Detection of Emerging Stress in Trees Using Hyperspectral Indices as Classification Features
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lassalle, G.; Fabre, S.; Credoz, A.; Hédacq, R.; Bertoni, G.; Dubucq, D.; Elger, A. Application of PROSPECT for Estimating Total Petroleum Hydrocarbons in Contaminated Soils from Leaf Optical Properties. J. Hazard. Mater. 2019, 377, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Pontius, J.; Martin, M.; Plourde, L.; Hallett, R. Ash Decline Assessment in Emerald Ash Borer-Infested Regions: A Test of Tree-Level, Hyperspectral Technologies. Remote Sens. Environ. 2008, 112, 2665–2676. [Google Scholar] [CrossRef]
- Pu, R. Hyperspectral Remote Sensing: Fundamentals and Practices, 1st ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Abingdon, UK, 2017; ISBN 978-1-315-12060-7. [Google Scholar]
- Shukla, A.; Kot, R. An Overview of Hyperspectral Remote Sensing and Its Applications in Various Disciplines. IRA-JAS 2016, 5, 85. [Google Scholar] [CrossRef]
- Blackburn, G.A. Hyperspectral Remote Sensing of Plant Pigments. J. Exp. Bot. 2006, 58, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wei, C.; Zhang, Y.; Blackburn, G.A.; Wang, X.; Wei, C.; Wang, J. Meta-Analysis of the Detection of Plant Pigment Concentrations Using Hyperspectral Remotely Sensed Data. PLoS ONE 2015, 10, e0137029. [Google Scholar] [CrossRef]
- Curran, P.J. Remote Sensing of Foliar Chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Chutia, D.; Bhattacharyya, D.K.; Sarma, K.K.; Kalita, R.; Sudhakar, S. Hyperspectral Remote Sensing Classifications: A Perspective Survey. Trans. GIS 2016, 20, 463–490. [Google Scholar] [CrossRef]
- Song, G.; Wang, Q. Developing Hyperspectral Indices for Assessing Seasonal Variations in the Ratio of Chlorophyll to Carotenoid in Deciduous Forests. Remote Sens. 2022, 14, 1324. [Google Scholar] [CrossRef]
- Jin, J.; Wang, Q. Informative Bands Used by Efficient Hyperspectral Indices to Predict Leaf Biochemical Contents Are Determined by Their Relative Absorptions. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 616–626. [Google Scholar] [CrossRef]
- Gitelson, A.; Vina, A.; Arkebauer, T.; Rundquist, D.; Keydan, G.; Leavitt, B.; Verma, S. Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies. Geophys. Res. Lett. 2003, 30, 1248–1251. [Google Scholar] [CrossRef]
- Blackburn, G.A. Spectral Indices for Estimating Photosynthetic Pigment Concentrations: A Test Using Senescent Tree Leaves. Int. J. Rem. Sens. 1998, 19, 657–675. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, W.; Kong, W.; Ye, H.; Dong, Y.; Casa, R. Assessment of Leaf Carotenoids Content with a New Carotenoid Index: Development and Validation on Experimental and Model Data. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 24–35. [Google Scholar] [CrossRef]
- Gamon, J.; Serrano, L.; Surfus, J.S. The Photochemical Reflectance Index: An Optical Indicator of Photosynthetic Radiation Use Efficiency across Species, Functional Types, and Nutrient Levels. Oecologia 1997, 112, 492–501. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-Empirical Indices to Assess Carotenoids/Chlorophyll a Ratio from Leaf Spectral Reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Datt, B. Remote Sensing of Water Content in Eucalyptus Leaves. Aust. J. Bot. 1999, 47, 909. [Google Scholar] [CrossRef]
- Penuelas, J.; Fillela, I.; Biel, C.; Serrano, L.; Save, R. The Reflectance at the 950–970 Nm Region as an Indicator of Plant Water Status. Int. J. Rem. Sens. 1993, 14, 1887–1905. [Google Scholar] [CrossRef]
- Moley, L.M.; Goodin, D.G.; Winslow, W.P. Leaf-Level Spectroscopy for Analysis of Invasive Pest Impact on Trees in a Stressed Environment: An Example Using Emerald Ash Borer (Agrilus Planipennis Fairmaire) in Ash Trees (Fraxinus spp.), Kansas, USA. Environments 2022, 9, 42. [Google Scholar] [CrossRef]
- Ustin, S.L.; Gitelson, A.A.; Jacquemoud, S.; Schaepman, M.; Asner, G.P.; Gamon, J.A.; Zarco-Tejada, P.J. Retrieval of Foliar Information about Plan Pigment Systems from High Resolution Spectroscopy. Remote Sens. Environ. 2009, 113, S67–S77. [Google Scholar] [CrossRef]
- Roberts, D.; Roth, K.; Perroy, R. Hyperspectral Vegetation Indices. In Hyperspectral Remote Sensing of Vegetation; CRC Press: Boca Raton, FL, USA, 2011; pp. 309–328. ISBN 978-1-4398-4537-0. [Google Scholar]
- Hu, B.; Li, J.; Wang, J.; Hall, B. The Early Detection of the Emerald Ash Borer (EAB) Using Advanced Geospacial Technologies. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 40, 213. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, B.; Robinson, J. Early Detection of Emerald Ash Borer Infestation Using Multisourced Data: A Case Study in the Town of Oakville, Ontario, Canada. J. Appl. Remote Sens. 2014, 8, 083602. [Google Scholar] [CrossRef]
- Pontius, J.; Hanavan, R.P.; Hallett, R.A.; Cook, B.D.; Corp, L.A. High Spatial Resolution Spectral Unmixing for Mapping Ash Species across a Complex Urban Environment. Rem. Sens. Environ. 2017, 199, 360–369. [Google Scholar] [CrossRef]
- Carter, G.A.; Knapp, A.K. Leaf Optical Properties in Higher Plants: Linking Spectral Characteristics to Stress and Chlorophyll Concentration. Am. J. Bot. 2001, 88, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Huang, W.; Zhang, J.; Kong, W.; Casa, R.; Huang, Y. A Novel Combined Spectral Index for Estimating the Ratio of Carotenoid to Chlorophyll Content to Monitor Crop Physiological and Phenological Status. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 128–142. [Google Scholar] [CrossRef]
- Lehnert, L.W.; Meyer, H.; Obermeier, W.A.; Silva, B.; Regeling, B.; Bendix, J. Hyperspectral Data Analysis in R: The Hsdar Package. J. Stat. Softw. 2019, 89. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L.and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Barnes, J.D.; Balaguer, L.; Manrique, E.; Elvira, S.; Davison, A.W. A Reappraisal of the Use of DMSO for the Extraction and Determination of Chlorophylls a and b in Lichens and Higher Plants. Env. Exp. Bot. 1992, 32, 85–100. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote Estimation of Canopy Chlorophyll Content in Crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Song, F.; Guo, Z.; Mei, D. Feature Selection Using Principal Component Analysis. In Proceedings of the 2010 International Conference on System Science, Engineering Design and Manufacturing Informatization, Yichang, China, 12 November 2010; Volume 1, pp. 27–30. [Google Scholar]
- Shendryk, Y.; Rossiter-Rachor, N.A.; Setterfield, S.A.; Levick, S.R. Levick Leveraging High-Resolution Satellite Imagery and Gradient Boosting for Invasive Weed Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 4443–4450. [Google Scholar] [CrossRef]
- De’ath, G.; Fabricius, K.E. Classification and Decision Trees: A Powerful yet Simple Technique for Ecological Data Analysis. Ecology 2000, 81, 3178–3192. [Google Scholar] [CrossRef]
- Funkenberg, T.; Binh, T.T.; Moder, F.; Dech, S. The Ha Tien Plain—Wetland Monitoring Using Remote-Sensing Techniques. Int. J. Remote Sens. 2014, 35, 2893–2909. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A Kernel Functions Analysis for Support Vector Machines for Land Cover Classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Tahir, N.M.; Hussain, A.; Samad, S.A.; Ishak, K.A.; Halim, R.A. Feature Selection for Classification Using Decision Tree. In Proceedings of the 2006 4th Student Conference on Research and Development, Shah Alam, Malaysia, 27 June 2006; pp. 99–102. [Google Scholar]
- Sun, L.; Xu, J.; Yin, Y. Principal Component-Based Feature Selection for Tumor Classification. Bio-Med. Mater. Eng. 2015, 26, S2011–S2017. [Google Scholar] [CrossRef]
- Greenwell, B.; Boehmke, B.; Cunningham, J. Gbm: Generalized Boosted Regression Models 2020. R Package Version 2020, 2.
- Kuhn, M. Caret: Classification and Regression Training 2020. R Package Version 2021, 3.
- Landis, J.; Koch, G. An Application of Hierarchical Kappa-Type Statistics in the Assessment of Majority Agreement among Multiple Observers. Biometrics 1977, 33, 363–374. [Google Scholar] [CrossRef]
- Foody, G.M. Thematic Map Comparison. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. [Google Scholar] [CrossRef]
- Haack, R.A.; Jendak, E.; Houping, L.; Marchant, K.R.; Petrice, T.R.; Poland, T.M.; Ye, H. The Emerald Ash Borer: A New Exotic Pest in North America. Newsl. Mich. Entomol. Soc. 2002, 47, 1–5. [Google Scholar]
- Volkovitsh, M.G.; Orlova-Bienkowskaja, M.J.; Kovalev, A.V.; Bieńkowski, A.O. An Illustrated Guide to Distinguish Emerald Ash Borer (Agrilus planipennis) from Its Congeners in Europe. For. Int. J. For. Res. 2019, 93, 316–325. [Google Scholar] [CrossRef]
- Herms, D.A.; McCullough, D.G. Emerald Ash Borer Invasion of North America: History, Biology, Ecology, Impacts, and Management. Annu. Rev. Entomol. 2014, 59, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Poland, T.M.; McCullough, D.G. Emerald Ash Borer: Invasion of the Urban Forest and the Threat to North America’s Ash Resource. J. For. 2006, 104, 118–124. [Google Scholar] [CrossRef]
- Schlarbaum, S.E.; Hebard, F.; Spaine, P.C.; Kamalay, J.C. Three American Tragedies: Chestnut Blight, Butternut Canker, and Dutch Elm Disease. In Proceedings of the Exotic Pests of Eastern Forests Conference Proceedings; U.S. Forest Service and Tennessee Exotic Pest Plant Council: Nashville, TN, USA, 1998; pp. 45–54. [Google Scholar]
- Webber, J.F. Experimental Studies on Factors Influencing the Transmission of Dutch Elm Disease. For. Syst. 2004, 13, 197–205. [Google Scholar]
- Potter, C.; Harwood, T.; Knight, J.; Tomlinson, I. Learning from History, Predicting the Future: The UK Dutch Elm Disease Outbreak in Relation to Contemporary Tree Disease Threats. Phil. Trans. R. Soc. B 2011, 366, 1966–1974. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Horler, D.N.H.; Dockray, M.; Barber, J. The Red Edge of Plant Leaf Reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Reflectance at the Red Edge as a Sensitive Indicator of the Damage of Trees and Its Correlation to the State of the Photosynthetic System. Nasr, H.N. (Ed.) In Proceedings of the Image Understanding for Aerospace Applications; SPIE: Munich, Germany, 1991; p. 131. [Google Scholar]
- Zarco-Tejada, P.J.; González-Dugo, V.; Williams, L.E.; Suárez, L.; Berni, J.A.J.; Goldhamer, D.; Fereres, E. A PRI-Based Water Stress Index Combining Structural and Chlorophyll Effects: Assessment Using Diurnal Narrow-Band Airborne Imagery and the CWSI Thermal Index. Remote Sens. Environ. 2013, 138, 38–50. [Google Scholar] [CrossRef]
Site Type | Sample Size | Collection Dates ¹ | Notes ² | ||||
---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2017 | 2018 | 2019 | ||
Infested, Not Treated (INT) | 19 | 27 | 16 | Early: 29 April–6 May Mature: 25–28 June Peak: 26 August–8 September Late: 17–25 October | Early: 9–13 May Mature: 1–9 July Peak: 1–7 September Late: 29–30 September | Early: 13–19 May Mature: 18–25 June Peak: 30 July–6 August Late: 15–18 September | Residential site, Johnson County |
Infested, Treated (IT) | 18 | 17 | 17 | Recreation ctr. site, Johnson County | |||
Recently Infested, Treated (RIT) | 9 | 9 | 9 | Park site, Johnson County | |||
Not Infested, Good Condition (NIG) | 15 | 15 | 15 | Campus site, Riley County | |||
Not Infested, Poorer Condition (NIP) | 16 | 15 | 15 | Campus site, Riley County |
Index | Definition 1 | Descriptive Purpose of Index 2 | Reference |
---|---|---|---|
Water Band Index (WBI) | R970/R900 | Water stress, general organism stress | [17] |
Gitelson–Merzlyak B Index (GMb) | R750/R700 | Chlorophyll estimation, leaf senescence | [27] |
Normalized Phaeophytization Index (NPQI) | R435−R415/R435+R415 | Chlorophyll breakdown and general environmental stress | [28] |
Combined Carotenoid/Chlorophyll Ratio Index (CCRI) | ((R720−R521)/R521)/((R750− R705)/R705) | Combination of a carotenoid index with a red-edge chlorophyll index | [13] |
Photochemical Reflectance Index (PRI) | (R531−R570)(R531+R570) | General organism stress | [14] |
Red-Edge Chlorophyll Index (CIre) | (R750−R705)/R705 | Chlorophyll content | [29] |
Test Index (TI) | PRI/CIre | Composite of PRI and CIre | This Study |
Early Leaf | Mature Leaf | ||||||||
---|---|---|---|---|---|---|---|---|---|
Index | PC1 | PC2 | PC3 | PC4 | Index | PC1 | PC2 | PC3 | PC4 |
PRI | 0.46 | 0.38 | −0.08 | 0.09 | PRI | 0.44 | 0.41 | 0.05 | 0.29 |
CIRE | 0.49 | −0.30 | 0.15 | −0.15 | CIRE | 0.53 | −0.26 | 0.07 | −0.11 |
CCRI | −0.49 | 0.11 | 0.01 | −0.16 | CCRI | −0.41 | 0.33 | 0.06 | −0.40 |
WBI | 0.11 | 0.07 | −0.81 | −0.55 | WBI | 0.04 | −0.06 | −0.97 | 0.12 |
NPQI | −0.01 | 0.45 | 0.52 | −0.69 | NPQI | 0.25 | 0.44 | −0.19 | −0.72 |
GMB | 0.48 | −0.29 | 0.17 | −0.16 | GMB | 0.52 | −0.20 | 0.09 | −0.20 |
TI | 0.24 | 0.68 | −0.08 | 0.36 | TI | 0.13 | 0.65 | 0.04 | 0.41 |
Peak Greenness | Late Leaf | ||||||||
Index | PC1 | PC2 | PC3 | PC4 | Index | PC1 | PC2 | PC3 | PC4 |
PRI | −0.41 | −0.41 | −0.07 | 0.18 | PRI | −0.48 | −0.04 | −0.09 | −0.02 |
CIRE | −0.47 | 0.19 | 0.26 | −0.30 | CIRE | −0.44 | 0.33 | −0.10 | 0.38 |
CCRI | 0.43 | −0.11 | −0.37 | −0.28 | CCRI | 0.44 | 0.29 | −0.29 | 0.21 |
WBI | 0.28 | −0.21 | 0.84 | 0.25 | WBI | 0.06 | −0.68 | −0.05 | 0.73 |
NPQI | 0.11 | −0.65 | 0.12 | −0.66 | NPQI | −0.12 | −0.25 | −0.90 | −0.28 |
GMB | −0.47 | 0.17 | 0.15 | −0.38 | GMB | −0.45 | 0.34 | −0.11 | 0.32 |
TI | −0.33 | −0.53 | −0.21 | 0.40 | TI | −0.41 | −0.41 | 0.26 | −0.32 |
All Collections | |||||||||
Index | PC1 | PC2 | PC3 | PC4 | |||||
PRI | −0.48 | 0.02 | 0.21 | 0.01 | |||||
CIRE | −0.44 | −0.40 | −0.12 | −0.30 | |||||
CCRI | 0.45 | −0.41 | 0.17 | −0.14 | |||||
WBI | 0.14 | 0.38 | −0.37 | −0.82 | |||||
NPQI | −0.05 | 0.23 | 0.87 | −0.35 | |||||
GMB | −0.45 | −0.41 | −0.06 | −0.25 | |||||
TI | −0.39 | 0.54 | −0.12 | 0.21 |
Reference | ||||||
---|---|---|---|---|---|---|
Prediction | NIG | NIP | IT | INT | RIT | |
NIG | 37 | 3 | 5 | 10 | 1 | |
NIP | 4 | 32 | 7 | 8 | 4 | |
IT | 6 | 8 | 43 | 8 | 2 | |
INT | 12 | 5 | 11 | 42 | 2 | |
RIT | 4 | 1 | 3 | 9 | 22 | |
Accuracy | 60.9% | |||||
Kappa | 0.505 |
a.Error Matrices, Collection 1 (Early Leaf Stage) | ||||||
Reference | ||||||
Prediction | NIG | NIP | IT | INT | RIT | |
NIG | 12 | 1 | 0 | 0 | 0 | |
NIP | 2 | 9 | 2 | 2 | 0 | |
IT | 2 | 1 | 12 | 1 | 1 | |
INT | 2 | 3 | 0 | 11 | 1 | |
RIT | 0 | 2 | 0 | 3 | 4 | |
Accuracy | 67.6% | |||||
Kappa | 0.598 | |||||
b. Error Matrices, Collection 2 (Mature Leaf Stage) | ||||||
Reference | ||||||
Prediction | NIG | NIP | IT | INT | RIT | |
NIG | 11 | 0 | 1 | 2 | 0 | |
NIP | 1 | 12 | 1 | 1 | 0 | |
IT | 1 | 2 | 12 | 1 | 3 | |
INT | 0 | 0 | 3 | 11 | 1 | |
RIT | 1 | 0 | 0 | 1 | 7 | |
Accuracy | 73.6% | |||||
Kappa | 0.668 | |||||
c. Error Matrices, Collection 3 (Peak Greenness Stage) | ||||||
Reference | ||||||
Prediction | NIG | NIP | IT | INT | RIT | |
NIG | 8 | 0 | 2 | 3 | 0 | |
NIP | 1 | 7 | 0 | 5 | 2 | |
IT | 1 | 2 | 9 | 4 | 1 | |
INT | 1 | 1 | 1 | 16 | 0 | |
RIT | 0 | 1 | 2 | 2 | 4 | |
Accuracy | 60.3% | |||||
Kappa | 0.490 | |||||
d. Error Matrices, Collection 4 (Late Leaf Stage) | ||||||
Reference | ||||||
Prediction | NIG | NIP | IT | INT | RIT | |
NIG | 16 | 1 | 1 | 3 | 0 | |
NIP | 0 | 10 | 4 | 3 | 0 | |
IT | 1 | 1 | 21 | 3 | 1 | |
INT | 2 | 2 | 3 | 24 | 1 | |
RIT | 1 | 2 | 6 | 2 | 4 | |
Accuracy | 67% | |||||
Kappa | 0.573 |
Combined | Early Leaf Stage | Mature Leaf Stage | Peak Greenness | Late Leaf Stage | |
---|---|---|---|---|---|
Combined | - | - | - | - | - |
Early Leaf Stage | 1.07 (0.142) | - | - | - | - |
Mature Leaf Stage | 2.05 * (0.020) | 1.18 (0.119) | - | - | - |
Peak Greenness | 0.084 (0.467) | 1.45 ** (0.074) | 2.79 * (0.003) | - | - |
Late Leaf Stage | 1.17 (0.121) | 0.21 (0.492) | 1.31 (0.095) | 1.83 * (0.034) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moley, L.M.; Goodin, D.G.; Winslow, W.P., III. Detection of Emerging Stress in Trees Using Hyperspectral Indices as Classification Features. Environments 2024, 11, 85. https://doi.org/10.3390/environments11040085
Moley LM, Goodin DG, Winslow WP III. Detection of Emerging Stress in Trees Using Hyperspectral Indices as Classification Features. Environments. 2024; 11(4):85. https://doi.org/10.3390/environments11040085
Chicago/Turabian StyleMoley, Laura M., Douglas G. Goodin, and William P. Winslow, III. 2024. "Detection of Emerging Stress in Trees Using Hyperspectral Indices as Classification Features" Environments 11, no. 4: 85. https://doi.org/10.3390/environments11040085
APA StyleMoley, L. M., Goodin, D. G., & Winslow, W. P., III. (2024). Detection of Emerging Stress in Trees Using Hyperspectral Indices as Classification Features. Environments, 11(4), 85. https://doi.org/10.3390/environments11040085