Major- and Trace-Element Geochemistry of Geothermal Water from the Nappe Zone, Northern Tunisia: Implications for Mineral Prospecting and Health Risk Assessment
Abstract
:1. Introduction
2. Geological, Hydrogeological, Geothermal, and Mineral Settings
3. Materials and Methods
3.1. Sample Collection and Analytical Procedure
3.2. Multivariate Statistical Analysis and Geochemical Codes
3.3. Geothermal Water Quality Assessment
Parameters | Units | Adults | Children | References |
---|---|---|---|---|
Water intake ratio (WIR) | L/day | 2.5 | 0.78 | [21] |
Exposure frequency (EF) | days/year | 350 | 350 | [73] |
Exposure duration (ED) | years | 26 | 6 | [21,73] |
Body weight (BW) | kg | 56.8 | 15.9 | [21,73] |
Resident averaging time (AT) | days | 9490 | 2190 | [74] |
Resident skin surface area (SA) | cm2 | 19,652 | 6365 | [75] |
Exposure time (ET) | h/event | 0.71 | 0.54 | [21] |
Events (Ev) | per day | 1 | 1 | [69] |
Element | RfD | Kp | GIABS |
---|---|---|---|
As | 0.0003 | 0.001 | 1 |
Ba | 0.2 | 0.001 | 1 |
Mn | 0.024 | 0.001 | 0.04 |
Pb | 0.0036 | 0.0001 | 1 |
Sb | 0.004 | 0.001 | 1 |
Sr | 0.6 | 0.001 | 1 |
Zn | 0.3 | 0.0006 | 1 |
4. Results
N° | Name | EC | pH | T °C | Ca2+ | Mg2+ | Na+ | K+ | Cl− | SO42− | HCO3− | NO3− | TDS | As | B | Ba | Fe | Mn | Pb | Sb | Sr | Zn |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sub-cluster C1.1 | ||||||||||||||||||||||
1 | Sidi Abdelkader | 7000 | 6.82 | 40.2 | 1020 | 210 | 3382 | 82 | 5728 | 2297 | 358 | 44 | 13,121 | Nd | 537 | 68 | Nd | 74 | 94 | 0.05 | 293 | 6 |
Sub-cluster C1.2 | ||||||||||||||||||||||
3 | H. Sayala | 34,200 | 6.73 | 42.6 | 150 | 88 | 4982 | 45 | 8095 | 960 | 460 | 3 | 14,783 | 146 | 797 | 84 | Nd | 71 | 76 | 9 | 2571 | 10 |
10 | H. S. Ali Daoua | 102,000 | 6.55 | 36.5 | 1150 | 302 | 21,095 | 200 | 31,158 | 4182 | 286 | 2 | 58,375 | 339 | 178 | 26 | Nd | 71 | 89 | 10 | 10,023 | 8 |
Cluster C2 | ||||||||||||||||||||||
6 | H. Ouranhnia | 3250 | 6.6 | 32.4 | 41 | 17 | 318 | 15 | 467 | 67 | 254 | 2 | 1181 | Nd | 164 | 1480 | Nd | 202 | 82 | 100 | 2243 | 9 |
7 | H. Es Salhine | 4500 | 7.02 | 45 | 31 | 20 | 263 | 11 | 358 | 119 | 231 | 8 | 1041 | Nd | 119 | 577 | Nd | 69 | 76 | 8 | 1168 | 12 |
8 | H. Bourguiba | 2800 | 7.25 | 44 | 18 | 14 | 283 | 17 | 277 | 169 | 287 | 2 | 1067 | Nd | 271 | 3942 | Nd | 69 | 74 | 0.05 | 4248 | 11 |
11 | H. Ouechtata | 2400 | 7 | 36 | 2.8 | 3 | 358 | 11 | 170 | 113 | 608 | 3 | 1268.8 | 0.05 | 110 | 354 | Nd | 71 | 84 | 7 | 216 | 21 |
Sub-cluster C3.1 (stream water) | ||||||||||||||||||||||
12 | Medj1 | 2142 | 7.2 | 16.8 | 330 | 40 | 360.2 | 5.2 | 808.4 | 132 | 790 | 3.4 | 2469.2 | Nd | 145 | 214 | Nd | 12 | 24 | 40 | 1200 | 7 |
13 | Medj2 | 1987 | 7.8 | 17.2 | 296 | 82 | 364 | 7.4 | 848 | 144.6 | 840 | 4.1 | 2586.1 | Nd | 123 | 248 | Nd | 21 | 17 | 10 | 2000 | 7 |
14 | Medj3 | 2348 | 7.6 | 16.3 | 343 | 68 | 482.4 | 4.8 | 1045.6 | 112.8 | 910 | 4.6 | 2971.2 | Nd | 120 | 210 | Nd | 34 | 10 | 60 | 1400 | 7 |
Sub-cluster C3.2 | ||||||||||||||||||||||
2 | Ain Kebrit | 3200 | 7.65 | 20.2 | 130 | 6 | 75 | 9 | 107 | 93 | 327 | 8 | 755 | Nd | 75 | 65 | Nd | 70 | 80 | 7 | 141 | 17 |
4 | Khanguet Kef Ettout | 12,400 | 6.9 | 29.7 | 118 | 27 | 267 | 12 | 280 | 159 | 372 | 285 | 1520 | Nd | 153 | 693 | Nd | 70 | 78 | 8 | 5719 | 9 |
5 | H. Nefza | 4350 | 8.1 | 13.4 | 155 | 23 | 167 | 4 | 280 | 254 | 332 | 4 | 1219 | Nd | 83 | 138 | Nd | 70 | 77 | 7 | 1425 | 9 |
9 | Ain Chemtou | 4700 | 7.5 | 23.7 | 204 | 59 | 383 | 8 | 670 | 355 | 261 | 5 | 1945 | Nd | 131 | 59 | Nd | 69 | 79 | 11 | 3212 | 10 |
5. Discussion
5.1. Hydrochemical Features
Cluster | N° | Name | * Temperature | Geochemical Facies | † Salinity by TDS |
---|---|---|---|---|---|
C1.1 | 1 | Sidi Abdelkader | thermal | Cl-Na | saline |
C1.2 | 3 | H. Sayala | thermal | Cl-Na | saline |
C1.2 | 10 | H. S. Ali Daoua | thermal | Na-Cl | brine |
C2 | 6 | H. Ouranhnia | thermal | Na-Cl | brackish |
C2 | 7 | H. Es Salhine | thermal | Na-Cl | brackish |
C2 | 8 | H. Bourguiba | thermal | Na-Cl | brackish |
C2 | 11 | H. Ouechtata | thermal | Na-HCO3 | brackish |
C3.1 | 12 | Medj1 | hypothermal | Cl-Na | brackish |
C3.1 | 13 | Medj2 | hypothermal | Cl-Na | brackish |
C3.1 | 14 | Medj3 | hypothermal | Cl-Na | brackish |
C3.2 | 2 | Ain Kebrit | orthothermal | Ca-HCO3 | fresh |
C3.2 | 4 | Khanguet Kef Ettout | thermal | Na-Cl | brackish |
C3.2 | 5 | H. Nefza | hypothermal | Cl-Na | brackish |
C3.2 | 9 | Ain Chemtou | thermal | Cl-Na | brackish |
5.2. Hydrogeochemical Processes
5.3. Geothermometry
5.4. Conceptual Model of Geothermal Fluid and Its Implication for Mineral Prospection
5.5. Geothermal Water Quality Assessment
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fourré, E.; Di Napoli, R.; Aiuppa, A.; Parello, F.; Gaubi, E.; Jean-Baptiste, P.; Allard, P.; Calabrese, S.; Ben Mamou, A. Regional variations in the chemical and helium-carbon isotope composition of geothermal fluids across Tunisia. Chem. Geol. 2011, 288, 67–85. [Google Scholar] [CrossRef]
- Mahwa, J.; Ping, J.H.; Leng, W.; Zhao, J.C.; Liu, J.Q. Tectonics and hydrogeochemical features of geothermal waters in Tangyin Rift SE Taihang Mountain. Geothermics 2023, 109, 102657. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution; CRC Press: London, UK, 1997. [Google Scholar]
- Nasraoui, A.; Gharbi, M.; Hamdaoui, M.; Nagati, K. Les minéraux dans l’eau de consommation en Tunisie. Arch. L’inst. Pasteur Tunis 1996, 73, 219–220. [Google Scholar]
- Bouri, S.; Makni, J.; Ben Dhia, H. A synthetic approach integrating surface and subsurface data for prospecting deep aquifers: The Southeast Tunisia. Environ. Geol. 2008, 54, 1473–1484. [Google Scholar] [CrossRef]
- Ben Dhia, H.; Jones, F.W.; Meddeb, N.; Lucazeau, F.; Bouri, S. Shallow geothermal studies in Tunisia: Comparison with deep subsurface information. Geothermics 1992, 21, 503–517. [Google Scholar] [CrossRef]
- Meddeb, M.N. Géothermométrie des Sources Chaudes de Tunisie Septentrionale; Office National des Mines (O.N.M.): Tunis, Tunisia, 1993; p. 25. [Google Scholar]
- Lahlou Mimi, A.; Ben Dhia, H.; Bouri, S.; Lahrach, A.; Ben Abidate, L.; Bouchareb-Haouchim, F.Z. Application of chemical geothermometers to thermal springs of the Maghreb, North Africa. Geothermics 1998, 27, 211–233. [Google Scholar] [CrossRef]
- Ben Dhia, H. The Geothermal Gradient Map of Central Tunisia—Comparison with Structural, Gravimetric and Petroleum Data. Tectonophysics 1987, 142, 99–109. [Google Scholar] [CrossRef]
- Bouri, S.; Ben Abdallah, I.; Zarhloule, Y.; Ben Dhia, H. Thermal regime, groundwater flow and petroleum occurrences in the Cap Bon region, northeastern Tunisia. Geothermics 2007, 36, 362–381. [Google Scholar] [CrossRef]
- Besser, H.; Mokadem, N.; Redhaounia, B.; Hadji, R.; Hamad, A.; Hamed, Y. Groundwater mixing and geochemical assessment of low-enthalpy resources in the geothermal field of southwestern Tunisia. Euro-Mediterr. J. Environ. Integr. 2018, 3, 16. [Google Scholar] [CrossRef]
- Azaiez, H.; Gabtni, H.; Chabaane, A.; Sayem, G.; Bedir, M. Geophysical study of Hammam Sidi Maamar geothermal site in Central Tunisia for sustainable development. J. Afr. Earth Sci. 2020, 170, 103897. [Google Scholar] [CrossRef]
- Khomsi, S.; Echihi, O.; Slimani, N. Structural control on the deep hydrogeological and geothermal aquifers related to the fractured Campanian-Miocene reservoirs of north-eastern Tunisia foreland constrained by subsurface data. C. R. Geosci. 2012, 344, 247–265. [Google Scholar] [CrossRef]
- Agoubi, B. Review: Origin, heating process, and groundwater flow system of non-volcanic thermal aquifers in Tunisia. Arab. J. Geosci. 2021, 14, 369. [Google Scholar] [CrossRef]
- Trabelsi, S.; Makni, J.; Bouri, S.; Ben Dhia, H. Hydrochemistry of thermal waters in Northeast Tunisia: Water-rock interactions and hydrologic mixing. Arab. J. Geosci. 2015, 8, 1743–1754. [Google Scholar] [CrossRef]
- Bundschuh, J.; Litter, M.I.; Parvez, F.; Roman-Ross, G.; Nicolli, H.B.; Jean, J.S.; Liu, C.W.; Lopez, D.; Armienta, M.A.; Guilherme, L.R.G.; et al. One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. Sci. Total Environ. 2012, 429, 2–35. [Google Scholar] [CrossRef]
- Maity, J.P.; Nath, B.; Kar, S.; Chen, C.Y.; Banerjee, S.; Jean, J.S.; Liu, M.Y.; Centeno, J.A.; Bhattacharya, P.; Chang, C.L.; et al. Arsenic-induced health crisis in peri-urban Moyna and Ardebok villages, West Bengal, India: An exposure assessment study. Environ. Geochem. Health 2012, 34, 563–574. [Google Scholar] [CrossRef]
- Baba, A.; Armannsson, H. Environmental impact of the utilization of geothermal areas. Energy Sources Part B 2006, 1, 267–278. [Google Scholar] [CrossRef]
- Baba, A.; Sozbilir, H. Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in Western Turkey. Chem. Geol. 2012, 334, 364–377. [Google Scholar] [CrossRef]
- Kara, H.; Yetis, A.D.; Kalkan, S. The impact of geothermal fluid discharge on drainage water and groundwater quality in terms of toxic contaminants in the agricultural Harran Plain, Turkey. Geothermics 2022, 105, 102502. [Google Scholar] [CrossRef]
- US-EPA. Exposure Factors Handbook 2011 Edition (Final Report); U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- US-EPA. National Recommended Water Quality Criteria Tables. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-tables (accessed on 13 July 2023).
- Morales-Simfors, N.; Bundschuh, J. Arsenic-rich geothermal fluids as environmentally hazardous materials—A global assessment. Sci. Total. Environ. 2022, 817, 152669. [Google Scholar] [CrossRef]
- Leybourne, M.I.; Goodfellow, W.D.; Boyle, D.R. Hydrogeochemical, isotopic, and rare earth element evidence for contrasting water-rock interactions at two undisturbed Zn-Pb massive sulphide deposits, Bathurst Mining Camp, NB, Canada. J. Geochem. Explor. 1998, 64, 237–261. [Google Scholar] [CrossRef]
- Steele, K.F.; Dilday, T.F., III. Hydrogeochemical exploration for Mississippi Valley-type deposits, Arkansas, USA. J. Geochem. Explor. 1985, 23, 71–79. [Google Scholar] [CrossRef]
- Giblin, A. Groundwaters: Geochemical Pathfinders to Concealed Ore Deposits. A Handbook of Recommended Procedures for Sample Collection, Analyses and Some Methods of Data Interpretation for Exploration; CSIRO Division of Exploration and Mining: Sydney, NSW, Australia, 1984. [Google Scholar]
- Kelley, K.D.; Taylor, C.D. Environmental geochemistry of shale-hosted Ag-Pb-Zn massive sulfide deposits in northwest Alaska: Natural background concentrations of metals in water from mineralized areas. Appl. Geochem. 1997, 12, 397–409. [Google Scholar] [CrossRef]
- Runnells, D.D. Workshop 3: Hydrochemistry in Mineral Exploration. J. Geochem. Explor. 1984, 21, 129–131. [Google Scholar] [CrossRef]
- Bouaziz, S.; Barrier, E.; Soussi, M.; Turki, M.M.; Zouari, H. Tectonic evolution of the northern African margin in Tunisia from paleostress data and sedimentary record. Tectonophysics 2002, 357, 227–253. [Google Scholar] [CrossRef]
- Bracene, R.; de Lamotte, D.F. The origin of intraplate deformation in the Atlas system of western and central Algeria: From Jurassic rifting to Cenozoic-Quaternary inversion. Tectonophysics 2002, 357, 207–226. [Google Scholar] [CrossRef]
- De Lamotte, D.F.; Leturmy, P.; Missenard, Y.; Khomsi, S.; Ruiz, G.; Saddiqi, O.; Guillocheau, F.; Michard, A. Mesozoic and Cenozoic vertical movements in the Atlas system (Algeria, Morocco, Tunisia): An overview. Tectonophysics 2009, 475, 9–28. [Google Scholar] [CrossRef]
- Jolivet, L.; Augier, R.; Faccenna, C.; Negro, F.; Rimmele, G.; Agard, P.; Robin, C.; Rossetti, F.; Crespo-Blanc, A. Subduction, convergence and the mode of backarc extension in the Mediterranean region. BSGF-Earth Sci. Bull. 2008, 179, 525–550. [Google Scholar] [CrossRef]
- Ould Bagga, M.A.; Abedeljaouad, S.; Mercier, E. The Tunissian “zone des nappes”: A slightly inverted mesocenozoic continental margin (Taberka/Jendouba; northwestern Tunisia). Bull. Soc. Géol. Fr. 2006, 177, 145–154. [Google Scholar] [CrossRef]
- Rouvier, H. Géologie de l’Extrême Nord—Tunisien: Tectonique et Paléogéographies Superposées à L’extrémité Orientale de la Chaîne Nord-Maghrébine. Université Pierre et Marie Curie—Paris VI, Paris. 1977. Available online: https://cir.nii.ac.jp/crid/1573105974145290880 (accessed on 15 July 2023).
- Essid, E.; Kadri, A.; Balti, H.; Gasmi, M.; Zargouni, F. Contributions of gravity and field data on the structural scheme updating of the Tellian domain and its foreland (Nefza-Bizerte region, northern Tunisia). Int. J. Earth Sci. 2018, 107, 2357–2381. [Google Scholar] [CrossRef]
- Essid, E.; Kadri, A.; Inoubli, M.H.; Zargouni, F. Identification of new NE-trending deep-seated faults and tectonic pattern updating in northern Tunisia (Mogodos-Bizerte region), insights from field and seismic reflection data. Tectonophysics 2016, 682, 249–263. [Google Scholar] [CrossRef]
- Tlig, S.; Erraioui, L.; Aissa, L.; Alouani, R.; Tagorti, M. Tectogenèses alpine et atlasique: Deux événements distincts dans l’histoire géologique de la Tunisie. Corrélation avec les événements clés en Méditerranée. C. R. De L’académie Sci. Sér. 2 Méc. Phys. Chim. Sci. L’univ. Sci. Terre 1991, 312, 295–301. [Google Scholar]
- Decree, S.; Marignac, C.; De Putter, T.; Deloule, E.; Liegeois, J.P.; Demaiffe, D. Pb-Zn mineralization in a Miocene regional extensional context: The case of the Sidi Driss and the Douahria ore deposits (Nefza mining district, northern Tunisia). Ore Geol. Rev. 2008, 34, 285–303. [Google Scholar] [CrossRef]
- Rouvier, H.; Perthuisot, V.; Mansouri, A. Pb-Zn Deposits and Salt-Bearing Diapirs in Southern Europe and North-Africa. Econ. Geol. 1985, 80, 666–687. [Google Scholar] [CrossRef]
- Slim-Shimi, N.; Tlig, S. Mixed-Type Sulfide Deposits in Northern Tunisia, Regenerated in Relation to Paleogeography and Tectonism. J. Afr. Earth Sci. 1993, 16, 287–307. [Google Scholar] [CrossRef]
- Atawa, M.; Zouaghi, T.; Souei, A. Gravity constraints on the underground structural framework and associated volcanism of the Maghrebian allochthonous domain: The Sejnene Numidian flysch, Tunisian Tell. J. Afr. Earth Sci. 2016, 116, 248–263. [Google Scholar] [CrossRef]
- Barhoumi, A.; Belkhiria, W.; Ayari, J.; Hatira, N.; Braham, A.; Dhaha, F. Tectonic controls on the salt diapir-related Mississippi Valley-type lead-zinc mineralization of Fej El Adoum ore deposit (Northern Tunisian Atlas): Constrains from detailed gravity and drill hole data. J. Afr. Earth Sci. 2021, 181, 104237. [Google Scholar] [CrossRef]
- Bouhlel, S.; Garnit, H.; Bejaoui, J.; Skaggs, S. Lead isotopes signatures of the MVT lead-zinc (±F) deposits across central-north Tunisia: Evidence for the heterogeneity in uranium component of the underlying source rocks. In Proceedings of the 12th Biennial SGA Meeting, Mineral Deposit Research for High-Tech World, Uppsala, Sweden, 12–15 August 2013; pp. 612–615. [Google Scholar]
- Bouhlel, S.; Leach, D.L.; Johnson, C.A.; Marsh, E.; Salmi-Laouar, S.; Banks, D.A. A salt diapir-related Mississippi Valley-type deposit: The Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: Fluid inclusion and isotope study. Min. Depos. 2016, 51, 749–780. [Google Scholar] [CrossRef]
- Jemmali, N.; Souissi, F.; Carranza, E.J.M.; Bouabdellah, M. Lead and sulfur isotope constraints on the genesis of the polymetallic mineralization at Oued Maden, Jebel Hallouf and Fedj Hassene carbonate-hosted Pb-Zn (As-Cu-Hg-Sb) deposits, Northern Tunisia. J. Geochem. Explor. 2013, 132, 6–14. [Google Scholar] [CrossRef]
- Ayari, J.; Barbieri, M.; Barhoumi, A.; Belkhiria, W.; Braham, A.; Dhaha, F.; Charef, A. A regional-scale geochemical survey of stream sediment samples in Nappe zone, northern Tunisia: Implications for mineral exploration. J. Geochem. Explor. 2022, 235, 6–14. [Google Scholar] [CrossRef]
- Slim, N.; Etude Minéralogique des Gisements de Cuivre et de Plomb-zinc. Université Pierre et Marie Curie—Paris VI, Paris. 1981. Available online: https://www.pist.tn/record/9227 (accessed on 15 July 2023).
- Jemmali, N.; Souissi, F.; Carranza, E.J.M.; Vennemann, T.W.; Bogdanov, K. Geochemical constraints on the genesis of the Pb-Zn deposit of Jalta (northern Tunisia): Implications for timing of mineralization, sources of metals and relationship to the Neogene volcanism. Geochemistry 2014, 74, 601–613. [Google Scholar] [CrossRef]
- Lamouchi, I.; Azaiez, H.; Gabtni, H. Assessment of deep groundwater potential associated with Khalled Fault Zone (Northwestern Tunisia, North Africa) using an integrated geophysical approach. Arab. J. Geosci. 2021, 14, 1680. [Google Scholar] [CrossRef]
- Abidi, R.; Marignac, C.; Deloule, E.; Hibsch, C.; Gasquet, D.; Renac, C.; Somarin, A.K.; Hatira, N.; Slim-Shimi, N. Interplay of magmatic and diapiric environments in the Djebel El Hamra Pb-Zn-Hg ore district, northern Tunisia. Min. Depos. 2022, 57, 35–60. [Google Scholar] [CrossRef]
- Besbes, M.; Chahed, J. Predictability of water resources with global climate models. Case of Northern Tunisia. C. R. Geosci. 2023, 355, 1–22. [Google Scholar] [CrossRef]
- Djebbar, A.; Goosse, H.; Klein, F. Robustness of the Link between Precipitation in North Africa and Standard Modes of Atmospheric Variability during the Last Millennium. Climate 2020, 8, 62. [Google Scholar] [CrossRef]
- Ben Haj Ali, M.; Jedoui, Y.; Dali, T.; Ben Salem, H.; Memmi, L. Carte Géologique de la Tunisie au 1:500.000. 1985. Available online: https://www.etudier.com/dissertations/Carte-G%C3%A9ologique-De-La-Tunisie-1-500-000/65923225.html (accessed on 15 July 2023).
- Baird, R.B.; Eaton, A.D.; Rice, E.W. Standard Methods for Examination of Water and Wastewater, 23rd ed.; American Public Health Association, American Water Works Association, Water Environment Federation: Washington, DC, USA, 2017. [Google Scholar]
- Boschetti, T.; Venturelli, G.; Toscani, L.; Barbieri, M.; Mucchino, C. The Bagni di Lucca thermal waters (Tuscany, Italy): An example of Ca-SO4 waters with high Na/Cl and low Ca/SO4 ratios. J. Hydrol. 2005, 307, 270–293. [Google Scholar] [CrossRef]
- Awaleh, M.O.; Hoch, F.B.; Boschetti, T.; Soubaneh, Y.D.; Egueh, N.M.; Elmi, S.A.; Mohamed, J.; Khaireh, M.A. The geothermal resources of the Republic of Djibouti—II: Geochemical study of the Lake Abhe geothermal field. J. Geochem. Explor. 2015, 159, 129–147. [Google Scholar] [CrossRef]
- Giménez-Forcada, E.; Vega-Alegre, M.; Timon-Sanchez, S. Characterization of regional cold-hydrothermal inflows enriched in arsenic and associated trace-elements in the southern part of the Duero Basin (Spain), by multivariate statistical analysis. Sci. Total Environ. 2017, 593, 211–226. [Google Scholar] [CrossRef]
- Negri, A.; Daniele, L.; Aravena, D.; Munoz, M.; Delgado, A.; Morata, D. Decoding fjord water contribution and geochemical processes in the Aysen thermal springs (Southern Patagonia, Chile). J. Geochem. Explor. 2018, 185, 1–13. [Google Scholar] [CrossRef]
- Blake, S.; Henry, T.; Murray, J.; Flood, R.; Muller, M.R.; Jones, A.G.; Rath, V. Compositional multivariate statistical analysis of thermal groundwater provenance: A hydrogeochemical case study from Ireland. Appl. Geochem. 2016, 75, 171–188. [Google Scholar] [CrossRef]
- Garrett, R.G. The ‘rgr’ package for the R Open Source statistical computing and graphics environment—A tool to support geochemical data interpretation. Geochem. Explor. Environ. Anal. 2013, 13, 355–378. [Google Scholar] [CrossRef]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. 2020. Available online: https://cran.r-project.org/web/packages/factoextra/readme/README.html (accessed on 15 July 2023).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef]
- Ward, J.H.J. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Güler, C.; Thyne, G.D.; McCray, J.E.; Turner, A.K. Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol. J. 2002, 10, 455–474. [Google Scholar] [CrossRef]
- Bethke, C.M.; Farrel, B.; Yeakel, S. The Geochemist’s Workbench®, Release 12—GWB Essentials Guide; Aqueous Solutions, LLC: Champaign, IL, USA, 2022. [Google Scholar]
- Parkhurst, D.L.; Appelo, C.A.J. Description of Input and Examples for PHREEQC Version 3—A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geol. Surv. Tech. Methods 2013, 6, 497. [Google Scholar]
- Bethke, C.M. Geochemical and Biogeochemical Reaction Modeling; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Spycher, N.; Peiffer, L.; Sonnenthal, E.L.; Saldi, G.; Reed, M.H.; Kennedy, B.M. Integrated multicomponent solute geothermometry. Geothermics 2014, 51, 113–123. [Google Scholar] [CrossRef]
- US-EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment); EPA/540/R/99/005; US-EPA: Washington, DC, USA, 2004. [Google Scholar]
- US-EPA. RSL Calculator. Available online: https://epa-prgs.ornl.gov/cgi-bin/chemicals/csl_search (accessed on 17 July 2023).
- Barnes, D.G.; Dourson, M. Reference Dose (Rfd)—Description and Use in Health Risk Assessments. Regul. Toxicol. Pharmacol. 1988, 8, 471–486. [Google Scholar] [CrossRef]
- Ondayo, M.A.; Watts, M.J.; Hamilton, E.M.; Mitchell, C.; Mankelow, J.; Osano, O. Artisanal gold mining in Kakamega and Vihiga counties, Kenya: Potential human exposure and health risk. Environ. Geochem. Health 2023, 45, 6543–6565. [Google Scholar] [CrossRef]
- PB91-921314; Human Health Evaluation Manual, Supplemental Guidance: “Standard Default Exposure Factors”. Office of Emergency and Remedial Response Toxics Integration Branch—U.S. Environmental Protection Agency: Washington, DC, USA, 1991.
- US-EPA. Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual (Part A); Office of Emergency and Remedial Response—U.S. Environmental Protection Agency: Washington, DC, USA, 1989.
- US-EPA. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors; Office of Solid Waste and Emergency Response—U.S. Environmental Protection Agency: Washington, DC, USA, 2014.
- Langelier, W.; Ludwig, H. Graphical methods for indicating the mineral character of natural waters. J. Am. Water Work. Assoc. 1942, 34, 335–352. [Google Scholar] [CrossRef]
- Boschetti, T.; De Felice, V.; Celico, F. The Pozzo del Sale Groundwaters (Irpinia, Southern Apennines, Italy): Origin and Mechanisms of Salinization. Aquat. Geochem. 2013, 19, 303–322. [Google Scholar] [CrossRef]
- Spencer, R.J. Sulfate minerals in evaporite deposits. In Sulfate Minerals: Crystallography, Geochemistry and Environmental Significance; Alpers, C.N., Jambor, J.L., Nordstrom, D.K., Ribbe, P.H., Eds.; Reviews in Mineralogy and Geochemistry; Mineralogical Society of Amerca, Geochemical Society: Chantilly, VA, USA, 2000; Volume 40, pp. 173–192. [Google Scholar]
- Kharaka, Y.K.; Hanor, J.S. Deep Fluids in Sedimentary Basins. In Treatise on Geochemistry, 2nd ed.; Holland, H.D., Turekian, K.K., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 7, pp. 471–515. [Google Scholar]
- Schoeller, H. Les eaux Souterraines. Hydrologie Dynamique et Chimique, Recherche, Exploitation et Évaluation des Ressources; Masson et Cie: Paris, France, 1962; p. 642. [Google Scholar]
- Goswami, S.; Rai, A.K.; Tripathy, S. Re-visiting Geothermal Fluid Circulation, Reservoir Depth and Temperature of Geothermal Springs of India. J. Hydrol. 2022, 612, 128131. [Google Scholar] [CrossRef]
- Minissale, A.; Magro, G.; Martinelli, G.; Vaselli, O.; Tassi, G.F. Fluid geochemical transect in the Northern Apennines (central-northern Italy): Fluid genesis and migration and tectonic implications. Tectonophysics 2000, 319, 199–222. [Google Scholar] [CrossRef]
- Oren, Y.S.; Biesheuvel, P.M. Theory of Ion and Water Transport in Reverse-Osmosis Membranes. Phys. Rev. Appl. 2018, 9, 024034. [Google Scholar] [CrossRef]
- Brik, B.; Shaiek, M.; Trabelsi, L.; Regaya, K.; Ben Mbarek, N.; Bejaoui, B.; Martins, M.V.A.; Zaaboub, N. Quality Status of Surface Sediments of Lake Ichkeul (NE Tunisia): An Environmental Protected Area and World Heritage Site. Water Air Soil Pollut. 2022, 233, 260. [Google Scholar] [CrossRef]
- Bouaicha, F.; Dib, H.; Bouteraa, O.; Manchar, N.; Boufaa, K.; Chabour, N.; Demdoum, A. Geochemical assessment, mixing behavior and environmental impact of thermal waters in the Guelma geothermal system, Algeria. Acta Geochim. 2019, 38, 683–702. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Ayari, J.; Ouelhazi, H.; Charef, A.; Barhoumi, A. Delineation of seawater intrusion and groundwater quality assessment in coastal aquifers: The Korba coastal aquifer (Northeastern Tunisia). Mar. Pollut. Bull. 2023, 188, 114643. [Google Scholar] [CrossRef]
- Daniele, L.; Taucare, M.; Viguier, B.; Arancibia, G.; Aravena, D.; Roquer, T.; Sepulveda, J.; Molina, E.; Delgado, A.; Munoz, M.; et al. Exploring the shallow geothermal resources in the Chilean Southern Volcanic Zone: Insight from the Liquine thermal springs. J. Geochem. Explor. 2020, 218, 106611. [Google Scholar] [CrossRef]
- Telahigue, F.; Agoubi, B.; Souid, F.; Kharroubi, A. Assessment of seawater intrusion in an arid coastal aquifer, south-eastern Tunisia, using multivariate statistical analysis and chloride mass balance. Phys. Chem. Earth 2018, 106, 37–46. [Google Scholar] [CrossRef]
- Gori, F.; Paternoster, M.; Barbieri, M.; Buttitta, D.; Caracausi, A.; Parente, F.; Sulli, A.; Petitta, M. Hydrogeochemical multi-component approach to assess fluids upwelling and mixing in shallow carbonate-evaporitic aquifers (Contursi area, southern Apennines, Italy). J. Geochem. Explor. 2020, 218, 106611. [Google Scholar] [CrossRef]
- Wang, Y.X.; Li, P.; Guo, Q.H.; Jiang, Z.; Liu, M.L. Environmental biogeochemistry of high arsenic geothermal fluids. Appl. Geochem. 2018, 97, 81–92. [Google Scholar] [CrossRef]
- Ayari, J.; Agnan, Y.; Charef, A. Spatial assessment and source identification of trace metal pollution in stream sediments of Oued El Maadene basin, northern Tunisia. Environ. Monit. Assess. 2016, 188, 397. [Google Scholar] [CrossRef] [PubMed]
- Ayari, J.; Barbieri, M.; Agnan, Y.; Sellami, A.; Braham, A.; Dhaha, F.; Charef, A. Trace element contamination in the mine-affected stream sediments of Oued Rarai in north-western Tunisia: A river basin scale assessment. Environ. Geochem. Health 2021, 43, 4027–4042. [Google Scholar] [CrossRef]
- Ayari, J.; Barbieri, M.; Barhoumi, A.; Boschetti, T.; Braham, A.; Dhaha, F.; Charef, A. Trace metal element pollution in media from the abandoned Pb and Zn mine of Lakhouat, Northern Tunisia. J. Geochem. Explor. 2023, 247, 107180. [Google Scholar] [CrossRef]
- Li, L.; Wang, Y.C.; Gu, H.Y.; Lu, L.H.; Li, L.P.; Pang, J.M.; Chen, F.F. The Genesis Mechanism and Health Risk Assessment of High Boron Water in the Zhaxikang Geothermal Area, South Tibet. Water 2022, 14, 3243. [Google Scholar] [CrossRef]
- Ravenscroft, P.; McArthur, J.M. Mechanism of regional enrichment of groundwater by boron: The examples of Bangladesh and Michigan, USA. Appl. Geochem. 2004, 19, 1413–1430. [Google Scholar] [CrossRef]
- Giggenbach, W.F. Geothermal Solute Equilibria—Derivation of Na-K-Mg-Ca Geoindicators. Geochim. Cosmochim. Acta 1988, 52, 2749–2765. [Google Scholar] [CrossRef]
- Pentecost, A.; Jones, B.; Renaut, R.W. What is a hot spring? Can. J. Earth Sci. 2003, 40, 1443–1446. [Google Scholar] [CrossRef]
- Fournier, R.O.; Truesdell, A.H. An empirical Na-K-Ca geothermometer for natural waters. Geochim. Cosmochim. Acta 1973, 37, 1255–1275. [Google Scholar] [CrossRef]
- Nicholson, K. Geothermal Fluids: Chemistry and Exploration Techniques; Springer: Berlin/Heidelberg, Germany, 1993. [Google Scholar]
- Awaleh, M.O.; Boschetti, T.; Adaneh, A.E.; Daoud, M.A.; Ahmed, M.M.; Dabar, O.A.; Soubaneh, Y.D.; Kawalieh, A.D.; Kadieh, I.H. Hydrochemistry and multi-isotope study of the waters from Hanle-Gaggade grabens (Republic of Djibouti, East African Rift System): A low-enthalpy geothermal resource from a transboundary aquifer. Geothermics 2020, 86, 101805. [Google Scholar] [CrossRef]
- Awaleh, M.O.; Boschetti, T.; Soubaneh, Y.D.; Baudron, P.; Kawalieh, A.D.; Dabar, O.A.; Ahmed, M.M.; Ahmed, S.I.; Daoud, M.A.; Egueh, N.M.; et al. Geochemical study of the Sakalol-Harralol geothermal field (Republic of Djibouti): Evidences of a low enthalpy aquifer between Manda-Inakir and Asal rift settings. J. Volcanol. Geotherm. Res. 2017, 331, 26–52. [Google Scholar] [CrossRef]
- Chabaane, A.; Redhaounia, B.; Gabtni, H. Combined application of vertical electrical sounding and 2D electrical resistivity imaging for geothermal groundwater characterization: Hammam Sayala hot spring case study (NW Tunisia). J. Afr. Earth Sci. 2017, 134, 292–298. [Google Scholar] [CrossRef]
- Lopez, D.L.; Bundschuh, J.; Birkle, P.; Armienta, M.A.; Cumbal, L.; Sracek, O.; Cornejo, L.; Ormachea, M. Arsenic in volcanic geothermal fluids of Latin America. Sci. Total Environ. 2012, 429, 57–75. [Google Scholar] [CrossRef] [PubMed]
- Munoz, M.O.; Bhattacharya, P.; Sracek, O.; Ramos, O.R.; Aguirre, J.Q.; Bundschuh, J.; Maity, J.P. Arsenic and other trace elements in thermal springs and in cold waters from drinking water wells on the Bolivian Altiplano. J. S. Am. Earth Sci. 2015, 60, 10–20. [Google Scholar] [CrossRef]
- Caron, M.E.; Grasby, S.E.; Ryan, M.C. Spring water trace element geochemistry: A tool for resource assessment and reconnaissance mineral exploration. Appl. Geochem. 2008, 23, 3561–3578. [Google Scholar] [CrossRef]
- Michard, G. Behavior of Major Elements and Some Trace-Elements (Li, Rb, Cs, Sr, Fe, Mn, W, F) in Deep Hot Waters from Granitic Areas. Chem. Geol. 1990, 89, 117–134. [Google Scholar] [CrossRef]
- Guo, Q.H.; Liu, M.L.; Li, J.X.; Zhou, C. Geochemical genesis of arsenic in the geothermal waters from the Rehai hydrothermal system, southwestern China. Procedia Earth Planet. Sci. 2017, 17, 49–52. [Google Scholar] [CrossRef]
- Stauffer, R.E.; Thompson, J.M. Arsenic and antimony in geothermal waters of Yellowstone National Park, Wyoming, USA. Geochim. Cosmochim. Acta 1984, 48, 2547–2561. [Google Scholar] [CrossRef]
- Navarro, M.C.; Perez-Sirvent, C.; Martinez-Sanchez, M.J.; Vidal, J.; Tovar, P.J.; Bech, J. Abandoned mine sites as a source of contamination by heavy metals: A case study in a semi-arid zone. J. Geochem. Explor. 2008, 96, 183–193. [Google Scholar] [CrossRef]
- Rieuwerts, J.S.; Thornton, I.; Farago, M.E.; Ashmore, M.R. Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads approach for metals. Chem. Speciat. Bioavailab. 1998, 10, 61–75. [Google Scholar] [CrossRef]
- McGrory, E.; Henry, T.; Conroy, P.; Morrison, L. Occurrence, Geochemistry and Speciation of Elevated Arsenic Concentrations in a Fractured Bedrock Aquifer System. Arch. Environ. Contam. Toxicol. 2021, 81, 414–437. [Google Scholar] [CrossRef] [PubMed]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture: FAO Irrigation and Drainage Paper 29. Revision 1; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 1994; p. 174. [Google Scholar]
- US-EPA. National Primary Drinking Water Regulations. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations (accessed on 20 July 2023).
- E.U. S.I. No. 272/2009—European Communities Environmental Objectives (Surface Waters) Regulations 2009. Available online: https://www.irishstatutebook.ie/eli/2009/si/272/made/en/print (accessed on 15 July 2023).
- E.U. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the quality of water intended for human consumption. Environ. Res. 2021, 103, 112773. [Google Scholar]
Drinking Water (DW) Guideline | Springs Exceeding Criteria (%) for DW | Aquatic Life Protection | Springs Exceeding Criteria (%) for Aquatic Life Protection | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
WHO a | USEPA (MCL) b | EU c | WHO | USEPA (MCL) | EU | USEPA (CMC) d | EU (AA-EQS) e | FAO f | USEPA (CMC) | EU (AA-EQS) | FAO | |
As | 10 | 10 | 10 | 18 | 18 | 18 | 340 | 25 | 100 | 0 | 18 | 18 |
Ba | 1300 | 2000 | - | 18 | 9 | - | - | - | - | - | - | - |
Mn | 80 | - | 50 | 9 | - | 100 | - | - | 200 | - | - | 7 |
Pb | 10 | 15 | 10 | 100 | 100 | 100 | 82 | 7,2 | 5000 | 27 | 100 | 0 |
Sr | - | - | - | - | - | - | - | - | 20 | - | - | 100 |
Zn | 3000 | - | - | 0 | - | - | 120 | 100 | 2000 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayari, J.; Barbieri, M.; Boschetti, T.; Barhoumi, A.; Sellami, A.; Braham, A.; Manai, F.; Dhaha, F.; Charef, A. Major- and Trace-Element Geochemistry of Geothermal Water from the Nappe Zone, Northern Tunisia: Implications for Mineral Prospecting and Health Risk Assessment. Environments 2023, 10, 151. https://doi.org/10.3390/environments10090151
Ayari J, Barbieri M, Boschetti T, Barhoumi A, Sellami A, Braham A, Manai F, Dhaha F, Charef A. Major- and Trace-Element Geochemistry of Geothermal Water from the Nappe Zone, Northern Tunisia: Implications for Mineral Prospecting and Health Risk Assessment. Environments. 2023; 10(9):151. https://doi.org/10.3390/environments10090151
Chicago/Turabian StyleAyari, Jamel, Maurizio Barbieri, Tiziano Boschetti, Anis Barhoumi, Ahmed Sellami, Ahmed Braham, Faouzi Manai, Faouzi Dhaha, and Abdelkarim Charef. 2023. "Major- and Trace-Element Geochemistry of Geothermal Water from the Nappe Zone, Northern Tunisia: Implications for Mineral Prospecting and Health Risk Assessment" Environments 10, no. 9: 151. https://doi.org/10.3390/environments10090151
APA StyleAyari, J., Barbieri, M., Boschetti, T., Barhoumi, A., Sellami, A., Braham, A., Manai, F., Dhaha, F., & Charef, A. (2023). Major- and Trace-Element Geochemistry of Geothermal Water from the Nappe Zone, Northern Tunisia: Implications for Mineral Prospecting and Health Risk Assessment. Environments, 10(9), 151. https://doi.org/10.3390/environments10090151