Spatially Explicit Life Cycle Global Warming and Eutrophication Potentials of Confined Dairy Production in the Contiguous US
Abstract
:1. Introduction
2. Method
2.1. Goal and Scope
2.2. Life Cycle Inventory
2.2.1. Feed Production Stage
2.2.2. Feed Transportation Stage
2.2.3. Animal Respiration and Enteric Fermentation
2.2.4. Manure Management Stage
Emissions | Stages | Models or Equations | References |
---|---|---|---|
CH4 | Enteric fermentation stage | Methane (MJ/d) = 5.93 (SE 1.60) + 0.92 (SE 0.08) × DMI (kg/d) | [41] |
Manure Management stage (Barn floor) | From free-stall or tie barn floor = (max(0,0.13) × T) × Abarn/1000 T = mean ambient temperature (°C) Abarn = area exposed to manure (m2) From bedded barn floor = VS × (Bo) × 0.67 × MCF/100 × 365 VS = volatile solids excreted in manure, kg CH4/day Bo = maximum CH4-producing capacity for dairy manure, 0.24 m3 CH4/kg VS MCF = CH4 conversion factor for the manure management system (%) | [46] | |
Manure Management stage (Manure storage) | From liquid or slurry storage = (24 × Vs,d × b1/1000) × exp(ln(A) − E/RT) + (24 × Vs,nd × b2/1000) × exp(ln(A) − E/RT) Vs,d and Vs,nd = degradable and nondegradable VS in the manure (g) which differs for the liquid and slurry storage A = Arrhenius parameter (g CH4 kg−1VSh−1) E = apparent activation energy (J mol−1) R = gas constant (J K−1 mol−1) T = temperature (K) | [52] | |
From solid storage = VS × (Bo) × 0.67 × MCF/100 × 365 VS = volatile solids excreted in manure, kg CH4/day Bo = maximum CH4-producing capacity for dairy manure, 0.24 m3 CH4/kg VS MCF = CH4 conversion factor for the manure management system (%) | [46] | ||
Manure Management stage (Field application) | From slurry application = (0.17 × FVFA+0.026) × Acrop × 0.032 FVFA= daily concentration of VFAs in the slurry (mmol kg−1 slurry) Acrop = the land area (ha) where the manure is applied | [52] | |
N2O | Enteric fermentation stage | 0.4 g N2O/head/day | [8] |
Animal operation stage (Barn floor) | Negligible when manure is removed daily For free stall and tie stall barn 2% for open lot 1% for bedded pack system | [46] | |
Manure Management stage (Manure storage) | Liquid storage = 0.001 kg N2O-N/kg Nitrogen excreted Solid storage = 0.02 kg N2O-N/kg Nitrogen excreted Slurry storage = 0.001 kg N2O-N/kg Nitrogen excreted | [46,53] | |
Manure Management stage (Field application) | 0.01 kg N2O-N/kg of N applied after NH3 losses | [53] | |
NH3 | Animal operation stage (At excretion) | 0.079 kg NH3-N/1000 kg live weight | [45] |
Animal operation stage (Barn floor) | Tie stall: 8% of the total N excreted Free stall: 16% of the total N excreted Bedded pack barn: 35% of the total N excreted Feedlot: 50% of the total N excreted | [48,54] | |
Manure Management stage (Manure storage) | 5 g NH3 m−2d−1 (Lagoon storage) | [55] | |
Manure Management stage (Field application) | For slurry = TAN × (20 + 5 × TS × 17/14/100) TAN = total ammoniacal N in manure (kg NH3-N) TS = total solids in manure (%) | [49] | |
Aqueous N/P releases | Manure Management stage (Field application) | RN = AN × fem,N × (1 − fnitrate × fdenitrification) RN is aqueous N release; AN is the total nitrogen in the applied manure as fertilizer; fem,N is nitrogen discharge coefficient; fnitrate is the ratio of nitrate to total nitrogen; fdenitrification is denitrification fraction. RP = AP × fem,P RP is aqueous P release; Ap is total phosphorus in the applied manure as fertilizer; fem,P is nitrogen discharge coefficient; | [51] |
2.2.5. Life Cycle GHGs and Nutrient Releases per County
2.3. Life Cycle Impact Assessment and Interpretation
3. Results
3.1. Magnitudes of Life Cycle GWP (kg CO2-eq/Cow, County) and EP (kg N-eq/Cow, County)
3.2. Spatial Distribution and Stage Contribution of Life Cycle GWP and EP
3.3. Influences of Feed Sourcing Strategies on Life Cycle GWP and EP of Confined Dairy Production
3.4. Influences of Installing Buffer Strips in Feed-Producing Counties on Life Cycle EP of Confined Dairy Production
4. Discussion
4.1. Sensitivity Assessment
4.2. Comparison with Existing Studies
4.3. Implications for Environmental Sustainability of Confined Dairy Production
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- New York Department of Environmental Conservation. Top Water Quality Issues. Available online: http://www.dec.ny.gov/chemical/100967.html (accessed on 15 December 2023).
- US Environmental Protection Agency. Inventory of U.S. Greenhouse Gas Emissions and Sinks. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks (accessed on 15 December 2023).
- Hale, R.L.; Hoover, J.H.; Wollheim, W.M.; Vörösmarty, C.J. History of nutrient inputs to the northeastern United States, 1930–2000. Glob. Biogeochem. Cycles 2013, 27, 578–591. [Google Scholar] [CrossRef]
- Driscoll, C.T.; Whittall, D.; Aber, J.; Boyer, E.; Castro, M.; Cronan, C.; Goodale, C.; Groffman, P.; Hopkinson, C.; Lamber, K.; et al. Nitrogen Pollution in the Northeastern United States: Sources, Effects, and Management Options. BioScience 2003, 53, 357–374. [Google Scholar]
- Food and Agriculture Organization of the United Nations. Livestock Primary. Available online: http://www.fao.org/faostat/en/#data/QL (accessed on 15 December 2023).
- United States Department of Agriculture. Milk Cows and Production. Available online: https://quickstats.nass.usda.gov/ (accessed on 3 January 2023).
- United States Department of Agriculture. Feed Grains Database. Available online: https://www.ers.usda.gov/data-products/feed-grains-database/ (accessed on 3 January 2023).
- Rotz, C.A. Modeling greenhouse gas emissions from dairy farms. J. Dairy Sci. 2017, 101, 6675–6690. [Google Scholar] [CrossRef] [PubMed]
- Bricker, S.B.; Longstaff, B.; Dennison, W.; Jones, A.; Boicourt, K.; Wicks, C.; Woerner, J. Effects of nutrient enrichment in the nation’s estuaries: A decade of change. Harmful Algea 2008, 8, 21–32. [Google Scholar] [CrossRef]
- National Research Council. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution; The National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef]
- Beukes, P.C.; Gregorini, P.; Romera, A.J.; Levy, G.; Waghorn, G.C. Improving production efficiency as a strategy to mitigate greenhouse gas emissions on pastoral dairy farms in New Zealand. Agric. Ecosyst. Environ. 2010, 136, 358–365. [Google Scholar] [CrossRef]
- Casey, J.W.; Holden, N.M. The relationship between greenhouse gas emissions and the intensity of milk production in Ireland. J. Environ. Qual. 2005, 34, 429–436. [Google Scholar]
- Crosson, P.; Shalloo, L.; O’Brien, D.; Lanigan, G.; Foley, P.A.; Boland, T.M.; Kenny, D.A. A review of whole farm system models of greenhouse gas emissions from beef and dairy cattle production systems. Anim. Feed. Sci. Technol. 2011, 166, 29–45. [Google Scholar] [CrossRef]
- Lovett, D.K.; Shalloo, L.; Dillon, P.; O’Mara, F.P. Greenhouse gas emissions from pastoral based dairying systems: The effect of uncertainty and management change under two contrasting production systems. Livest. Sci. 2008, 116, 260–274. [Google Scholar] [CrossRef]
- Rotz, C.A.; Montes, F.; Chianese, D.S. The carbon footprint of dairy production systems through partial life cycle assessment. J. Dairy Sci. 2010, 93, 1266–1282. [Google Scholar] [CrossRef]
- Thomassen, M.A.; van Calker, K.J.; Smits, M.C.J.; Iepema, G.L.; de Boer, I.J.M. Life cycle assessment of conventional and organic milk production in the Netherlands. Agric. Syst. 2008, 96, 95–107. [Google Scholar] [CrossRef]
- Tichenor, N.E.; Peters, C.J.; Norris, G.A.; Thoma, G.; Griffin, T.S. Life cycle environmental consequences of grass-fed and dairy beef production systems in the Northeastern United States. J. Clean. Prod. 2017, 142, 1619–1628. [Google Scholar]
- Costello, C.; Xue, X.; Howarth, R.W. Comparison of production-phase environmental impact metrics derived at the farm-and national-scale for United States agricultural commodities. Environ. Res. Lett. 2015, 10, 114004. [Google Scholar] [CrossRef]
- Xue, X.; Landis, A.E. Eutrophication potential of food consumption patterns. Environ. Sci. Technol. 2010, 44, 6450–6456. [Google Scholar] [CrossRef]
- Henderson, A.D.; Asselin-Balencon, A.C.; Heller, M.; Lessard, L.; Vionnet, S.; Jolliet, O. Spatial Variability and Uncertainty of Water Use Impacts from US Feed and Milk Production. Envrion. Sci. Technol. 2017, 51, 2382–2391. [Google Scholar] [CrossRef]
- Landis, A.; Miller, S.A.; Theis, T.L. Life cycle of the corn-soybean agroecosystem for biobased production. Environ. Sci. Technol. 2007, 41, 1457–1464. [Google Scholar] [PubMed]
- Veltman, K.; Jones, C.D.; Gaillard, R.; Celad, S.; Chased, L.; Duval, B.D.; Izaurralde, R.C.; Ketterings, Q.M.; Li, C.; Matlock, M.; et al. Comparison of process-based models to quantify nutrient flows and greenhouse gas emissions associated with milk production. Agric. Ecosyst. Environ. 2017, 237, 31–44. [Google Scholar] [CrossRef]
- Belflower, J.B.; Bernard, J.K.; Gattie, D.K.; Hancock, D.W.; Risse, L.M.; Rotz, C.A. A case study of the potential environmental impacts of different dairy production systems in Georgia. Agric. Syst. 2012, 108, 84–93. [Google Scholar] [CrossRef]
- Guerci, M.; Knudsen, M.T.; Bava, L.; Zucali, M.; Schönbach, P.; Kristensen, T. Parameters affecting the environmental impact of a range of dairy farming systems in Denmark, Germany and Italy. J. Clean. Prod. 2013, 54, 133–141. [Google Scholar] [CrossRef]
- Gerber, P.J.; Hristov, A.N.; Henderson, B.; Makkar, H.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; et al. Technical options for the mitigation of direct methane and nitrous oxide emissions from livestock: A review. Animal 2013, 7, 220–234. [Google Scholar] [CrossRef]
- Thoma, G.; Popp, J.; Nutter, D.; Shonnard, D.; Ulrich, R.; Matlock, M.; Kim, D.S.; Neiderman, Z.; Kemper, N.; East, C.; et al. Greenhouse gas emissions from milk production and consumption in the United States: A cradle-to-grave life cycle assessment circa 2008. Int. Dairy J. 2013, 31, S3–S14. [Google Scholar] [CrossRef]
- Peters, C.J.; Picardy, J.A.; Darrouzet-Nardi, A.; Griffin, T.S. Feed conversions, ration compositions, and land use efficiencies of major livestock products in U.S. agricultural systems. Agric. Syst. 2014, 130, 35–43. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle: 2001; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Lee, E.K.; Zhang, X.; Adler, P.; Xue, X. Spatially and Temporally Explicit Life Cycle Analysis of Global Warming, Eutrophication and Acidification from Corn Production in the U.S. Midwest. J. Clean. Prod. 2019, 242, 118465. [Google Scholar] [CrossRef]
- Romeiko, X.X.; Lee, E.K.; Sorunmu, Y.; Zhang, X. Spatially and temporally explicit life cycle environmental impacts of soybean production in the US Midwest. Environ. Sci. Technol. 2020, 54, 4758–4768. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Izaurralde, R.C.; Manowitz, D.H.; Sahajpal, R.; West, T.O.; Thomson, A.M.; Xu, M.; Zhao, K.; LeDuc, S.D.; Williams, J.R. Regional scale cropland carbon budgets: Evaluating a geospatial agricultural modeling system using inventory data. Environ. Model. Softw. 2015, 63, 199–216. [Google Scholar]
- Ecoinvent Center. Ecoinvent 3.10 Database. Available online: https://ecoinvent.org/database/ (accessed on 10 February 2023).
- Xue, X.; Collinge, B.; Lanids, A.E.; Shrake, S.; Bilec, M. Regional life cycle assessment of soybean derived biodiesel for transportation fleet. Energy Policy 2012, 48, 295–303. [Google Scholar] [CrossRef]
- Dick, M.; Silva, M.A.d.; Dewes, H. Life cycle assessment of beef cattle production in two typical grassland systems of southern Brazil. J. Clean. Prod. 2015, 96, 426–434. [Google Scholar] [CrossRef]
- Census Bureau and Bureau of Transporation Statistics. Commodity Flow Survey. Available online: https://www.census.gov/econ/cfs/ (accessed on 10 February 2023).
- Aguirre-Villegas, H.A.; Larson, R.; Reinemann, D.J. From waste-to-worth: Energy, emissions, and nutrient implications of manure processing pathways. Biofuels Bioprod. Biorefin. 2014, 8, 770–793. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H.A.; Larson, R.A. Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. J. Clean. Prod. 2017, 143, 169–179. [Google Scholar] [CrossRef]
- Kirchgessner, M.; Windisch, W.; Müller, H.L.; Kreuzer, M. Release of methane and of carbon dioxide by dairy cattle. Agribiol. Res. 1991, 44, 91–102. [Google Scholar]
- California Certified Organic Farmers. Average Dry Matter Percentages for Various Livestock Feeds; California Certified Organic Farmers: California, CA, USA, 2015. [Google Scholar]
- Mills, J.A.N.; Kebreab, E.; Yates, C.M.; Crompton, L.A.; Cammell, S.B.; Dhanoa, M.S.; Agnew, R.E.; France, J. Alternative approaches to predicting methane emissions from dairy cows. J. Anim. Sci. 2003, 81, 3141–3150. [Google Scholar] [CrossRef] [PubMed]
- Ding, L. Greenhouse Gas Emissions from Dairy Open Lot and Manure Stockpile in Northern China: A Case Study; National Institutes of Health (NIH): Bethesda, MD, USA, 2016; Volume 66, pp. 267–279. [Google Scholar]
- Gent, P.R.; Danabasoglu, G.; Donner, L.J.; Holland, M.M.; Hunke, E.C.; Jayne, S.R.; Lawrence, D.M.; Neale, R.B.; Rasch, P.J.; Vertenstein, M.; et al. The Community Climate System Model Version 4. J. Clim. 2011, 24, 4973–4991. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Dairy Cattle Management Practices in the United States. 2014. Available online: https://www.aphis.usda.gov/sites/default/files/dairy14_dr_parti_1.pdf (accessed on 10 February 2023).
- ASAE. Manure Production and Characteristics; ASAE: St. Joseph, MI, USA, 2005. [Google Scholar]
- Rotz, C.A.; Corson, M.S.; Chianese, D.S.; Montes, F.; Hafner, S.D.; Bonifacio, H.F.; Coiner, C.U. The Integrated Farm System Model (IFSM) Reference Manual; USDA ARS: Washington, DC, USA, 2016.
- United States Department of Agriculture. Acres of Cropland and Pastureland Treated with Manure. Available online: https://www.nass.usda.gov/Statistics_by_Subject/Environmental/index.php (accessed on 15 March 2023).
- Rotz, C.A.; Montes, F.; Hafner, S.D.; Heber, A.J.; Grant, R.H. Ammonia Emission Model for Whole Farm Evaluation of Dairy Production Systems. J. Environ. Qual. 2014, 43, 1143–1158. [Google Scholar] [CrossRef] [PubMed]
- Jokela, B.; Magdoff, F.; Bartlett, R.; Bosworth, S.; Ross, D. Nutrient Recommendations for Field Crops in Vermont; Plant and Soil Science Department, University of Vermont: Burlington, VT, USA, 2004. [Google Scholar]
- Gollehon, N.; Caswell, M.; Ribaudo, M.; Kellogg, R.; Lander, C.; Letson, D. Confined Animal Production and Manure Nutrients; USDA ERS: Washington, DC, USA, 2001.
- Xue, X.; Landis, A.E. Evaluating agricultural management practices to improve the environmental footprints of corn-derived bioproducts. Renew. Energy 2014, 66, 454–460. [Google Scholar] [CrossRef]
- Chianese, D.S.; Rotz, C.A.; Richard, T.L. Simulation of methane emissions from dairy farms to assess greenhouse gas reduction strategies. Trans. ASABE 2009, 52, 1313–1323. [Google Scholar] [CrossRef]
- Dong, H.; Mangino, J.; McAllister, T.; Have, D. Emissions from Livestock and Manure Management; FAO: Rome, Italy, 2006. [Google Scholar]
- Datta, A.K. Biological and Bioenvironmental Heat and Mass Transfer; Marcel Dekker: New York, NY, USA, 2002. [Google Scholar]
- McGinn, S.M.; Coates, T.; Flesch, T.K.; Crenna, B. Ammonia emission from dairy cow manure stored in a lagoon over summer. Can. J. Soil Sci. 2008, 88, 611–615. [Google Scholar] [CrossRef]
- Myhre, G.; Shindell, D.; Bréon, F.M.; Collins, W.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.F.; Lee, D.; Mendoza, B.; et al. Anthropogenic and Natural Radiative Forcing; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Bare, J.C. The Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts. Clean Technologies and Environmental Policy; Springer: New York, NY, USA, 2011; Volume 13, pp. 687–696. [Google Scholar]
- Xue, X.; Hawkins, T.; Schoen, M.; Garland, J.; Ashbolt, N. Comparing the life cycle energy consumption, global warming and eutrophication potentials of several water and waste service options. Water 2016, 8, 154. [Google Scholar] [CrossRef]
- Xue, X.; Landis, A.E. Effect of agricultural practices on biofuels’ environmental footprints. In Proceedings of the IEEE International Symposium on Sustainable Systems and Technology, 2009, ISSST’09, Tempe, AZ, USA, 18–20 May 2009; pp. 1–4. [Google Scholar]
- Gelfand, I.; Zenone, T.; Jasrotia, P.; Chen, J.; Hamilton, S.K.; Robertson, G.P. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proc. Natl. Acad. Sci. USA 2011, 108, 13864–13869. [Google Scholar] [CrossRef]
- Clark, C.M.; Lin, Y.; Bierwagen, B.G.; Eaton, L.M.; Langholtz, M.H.; Morefield, P.E.; Ridley, C.E.; Vimmerstedt, L.; Peterson, S.; Bush, B.W. Growing a sustainable biofuels industry: Economics, environmental considerations, and the role of the Conservation Reserve Program. Environ. Res. Lett. 2013, 8, 025016. [Google Scholar] [CrossRef]
- Galik, C.; Hodgson, W.; Raborn, C.; Bean, P. Integrating Biofuels into Comprehensive Climate Policy, An Overview of Biofuels Policy Options; Duke University: Durham, NC, USA, 2009. [Google Scholar]
- Entrena-Barbero, E.; Rebolledo-Leiva, R.; Vásquez-Ibarra, L.; Fernández, M.; Feijoo, G.; González-García, S.; Moreira, M.T. Water-Energy-Food nexus index proposal as a sustainability criterion on dairy farms. Sci. Total Environ. 2023, 874, 162507. [Google Scholar] [CrossRef] [PubMed]
- Vinci, G.; Prencipe, S.A.; Pucinischi, L.; Perrotta, F.; Ruggeri, M. Sustainability assessment of waste and wastewater recovery for edible mushroom production through an integrated nexus. A case study in Lazio. Sci. Total Environ. 2023, 903, 166044. [Google Scholar] [CrossRef] [PubMed]
- White, R.R. Increasing energy and protein use efficiency improves opportunities to decrease land use, water use, and greenhouse gas emissions from dairy production. Agric. Syst. 2016, 146, 20–29. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romeiko, X.X.; Zhang, W.; Zhang, X.; Choi, J.-K. Spatially Explicit Life Cycle Global Warming and Eutrophication Potentials of Confined Dairy Production in the Contiguous US. Environments 2024, 11, 230. https://doi.org/10.3390/environments11110230
Romeiko XX, Zhang W, Zhang X, Choi J-K. Spatially Explicit Life Cycle Global Warming and Eutrophication Potentials of Confined Dairy Production in the Contiguous US. Environments. 2024; 11(11):230. https://doi.org/10.3390/environments11110230
Chicago/Turabian StyleRomeiko, Xiaobo Xue, Wangjian Zhang, Xuesong Zhang, and Jun-Ki Choi. 2024. "Spatially Explicit Life Cycle Global Warming and Eutrophication Potentials of Confined Dairy Production in the Contiguous US" Environments 11, no. 11: 230. https://doi.org/10.3390/environments11110230
APA StyleRomeiko, X. X., Zhang, W., Zhang, X., & Choi, J.-K. (2024). Spatially Explicit Life Cycle Global Warming and Eutrophication Potentials of Confined Dairy Production in the Contiguous US. Environments, 11(11), 230. https://doi.org/10.3390/environments11110230