Improving BioWin Modeling of Phosphorus Solubilization in Acid-Phase Digesters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Alteration of Local PAO Decay Kinetics
2.2. Altering the Dissolution Kinetics of Brushite
2.3. Modification of the Brushite Solubility Product
2.4. Increasing the Endogenous Product Decay Rate
2.5. Increasing the Local Hydrolysis Rate
2.6. Validation and Model Testing
3. Results
3.1. Alteration of the PAO Decay Kinetics
3.2. Altering the Dissolution Kinetics of Brushite
3.3. Modification of the Brushite Solubility Product
3.4. Increasing the Endogenous Product Decay Rate
3.5. Increasing the Hydrolysis Rate
4. Discussion
4.1. Benchmark to Full-Scale Grab Sample Data
4.2. Assessment of Plant-Wide Effects
4.3. Application to Other Treatment Plant Models
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Alternative Parameters
Appendix A.1.1. Altering Stored Poly-P Distribution
Item | Unit | 0.94 Low Poly-P (Default) | 0.97 Low Poly-P | 0.99 Low Poly-P |
---|---|---|---|---|
Total P | kg P/d | 1050 | 1026 | 1009 |
Soluble P | kg P/d | 326 | 341 | 355 |
Brushite | kg P/d | 22.7 | 52.41 | 71.08 |
Unreleasable Stored PolyP | kg P/d | 147 | 78.3 | 29 |
Calcium | kg/d | 260 | 247 | 237 |
VSS Destruction | % | 34.06 | 34.04 | 33.97 |
Dry Gas Production | m3/hr | 16.64 | 16.62 | 16.68 |
Gas Methane Content | % | 16.76 | 17.62 | 17.97 |
Appendix A.1.2. Impacts of HRT on Acid Digester Outputs
HRT | pH | Acetate | Propionate | Alkalinity | Total P | Soluble P | VSS |
---|---|---|---|---|---|---|---|
Days | kg COD/d | kg COD/d | k/d | kg P/d | kg P/d | kg/d | |
0.1 | 5.78 | 556 | 1336 | 16.03 | 1004 | 124 | 39,601 |
0.125 | 5.46 | 669 | 1659 | 16.35 | 1004 | 141 | 39,302 |
0.15 | 5.25 | 779 | 1986 | 16.4 | 1004 | 152 | 39,003 |
0.2 | 5.00 | 998 | 2640 | 16.4 | 1004 | 173 | 38,409 |
0.25 | 4.86 | 1216 | 3291 | 16.32 | 1004 | 191 | 37,816 |
0.3 | 4.77 | 1433 | 3939 | 16.2 | 1004 | 208 | 37,226 |
0.4 | 4.65 | 1865 | 5223 | 15.85 | 1004 | 240 | 36,054 |
0.5 | 4.57 | 2293 | 6491 | 15.41 | 1004 | 268 | 34,896 |
0.6 | 4.52 | 2713 | 7737 | 14.9 | 1004 | 294.5 | 33,755 |
0.65 | 4.5 | 2921 | 8352 | 14.65 | 1004 | 307 | 33,192 |
0.7 | 4.48 | 3126 | 8958 | 14.39 | 1004 | 319 | 32,635 |
0.7125 | 4.47 | 3177 | 9108 | 14.33 | 1004 | 322 | 32,497 |
0.725 | 4.47 | 3228 | 9258 | 14.26 | 1004 | 325 | 32,359 |
0.75 | 4.46 | 3323 | 9556 | 14.13 | 1004 | 331 | 32,084 |
0.8 | 4.45 | 3528 | 10,144 | 13.87 | 1004 | 342 | 31,541 |
0.9 | 4.42 | 3915 | 11,280 | 13.37 | 1004 | 363 | 30,482 |
1 | 4.41 | 4280 | 12,345 | 12.9 | 1005 | 380 | 29,467 |
1.2 | 4.38 | 4925 | 14,196 | 12.13 | 1005 | 403 | 27,618 |
1.3 | 4.37 | 5209 | 15,002 | 11.76 | 1005 | 413 | 26,821 |
1.5 | 4.36 | 5725 | 16,444 | 10.8 | 1005 | 430 | 25,497 |
1.8 | 4.34 | 6295 | 17,959 | 9.43 | 1005 | 448 | 24,218 |
2.1 | 4.33 | 6640 | 18,731 | 9.05 | 1005 | 461 | 23,460 |
2.5 | 4.34 | 6962 | 19,284 | 8.95 | 1005 | 474 | 22,815 |
3 | 4.34 | 7287 | 19,647 | 8.86 | 1005 | 487 | 22,263 |
3.5 | 4.34 | 7592 | 19,807 | 8.60 | 1005 | 497 | 21,845 |
4 | 4.34 | 7904 | 19,819 | 8.11 | 1005 | 507 | 21,503 |
4.5 | 4.34 | 8230 | 19,716 | 7.45 | 1005 | 515 | 21,212 |
5 | 4.35 | 8566 | 19,530 | 6.71 | 1005 | 522 | 20,957 |
5.5 | 4.35 | 8901 | 19,295 | 5.96 | 1005 | 529 | 20,729 |
6 | 4.35 | 9228 | 19,038 | 5.25 | 1005 | 535 | 20,524 |
6.5 | 4.35 | 9540 | 18,776 | 4.62 | 1005 | 541 | 20,336 |
7 | 4.35 | 9835 | 18,521 | 4.06 | 1005 | 546 | 20,163 |
10 | 4.35 | 11,236 | 17,286 | 1.91 | 1006 | 571 | 19,355 |
15 | 4.36 | 12,646 | 16,124 | 0.46 | 1006 | 598 | 18,498 |
20 | 4.36 | 13,491 | 15,945 | −0.17 | 1006 | 616 | 17,946 |
25 | 4.36 | 14,060 | 15,104 | −0.52 | 1006 | 629 | 17,557 |
References
- Jeyanayagam, S.; Khunjar, W.; Mehta, C. Accelerating the Implementation of Extractive Nutrient Recovery as an Integral Component of Sustainable Nutrient Management. Water e-J. 2016, 1, 1–8. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Case Studies on Implementing Low-Cost Modifications to Improve Nutrient Reduction at Wastewater Treatment Plants; United States Environmental Protection Agency: Washington, DC, USA, 2015; Volume 2. [Google Scholar]
- Egle, L.; Rechberger, H.; Krampe, J.; Zessner, M. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci. Total Environ. 2016, 571, 522–542. [Google Scholar] [CrossRef]
- Clark, D.L.; Hunt, G.; Kasch, M.S.; Lemonds, P.J.; Moen, G.M.; Neethling, J.B. WERF Nutrient Management Report; Montana Department of Environmental Quality: Helena, MT, USA, 2010. [Google Scholar]
- Rahman, S.M.; Eckelman, M.J.; Onnis-Hayden, A.; Gu, A.Z. Life-Cycle Assessment of Advanced Nutrient Removal Technologies for Wastewater Treatment. Environ. Sci. Technol. 2016, 50, 3020–3030. [Google Scholar] [CrossRef]
- Vesilind, P.A. Wastewater Treatment Plant Design; Water Environment Federation: Alexandria, VA, USA, 2003. [Google Scholar]
- Rittmann, B.E.; McCarty, P.L. Environmental Biotechnology: Principles and Applications; McGraw-Hill: Singapore, 2001. [Google Scholar]
- Water Environment Federation. Introduction to Water Resource Recovery Facility Design, 2nd ed.; McGraw-Hill Professional: New York, NY, USA, 2014. [Google Scholar]
- Harirchi, S.; Wainaina, S.; Sar, T.; Nojoumi, S.A.; Parchami, M.; Parchami, M.; Varjani, S.; Khanal, S.K.; Wong, J.; Awasthi, M.K. Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): A review. Bioengineered 2022, 13, 6521–6557. [Google Scholar] [CrossRef]
- Demirel, B.; Yenigün, O. Two-Phase Anaerobic Digestion Processes: A Review. J. Chem. Technol. Biotechnol. 1002, 77, 743–755. [Google Scholar] [CrossRef]
- Jain, S.; Jain, S.; Wolf, I.T.; Lee, J.; Tong, Y.W. A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew. Sustain. Energy Rev. 2015, 52, 142–154. [Google Scholar] [CrossRef]
- Barak, P.; Davidson, C.; Minks, A. Chemical composition of organic acid digest from a municipal wastewater treatment plant and chemical modeling of nuisance struvite formation and phosphorus recovery as brushite. PLOS Water 2023, 2, e0000120. [Google Scholar] [CrossRef]
- Doyle, J.D.; Parsons, S.A. Struvite formation, control and recovery. Water Res. 2002, 36, 3925–3940. [Google Scholar] [CrossRef] [PubMed]
- Elliot, T.J. Benefits of Ferric Chloride Addition on Struvite and Sulfide Control; University of Wisconsin-Madison: Madison, WI, USA, 2002. [Google Scholar]
- Fattah, K.P.; Sabrina, N.; Mavinic, D.S.; Koch, F.A. Reducing operating costs for struvite formation with a carbon dioxide stripper. Water Sci. Technol. 2008, 58, 957–962. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Lobanov, S.; Lo, V.K. An overview of technologies to recover phosphorus as struvite from wastewater: Advantages and shortcomings. Environ. Sci. Pollut. Res. 2019, 26, 19063–19077. [Google Scholar] [CrossRef]
- Hao, X.D.; van Loosdrecht, M.C.M. Model-based evaluation of struvite recovery from an in-line stripper in a BNR process (BCFS). Water Sci. Technol. 2006, 53, 191–198. [Google Scholar] [CrossRef]
- Hao, X.D.; Wang, C.C.; Lan, L.; van Loosdrecht, M.C. Struvite formation, analytical methods and effects of pH and Ca2+. Water Sci. Technol. 2008, 58, 1687–1692. [Google Scholar] [CrossRef] [PubMed]
- Ishii, S.K.; Boyer, T.H. Life cycle comparison of centralized wastewater treatment and urine source separation with struvite precipitation: Focus on urine nutrient management. Water Res. 2015, 79, 88–103. [Google Scholar] [CrossRef] [PubMed]
- Kataki, S.; West, H.; Clarke, M.; Baruah, D.C. Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resour. Conserv. Recycl. 2016, 107, 142–156. [Google Scholar] [CrossRef]
- Marti, N.; Bouzas, A.; Seco, A.; Ferrer, J. Struvite precipitation assessment in anaerobic digestion processes. Chem. Eng. J. 2008, 141, 67–74. [Google Scholar] [CrossRef]
- Sharp, R.; Vadiveloo, E.; Fergen, R.; Moncholi, M.; Pitt, P.; Wankmuller, D.; Latimer, R. A theoretical and practical evaluation of struvite control and recovery. Water Environ. Res. 2013, 85, 675–686. [Google Scholar] [CrossRef]
- Song, Y.H.; Qiu, G.L.; Yuan, P.; Cui, X.Y.; Peng, J.F.; Zeng, P.; Duan, L.; Xiang, L.C.; Qian, F. Nutrients removal and recovery from anaerobically digested swine wastewater by struvite crystallization without chemical additions. J. Hazard. Mater. 2011, 190, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Barak, P.; Stafford, A. Struvite: A recovered and recycled phosphorus fertilizer. In Proceedings of the 2006 Wisconsin Fertilizer, Aglime & Pest Management Conference, Madison, WI, USA, 17–19 January 2006; p. 199. [Google Scholar]
- Booker, N.; Priestley, A.; Fraser, I. Struvite formation in wastewater treatment plants: Opportunities for nutrient recovery. Environ. Technol. 1999, 20, 777–782. [Google Scholar] [CrossRef]
- Vineyard, D.L., II. Phosphorus Recovery of Brushite at Wastewater Treatment Plants: BioWin Modeling, Economic and Life Cycle Assessment of CalPrex. Ph.D. Thesis, The University of Wisconsin, Madison, WI, USA, 2022. [Google Scholar]
- Tabanpour, M.; Downing, L.; Kuhnjar, W. Demonstrating the CalPrex System for High Efficiency Phosphorus Recovery; Water Research Foundation: Alexandria, VA, USA, 2021. [Google Scholar]
- BioWin 6 Help Manual; Envirosim Associates Ltd.: Hamilton, ON, USA, 2020.
- Pritty, C. Anaerobic Digestion Modeling of a High Rate Acidification Pre-Treatment Technology. Master’s Thesis, The University of Western Ontario, Ontario, CA, 2019. [Google Scholar]
- Forgacs, G.; Smyth, M.; Law, I.; Arnot, T. BioWin modelling to reduce the Avonmouth digester commissioning programme from 6 months to 6 weeks. In Proceedings of the European Biosolids and Organic Resources Conference, Leeds, UK, 20–21 November 2017. [Google Scholar]
- Yang, W.; Young, S.; Munoz, A.; Palmarin, M.J. Dynamic modeling of a full-scale anaerobic mesophilic digester start-up process for the treatment of primary sludge. J. Environ. Chem. Eng. 2019, 7, 103091. [Google Scholar] [CrossRef]
- Nghiem, L.D.; Wickham, R.; Ohandja, D.-G. Enhanced biogas production and performance assessment of a full-scale anaerobic digester with acid phase digestion. Int. Biodeterior. Biodegrad. 2017, 124, 162–168. [Google Scholar] [CrossRef]
- Vineyard, D.; Karthikeyan, K.G.; Davidson, C.; Barak, P. Modeling an acid-phase digester in BioWin with parameter optimization from site data. J. Water Process Eng. 2023, 54, 103971. [Google Scholar] [CrossRef]
- Envirosim. A Brief History of Activated Sludge Process Models and Simulators. 2000. Available online: https://www.envirosim.com/downloads/Model%20history.pdf (accessed on 7 November 2023).
- Flores-Alsina, X.; Solon, K.; Kazadi Mbamba, C.; Tait, S.; Gernaey, K.V.; Jeppsson, U.; Batstone, D.J. Modelling phosphorus (P), sulfur (S) and iron (Fe) interactions for dynamic simulations of anaerobic digestion processes. Water Res. 2016, 95, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Mo, R.; Guo, W.; Batstone, D.; Makinia, J.; Li, Y. Modifications to the anaerobic digestion model no. 1 (ADM1) for enhanced understanding and application of the anaerobic treatment processes—A comprehensive review. Water Res. 2023, 244, 120504. [Google Scholar] [CrossRef] [PubMed]
- AECOM. Chloride Compliance Study: Nine Springs Wastewater Treatment Plant Final Report. Madison Metropolitan Sewerage District. 2015. Available online: https://web.archive.org/web/20160505154642/ http://www.madsewer.org/Portals/0/ProgramInitiatives/ChlorideReduction/MMSD%20Chloride%20Compliance%20Study%20Report%20-%20Final%206-19-15bookmarks.pdf (accessed on 7 November 2023).
- Liwarska-Bizukojc, E.; Biernacki, R. Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software. Bioresour. Technol. 2010, 101, 7278–7285. [Google Scholar] [CrossRef] [PubMed]
- Liwarska-Bizukojc, E.; Olejnik, D.; Biernacki, R.; Ledakowicz, S. Calibration of a complex activated sludge model for the full-scale wastewater treatment plant. Bioprocess Biosyst. Eng. 2011, 34, 659–670. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, J. Visual MINTEQ ver. 3.1. 2013. Available online: https://vminteq.com (accessed on 7 November 2023).
- Wang, R.; Li, Y.; Chen, W.; Zou, J.; Chen, Y. Phosphate release involving PAOs activity during anaerobic fermentation of EBPR sludge and the extension of ADM1. Chem. Eng. J. 2016, 287, 436–447. [Google Scholar] [CrossRef]
- Menniti, A.; Rieger, L.; Boltz, J.P.; Johnson, B.; Daigger, G.; Habermacher, J.; Derlon, N.; Morgenroth, E. Critical review on modeling of endogenous processes and the degradability of endogenous decay products. In Proceedings of the WWTmod, Mont-Sainte-Anne, QC, Canada, 26–28 February 2012. [Google Scholar]
- Eastman, J.A.; Ferguson, J.F. Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J. Water Pollut. Control Fed. 1981, 53, 352–366. [Google Scholar]
Unit | Statistic | |
---|---|---|
Population Served | People | 365,000 |
Service Area | km2 | 471 |
Design Capacity | m3/d | 190,000 |
Average Throughput | m3/d | 155,000 |
Total Suspended Solids Load | kg/d | 35,600 |
Phosphorus Load | kg P/d | 1700 |
Parameter | Unit | Default | Modified | Data Source |
---|---|---|---|---|
Anaerobic decay rate | 1/d | 0.04 | 7.0 | [9,10,11,27] |
Brushite redissolution rate | L/(mol·d) | 10,000 | 1.0 × 109 | [27,28,41] |
Brushite solubility product | (mol/L)2 | 2.49 × 10−7 | 3.415 × 10−7 | [12,27,41] |
Endogenous product decay rate | 1/d | 0 | 1 | [27,42] |
Hydrolysis rate | 1/d | 2.1 | 3 | [10,27,43] |
Anaerobic hydrolysis factor | - | 0.5 | 1 |
Digester Train Effluent | ||||
---|---|---|---|---|
Unit | Default | Modified | % Change | |
VSS | kg/d | 16,000 | 13,600 | −15% |
TSS | kg/d | 23,000 | 20,700 | −10% |
pH | 7.15 | 7.19 | ||
Alk | k/d | 69.5 | 77.3 | +11% |
Total P | kg P/d | 813 | 785 | −3.4% |
Soluble P | kg P/d | 25.1 | 52.4 | +108% |
Struvite | kg P/d | 277 | 352 | +27% |
Brushite | kg P/d | 147 | 130 | −12% |
Unreleasable Stored PolyP | kg P/d | 59.2 | 6.31 | −89% |
Calcium | kg/d | 100 | 70.1 | −30% |
Default (kg P/d) | Modified (kg P/d) | % Change | |
---|---|---|---|
Plant effluent: | |||
Brushite | 0 | 0 | -- |
Struvite | 0 | 0 | -- |
Soluble P | 8.00 | 11.7 | +46% |
Total | 67.8 | 84.3 | +24% |
Biosolids: | |||
Brushite | 146 | 129 | −11% |
Struvite | 275 | 350 | +27% |
Soluble P | 17.0 | 35.3 | +107% |
Total | 800 | 764 | −4.5% |
Recycle to primary: | |||
Brushite | 10 | 0 | −100% |
Struvite | 0 | 0 | -- |
Soluble P | 27.9 | 66.3 | +138% |
Total | 104 | 100 | −3.8% |
Item | Unit | P Train Digester | N Train Digester | ||||
---|---|---|---|---|---|---|---|
Influent | Acid Effluent (Default) | Acid Effluent (Modified) | Influent | Acid Effluent (Default) | Acid Effluent (Modified) | ||
Flow | M3/d | 56 | 56 | 56 | 125 | 125 | 125 |
Total P | kg P/d | 61.7 | 61.7 | 61.7 | 106 | 106 | 106 |
Soluble P | kg P/d | 0.18 | 25.4 | 39.6 | 0.53 | 27.8 | 55.7 |
Struvite | kg P/d | 0 | 0 | 0 | 0 | 0 | 0 |
Brushite | kg P/d | 0 | 0 | 0 | 0 | 0 | 0 |
Unreleasable Stored PolyP | kg P/d | 4.26 | 4.05 | 0.42 | 0 | 0 | 0 |
Soluble Calcium | kg/d | 4.49 | 9.90 | 12.85 | 20.5 | 29.13 | 36.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vineyard, D.; Karthikeyan, K.G.; Davidson, C.; Barak, P. Improving BioWin Modeling of Phosphorus Solubilization in Acid-Phase Digesters. Environments 2024, 11, 31. https://doi.org/10.3390/environments11020031
Vineyard D, Karthikeyan KG, Davidson C, Barak P. Improving BioWin Modeling of Phosphorus Solubilization in Acid-Phase Digesters. Environments. 2024; 11(2):31. https://doi.org/10.3390/environments11020031
Chicago/Turabian StyleVineyard, Donald, K.G. Karthikeyan, Christy Davidson, and Phillip Barak. 2024. "Improving BioWin Modeling of Phosphorus Solubilization in Acid-Phase Digesters" Environments 11, no. 2: 31. https://doi.org/10.3390/environments11020031
APA StyleVineyard, D., Karthikeyan, K. G., Davidson, C., & Barak, P. (2024). Improving BioWin Modeling of Phosphorus Solubilization in Acid-Phase Digesters. Environments, 11(2), 31. https://doi.org/10.3390/environments11020031