius, A.; Molari, M. Microbial Diversity and Connectivity in Deep-Sea Sediments of the South Atlantic Polar Front. Front. Microbiol. 2019, 10, 665. [Google Scholar] [CrossRef] [PubMed]
- Stanish, L.F.; Hull, N.M.; Robertson, C.E.; Harris, J.K.; Stevens, M.J.; Spear, J.R.; Pace, N.R. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA. PLoS ONE 2016, 11, e0157966. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Steele, J.A.; Caporaso, J.G.; Steinbruck, L.; Reeder, J.; Temperton, B.; Huse, S.; McHardy, A.C.; Knight, R.; Joint, I.; et al. Defining Seasonal Marine Microbial Community Dynamics. ISME J. 2012, 6, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Nemergut, D.R.; Schmidt, S.K.; Fukami, T.; O’Neill, S.P.; Bilinski, T.M.; Stanish, L.F.; Knelman, J.E.; Darcy, J.L.; Lynch, R.C.; Wickey, P.; et al. Patterns and Processes of Microbial Community Assembly. Microbiol. Mol. Biol. Rev. 2013, 77, 342–356. [Google Scholar] [CrossRef]
- Ghosh, S.; Leff, L.G. Impacts of Labile Organic Carbon Concentration on Organic and Inorganic Nitrogen Utilization by a Stream Biofilm Bacterial Community. Appl. Environ. Microbiol. 2013, 79, 7130–7141. [Google Scholar] [CrossRef]
- Kent, A.D.; Yannarell, A.C.; Rusak, J.A.; Triplett, E.W.; McMahon, K.D. Synchrony in Aquatic Microbial Community Dynamics. ISME J. 2007, 1, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Rusconi, R.; Stocker, R. Microbes in Flow. Curr. Opin. Microbiol. 2015, 25, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Campen, R.; Kowalski, J.; Lyons, W.B.; Tulaczyk, S.; Dachwald, B.; Pettit, E.; Welch, K.A.; Mikucki, J.A. Microbial Diversity of an Antarctic Subglacial Community and High-Resolution Replicate Sampling Inform Hydrological Connectivity in a Polar Desert. Environ. Microbiol. 2019, 21, 2290–2306. [Google Scholar] [CrossRef]
- Lehtola, M.J.; Laxander, M.; Miettinen, I.T.; Hirvonen, A.; Vartiainen, T.; Martikainen, P.J. The Effects of Changing Water Flow Velocity on the Formation of Biofilms and Water Quality in Pilot Distribution System Consisting of Copper or Polyethylene Pipes. Water Res. 2006, 40, 2151–2160. [Google Scholar] [CrossRef] [PubMed]
- Walters, K.E.; Capocchi, J.K.; Albright, M.B.N.; Hao, Z.; Brodie, E.L.; Martiny, J.B.H. Routes and Rates of Bacterial Dispersal Impact Surface Soil Microbiome Composition and Functioning. ISME J. 2022, 16, 2295–2304. [Google Scholar] [CrossRef] [PubMed]
- Crevecoeur, S.; Edge, T.A.; Watson, L.C.; Watson, S.B.; Greer, C.W.; Ciborowski, J.J.H.; Diep, N.; Dove, A.; Drouillard, K.G.; Frenken, T.; et al. Spatio-Temporal Connectivity of the Aquatic Microbiome Associated with Cyanobacterial Blooms Along a Great Lake Riverine-Lacustrine Continuum. Front. Microbiol. 2023, 14, 1073753. [Google Scholar] [CrossRef]
- Choudoir, M.J.; DeAngelis, K.M. A Framework for Integrating Microbial Dispersal Modes into Soil Ecosystem Ecology. iScience 2022, 25, 103887. [Google Scholar] [CrossRef] [PubMed]
- Crump, B.C.; Amaral-Zettler, L.A.; Kling, G.W. Microbial Diversity in Arctic Freshwaters Is Structured by Inoculation of Microbes from Soils. ISME J. 2012, 6, 1629–1639. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, N.W.; Corkum, L.D.; Mandrak, N.E. Macrohabitat Associations of Fishes in Shallow Waters of the Detroit River. J. Fish. Biol. 2010, 76, 446–466. [Google Scholar] [CrossRef]
- Shahraki, A.H.; Chaganti, S.R.; Heath, D. Assessing High-Throughput Environmental DNA Extraction Methods for Meta-Barcode Characterization of Aquatic Microbial Communities. J. Water Health 2019, 17, 37–49. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, Interactive, Scalable and Extensible Microbiome Data Science Using Qiime 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Martin, M. Cutadapt Removes Adapter Sequences from High-Throughput Sequencing Reads. EMBnet. J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. Dada2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.; Price, M.N.; Goodrich, J.; Nawrocki, E.P.; DeSantis, T.Z.; Probst, A.; Andersen, G.L.; Knight, R.; Hugenholtz, P. An Improved Greengenes Taxonomy with Explicit Ranks for Ecological and Evolutionary Analyses of Bacteria and Archaea. ISME J. 2012, 6, 610–618. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, T.Z.; Hugenholtz, P.; Larsen, N.; Rojas, M.; Brodie, E.L.; Keller, K.; Huber, T.; Dalevi, D.; Hu, P.; Andersen, G.L. Greengenes, a Chimera-Checked 16s Rrna Gene Database and Workbench Compatible with Arb. Appl. Environ. Microbiol. 2006, 72, 5069–5072. [Google Scholar] [CrossRef] [PubMed]
- Clarke, K.R.; Ray, N.G.; Paul, J.S.; Richard, M.W. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation; Primer-E Ltd.: Plymouth, UK, 2014; p. 260. [Google Scholar]
- Langenheder, S.; Lindstrom, E.S. Factors Influencing Aquatic and Terrestrial Bacterial Community Assembly. Environ. Microbiol. Rep. 2019, 11, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Dann, L.M.; Smith, R.J.; Jeffries, T.C.; McKerral, J.C.; Fairweather, P.G.; Oliver, R.L.; Mitchell, J.G. Persistence, Loss and Appearance of Bacteria Upstream and Downstream of a River System. Mar. Freshw. Res. 2016, 68, 851–862. [Google Scholar] [CrossRef]
- Doherty, M.; Yager, P.L.; Moran, M.A.; Coles, V.J.; Fortunato, C.S.; Krusche, A.V.; Medeiros, P.M.; Payet, J.P.; Richey, J.E.; Satinsky, B.M.; et al. Bacterial Biogeography across the Amazon River-Ocean Continuum. Front. Microbiol. 2017, 8, 882. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.J.; Schwab, D.J.; Lang, G.A. Real-Time Hydraulic and Hydrodynamic Model of the St. Clair River, Lake St. Clair, Detroit River System. J. Hydraul. Eng. 2010, 136, 507–518. [Google Scholar] [CrossRef]
- Shahraki, A.H.; Chaganti, S.R.; Heath, D.D. Diel Dynamics of Freshwater Bacterial Communities at Beaches in Lake Erie and Lake St. Clair, Windsor, Ontario. Microb. Ecol. 2021, 81, 1–13. [Google Scholar] [CrossRef]
- Savio, D.; Sinclair, L.; Ijaz, U.Z.; Parajka, J.; Reischer, G.H.; Stadler, P.; Blaschke, A.P.; Bloschl, G.; Mach, R.L.; Kirschner, A.K.; et al. Bacterial Diversity Along a 2600 km River Continuum. Environ. Microbiol. 2015, 17, 4994–5007. [Google Scholar] [CrossRef] [PubMed]
- Stadler, M.; Del Giorgio, P.A. Terrestrial Connectivity, Upstream Aquatic History and Seasonality Shape Bacterial Community Assembly within a Large Boreal Aquatic Network. ISME J. 2022, 16, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Read, D.S.; Gweon, H.S.; Bowes, M.J.; Newbold, L.K.; Field, D.; Bailey, M.J.; Griffiths, R.I. Catchment-Scale Biogeography of Riverine Bacterioplankton. ISME J. 2015, 9, 516–526. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Xiang, X.; Yang, Y.; Huang, G.; Fu, K.; Che, R.; Chen, L. Seasonal Effects of River Flow on Microbial Community Coalescence and Diversity in a Riverine Network. FEMS Microbiol. Ecol. 2020, 96, fiaa132. [Google Scholar] [CrossRef] [PubMed]
- Simek, K.; Kasalicky, V.; Jezbera, J.; Hornak, K.; Nedoma, J.; Hahn, M.W.; Bass, D.; Jost, S.; Boenigk, J. Differential Freshwater Flagellate Community Response to Bacterial Food Quality with a Focus on Limnohabitans Bacteria. ISME J. 2013, 7, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Yannarell, A.C.; Triplett, E.W. Geographic and Environmental Sources of Variation in Lake Bacterial Community Composition. Appl. Environ. Microbiol. 2005, 71, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Lindström, E.S.; Agterveld, M.P.K.-V.; Zwart, G. Distribution of Typical Freshwater Bacterial Groups Is Associated with Ph, Temperature, and Lake Water Retention Time. Appl. Environ. Microbiol. 2005, 71, 8201–8206. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.E.; McMahon, K.D. Species-Sorting May Explain an Apparent Minimal Effect of Immigration on Freshwater Bacterial Community Dynamics. Environ. Microbiol. 2009, 11, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Milke, F.; Wagner-Doebler, I.; Wienhausen, G.; Simon, M. Selection, Drift and Community Interactions Shape Microbial Biogeographic Patterns in the Pacific Ocean. ISME J. 2022, 16, 2653–2665. [Google Scholar] [CrossRef]
- Green, J.L.; Holmes, A.J.; Westoby, M.; Oliver, I.; Briscoe, D.; Dangerfield, M.; Gillings, M.; Beattie, A.J. Spatial Scaling of Microbial Eukaryote Diversity. Nature 2004, 432, 747–750. [Google Scholar] [CrossRef]
- Hanson, C.A.; Fuhrman, J.A.; Horner-Devine, M.C.; Martiny, J.B. Beyond Biogeographic Patterns: Processes Shaping the Microbial Landscape. Nat. Rev. Microbiol. 2012, 10, 497–506. [Google Scholar] [CrossRef] [PubMed]
Effect | Factor | df | Mean Sq | F Value | p (>F) |
---|---|---|---|---|---|
Alpha diversity (Chao 1) | Location | 2 | 2428 | 0.449 | 0.64 |
Site (Location) | 27 | 3476 | 0.640 | 0.88 | |
Beta diversity (PCoA 1) | Location | 2 | 6981 | 29.1 | <<0.0001 |
Site (Location) | 27 | 380.4 | 1.59 | 0.11 | |
Beta diversity (PCoA 2) | Location | 2 | 3189 | 17.6 | <<0.0001 |
Site (Location) | 27 | 212.8 | 1.18 | 0.33 |
Location | Variable | df | Mean Sq | F Value | p (>F) |
---|---|---|---|---|---|
Little River | Alpha diversity (Chao 1) | 9 | 2312 | 0.239 | 0.98 |
Beta diversity (PCoA 1) | 9 | 145.1 | 0.362 | 0.93 | |
Beta diversity (PCoA 2) | 9 | 210.1 | 0.539 | 0.82 | |
Detroit River | Alpha diversity (Chao 1) | 9 | 5397 | 0.971 | 0.51 |
Beta diversity (PCoA 1) | 9 | 759.1 | 3.198 | 0.042 *a | |
Beta diversity (PCoA 2) | 9 | 264.6 | 2.24 | 0.11 | |
Lake Erie | Alpha diversity (Chao 1) | 9 | 2718 | 2.67 | 0.071 |
Beta diversity (PCoA 1) | 9 | 236.9 | 2.92 | 0.055 | |
Beta diversity (PCoA 2) | 9 | 163.8 | 4.63 | 0.013 * |
Effect | df | Mean Sq | R2 | F Value | p (>F) |
---|---|---|---|---|---|
Location | 2 | 1.2 | 0.18 | 7.1 | <0.01 |
Site (Location) | 27 | 0.3 | 0.45 | 1.37 | <0.01 |
Residuals | 30 | 0.2 | 0.37 | ||
Total | 59 | 1.00 |
Location | Effect | df | Mean Sq | R2 | F Value | p (>F) |
---|---|---|---|---|---|---|
Little River | Site | 9 | 0.3 | 0.47 | 0.90 | NS |
Residuals | 10 | 0.3 | 0.53 | |||
Total | 19 | 1.00 | ||||
Detroit River | Site | 9 | 0.3 | 0.58 | 1.57 | <0.01 |
Residuals | 10 | 0.2 | 0.42 | |||
Total | 19 | 1.00 | ||||
Lake Erie | Site | 9 | 2.2 | 0.68 | 2.40 | <0.001 |
Residuals | 10 | 0.09 | 0.32 | |||
Total | 19 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghi, J.; Venney, C.J.; Wright, S.; Watkins, J.; Manning, D.; Bai, E.; Frank, C.; Heath, D.D. Aquatic Bacterial Community Connectivity: The Effect of Hydrological Flow on Community Diversity and Composition. Environments 2024, 11, 90. https://doi.org/10.3390/environments11050090
Sadeghi J, Venney CJ, Wright S, Watkins J, Manning D, Bai E, Frank C, Heath DD. Aquatic Bacterial Community Connectivity: The Effect of Hydrological Flow on Community Diversity and Composition. Environments. 2024; 11(5):90. https://doi.org/10.3390/environments11050090
Chicago/Turabian StyleSadeghi, Javad, Clare J. Venney, Shelby Wright, James Watkins, Dana Manning, Edel Bai, Chelsea Frank, and Daniel D. Heath. 2024. "Aquatic Bacterial Community Connectivity: The Effect of Hydrological Flow on Community Diversity and Composition" Environments 11, no. 5: 90. https://doi.org/10.3390/environments11050090
APA StyleSadeghi, J., Venney, C. J., Wright, S., Watkins, J., Manning, D., Bai, E., Frank, C., & Heath, D. D. (2024). Aquatic Bacterial Community Connectivity: The Effect of Hydrological Flow on Community Diversity and Composition. Environments, 11(5), 90. https://doi.org/10.3390/environments11050090