Factors Influencing Ammonia Concentrations above Corn Fields after Dairy Manure Application
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Manure and Soil Properties
3.2. Influence of Manure Incorporation on NH3-N Concentrations
3.3. Impact of Weather Conditions and Manure on NH3-N Concentrations
3.4. Impact of Crop Residue and Manure Coverage on NH3-N Concentrations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Apsimon, H.M.; Kruse, M.; Bell, J.N.B. Ammonia emissions and their role in acid deposition. Atmos. Environ. 1987, 21, 1939–1946. [Google Scholar] [CrossRef]
- IPCC. Guidelines for National Greenhouse Gas Inventories; Agriculture, Forestry and Other Land Use; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006; Volume 4. [Google Scholar]
- Renard, J.J.; Calidonna, S.E.; Henley, M.V. Fate of ammonia in the atmosphere—A review for applicability to hazardous he authors declare no conflict of interest releases. J. Hazard. Mater. 2004, 108, 29–60. [Google Scholar] [CrossRef] [PubMed]
- Webb, J.; Pain, B.; Bittman, S.; Morgan, J. The impacts of manure application methods on emissions of ammonia, nitrous oxide and on crop response—A review. Agric. Ecosyst. Environ. 2010, 137, 39–46. [Google Scholar] [CrossRef]
- Wulf, S.; Maeting, M.; Clemens, J. Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading: II. Greenhouse gas emissions. J. Environ. Qual. 2002, 31, 1795–1801. [Google Scholar] [CrossRef] [PubMed]
- Huijsmans, J.F.M.; Hol, J.M.G.; Vermeulen, G.D. Effect of application method, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to arable land. Atmos. Environ. 2003, 37, 3669–3680. [Google Scholar] [CrossRef]
- Leytem, A.B.; Bjorneberg, D.L.; Sheffield, R.E.; de Haro Marti, M.E. Case study: On-farm evaluation of liquid dairy manure application methods to reduce ammonia losses. Prof. Anim. Sci. 2009, 25, 93–98. [Google Scholar] [CrossRef]
- Powell, J.M.; Jokela, W.E.; Misselbrook, T.H. Dairy slurry application method impacts ammonia emission and nitrate leaching in no-till corn silage. J. Environ. Qual. 2011, 40, 388–392. [Google Scholar] [CrossRef]
- Dell, C.J.; Kleinman, P.J.A.; Schmidt, J.P.; Beegle, D.B. Low-disturbance manure incorporation effects on ammonia and nitrate loss. J. Environ. Qual. 2012, 41, 928–937. [Google Scholar] [CrossRef]
- Webb, J.; Thorman, R.E.; Fernanda-Aller, M.; Jackson, D.R. Emission factors for ammonia and nitrous oxide emissions following immediate manure incorporation on two contrasting soil types. Atmos. Environ. 2014, 82, 280–287. [Google Scholar] [CrossRef]
- Sherman, J.F.; Young, E.O.; Cavadini, J. Tillage and liquid dairy manure effects on overland flow nitrogen and phosphorus loss potential in an upper Midwest corn silage-winter triticale cropping system. Agronomy 2021, 11, 1775. [Google Scholar] [CrossRef]
- Sherman, J.F.; Young, E.O.; Jokela, W.E.; Cavadini, J. Impacts of low-disturbance dairy manure incorporation on ammonia and greenhouse gas fluxes in a corn silage–winter rye cover crop system. J. Environ. Qual. 2021, 50, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Sherman, J.; Young, E.O.; Jokela, W.E.; Cavadini, J. Impacts of low disturbance liquid dairy manure incorporation on alfalfa yield and fluxes of ammonia, nitrous oxide, and methane. Agriculture 2021, 11, 750. [Google Scholar] [CrossRef]
- Pain, B.F.; Phillips, V.R.; Clarkson, C.R.; Klarenbeek, J.V. Loss of nitrogen through ammonia volatilisation during and following the application of pig or cattle slurry to grassland. J. Sci. Food Agric. 1989, 47, 1–12. [Google Scholar] [CrossRef]
- Thompson, R.B.; Pain, B.F.; Rees, Y.J. Ammonia volatilization from cattle slurry following surface application to grassland: II. Influence of application rate, wind speed and applying slurry in narrow bands. Plant Soil 1990, 125, 119–128. [Google Scholar] [CrossRef]
- Huijsmans, J.F.M.; Hol, J.M.G.; Hendriks, M.M.W.B. Effect of application technique, manure characteristics, weather and field conditions on ammonia volatilization from manure applied to grassland. Neth. J. Agric. Sci. 2001, 49, 323–342. [Google Scholar] [CrossRef] [Green Version]
- Hanna, H.M.; Bundy, D.S.; Lorimor, J.C.; Mickelson, S.K.; Melvin, S.W.; Erbach, D.C. Manure incorporation equipment effects on odor, residue cover, and crop yield. Appl. Eng. Agric. 2000, 16, 621–627. [Google Scholar] [CrossRef]
- Shelton, D.P. Crop residue cover and manure incorporation Part I: Reduction of percent cover. Appl. Eng. Agric. 2004, 20, 605–611. [Google Scholar] [CrossRef]
- Kovar, J.L.; Moorman, T.B.; Singer, J.W.; Cambardella, C.A.; Tomer, M.D. Swine manure injection with low-disturbance applicator and cover crops reduce phosphorus losses. J. Environ. Qual. 2011, 40, 329–336. [Google Scholar] [CrossRef]
- Frost, J.P. Effect of spreading method, application rate and dilution on ammonia volatilization from cattle slurry. Grass Forage Sci. 1994, 49, 391–400. [Google Scholar] [CrossRef]
- Sommer, S.G.; Hutchings, N.J. Ammonia emission from field applied manure and its reduction—Invited paper. Eur. J. Agron. 2001, 15, 1–15. [Google Scholar] [CrossRef]
- Brunke, R.P.; Schuepp, A.P.; Gordon, R. Effect of meteorological parameters on ammonia loss from manure in the field. J. Environ. Qual. 1988, 17, 431–436. [Google Scholar] [CrossRef]
- Sommer, S.G.; Olesen, J.E. Effects of dry matter content and temperature on ammonia loss from surface applied cattle slurry. J. Environ. Qual. 1991, 20, 679–683. [Google Scholar] [CrossRef]
- Sommer, S.G.; Olesen, J.E.; Christensen, B.T. Effects of temperature, wind speed and air humidity on ammonia volatilization from surface applied cattle slurry. J. Agric. Sci. 1991, 117, 91–100. [Google Scholar] [CrossRef]
- Moal, J.F.; Martinez, J.; Guiziou, F.; Coste, C.M. Ammonia volatilization following surface applied pig and cattle slurry in France. J. Agric. Sci. 1995, 125, 245–252. [Google Scholar] [CrossRef]
- CTIC. National Crop Residue Management Survey; Conservation Tillage Information Center: West Lafayette, IN, USA, 2016. [Google Scholar]
- Kern, J.S.; Johnson, M.G. Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci. Soc. Am. J. 1993, 57, 200–210. [Google Scholar] [CrossRef]
- West, T.O.; Post, W.M. Soil organic carbon sequestration rates by tillage and crop rotation: A global data analysis. Soil Sci. Soc. Am. J. 2002, 66, 1930–1946. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, A.; Rauber, R.; Ludwig, B. Impact of reduced tillage on carbon and nitrogen storage of two Haplic Luvisols after 40 years. Soil Till. Res. 2009, 102, 158–164. [Google Scholar] [CrossRef]
- Kushwaha, C.P.; Tripathi, C.P.; Singh, K.P. Soil organic matter and water-stable aggregates under different tillage and residue conditions in a tropical dryland agroecosystem. Appl. Soil Ecol. 2001, 16, 229–241. [Google Scholar] [CrossRef]
- Mueller, D.H.; Klemme, R.M.; Daniel, T.C. Short and long-term cost comparisons of conventional tillage systems in corn production. J. Soil Water Conserv. 1985, 40, 466–470. [Google Scholar]
- Schuler, R.T. Residue Management-Horizontal vs. Vertical Tillage. In Wisconsin Fertilizer, Aglime and Pest Management Conference; University of Wisconsin Extension: Madison, WI, USA, 2007; Volume 46, pp. 179–181. [Google Scholar]
- Klingsberg, K.; Weisenbeck, C. Shallow vertical tillage: Impact on soil disturbance and crop residue. In Wisconsin Crop Management Conference; University of Wisconsin: Madison, WI, USA, 2011; Volume 50, pp. 46–49. [Google Scholar]
- Peters, J. Recommended Methods of Manure Analysis; Extension, Ed.; University of Wisconsin: Madison, WI, USA, 2003. [Google Scholar]
- Schulte, E.E.; Hopkins, B.G. Estimation of soil organic matter by weight 3. Organic matter (LOI) loss-on-ignition. In Soil Organic Matter: Analysis and Interpretation; Magdoff, F.R., Tabatabai, M.A., Hanlon, E.A., Jr., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1996; pp. 21–31. [Google Scholar]
- Lachat Instruments. Determination of Ammonia (Salicylate) in 2M KCl Soil Extracts by Flow Injection Analysis; QuikChem Method 12-107-06-2-A.; Lachat Instruments: Loveland, CO, USA, 1993. [Google Scholar]
- Booth, D.T.; Cox, S.E.; Berryman, R.D. Point sampling digital imagery with SamplePoint. Environ. Monit. Assess. 2006, 123, 97–108. [Google Scholar] [CrossRef]
- Roadman, M.J.; Scudlark, J.R.; Meisinger, J.J.; Ullman, W.J. Validation of Ogawa passive samplers for the determinations of gaseous ammonia concentrations in agricultural settings. Atmos. Environ. 2003, 37, 2317–2325. [Google Scholar] [CrossRef]
- Lachat Instruments. Determination of Ammonia by Flow Injection Analysis; QuikChem Method 10-107-06-2-A.; Lachat Instruments: Loveland, CO, USA, 2003. [Google Scholar]
- SAS Institute Inc. SAS 9.4 Guide to Software Updates; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Scudlark, J.R.; Jennings, J.A.; Roadman, M.J.; Savidge, K.B.; Ullman, W.J. Atmospheric nitrogen inputs to the Delaware inland bays: The role of ammonia. Environ. Pollut. 2005, 135, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Pleim, J.E.; Ran, L.; Appel, W.; Shephard, M.W.; Cady-Pereira, K. New bidirectional ammonia flux model in an air quality model coupled with an agricultural model. J. Adv. Model. Earth Syst. 2019, 11, 2934–2957. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Liu, H.; Luo, J.; Wang, H.; Zhai, L.; Geng, Y.; Zhang, Y.; Li, J.; Lei, Q.; Bashir, M.A.; et al. Long-term manure application increased greenhouse gas emissions but had no effect on ammonia volatilization in a Northern China upland field. Sci. Total Environ. 2018, 633, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Ramanantenasoa, M.M.J.; Génermont, S.; Gilliot, J.-M.; Bedos, C.; Makowski, D. Meta-modeling methods for estimating ammonia volatilization from nitrogen fertilizer and manure applications. J. Environ. Manag. 2019, 236, 195–205. [Google Scholar] [CrossRef]
- Miola, E.C.C.; Aita, C.; Rochette, P.; Chantigny, M.H.; Angers, D.A.; Bertrand, N.; Gasser, M.O. Static chamber measurements of ammonia volatilization from manured soils: Impact of deployment duration and manure characteristics. Soil Sci. Soc. Am. J. 2014, 79, 305–313. [Google Scholar] [CrossRef]
- Lorimor, J.; Powers, W.; Sutton, A. Manure Characteristics, 2nd ed.; MWPS-18 Section 1; Manure Management System Series; Michigan State University Extension: East Lansing, MI, USA, 2006. [Google Scholar]
- Ramanantenasoa, M.M.J.; Gilliot, J.M.; Mignolet, C.; Bedos, C.; Mathias, E.; Eglin, T.; Makowski, D.; Génermont, S. A new framework to estimate spatio-temporal ammonia emissions due to nitrogen fertilization in France. Sci. Total Environ. 2018, 645, 205–219. [Google Scholar] [CrossRef]
Treatments | ||||||||
---|---|---|---|---|---|---|---|---|
Trial | Date | Control | Surface | Chisel | Case IH 330 | Great Plains Turbo Max 1800 | Residue | Manure Type |
1 | 25 September 2013 | X | X | X | Silage Corn | Solid Pack | ||
2 | 2 July 2014 | X | X | X | X | Oats | Separated Liquid | |
3 | 11 August 2015 | X | X | X | X | Oats | Unagitated Separated Liquid | |
4 | 4 November 2015 | X | X | X | Grain Corn | Whole Dairy Slurry | ||
5 | 3 May 2016 | X | X | X | X | Grain Corn | Whole Dairy Slurry | |
6 | 17 May 2016 | X | X | X | X | Silage Corn | Whole Dairy Slurry |
Trial | Date | DM † | TN | TP | NH4-N | pH | Rate ‡ | TN | TP | NH4-N |
---|---|---|---|---|---|---|---|---|---|---|
% | Mg ha−1 | kg ha−1 | ||||||||
1 | 25 September 2013 | 29 ± 0.9 †‡ | 1.8 ± 0.06 | 0.34 ± 0.04 | 0.4 ± 0.1 | 8.3 ± 0.12 | 95.3 | 484 | 91 | 94 |
2 | 2 July 2014 | 1.5 ± 0.05 | 6.8 ± 0.20 | 1.09 ± 0.00 | 4.5 ± 0.2 | 7.6 ± 0.05 | 53.6 | 82 | 13 | 54 |
3 | 11 August 2015 | 5.1 ± 0.1 | 3.3 ± 0.05 | 0.65 ± 0.03 | 1.3 ± 0.0 | 8.2 ± 0.08 | 83.9 | 137 | 28 | 55 |
4 | 4 November 2015 | 22 ± 1.8 | 1.6 ± 0.15 | 0.30 ± 0.00 | 0.7 ± 0.1 | 8.1 ± 0.05 | 110 | 412 | 80 | 185 |
5 | 3 May 2016 | 8.7 ± 0.60 | 3.1 ± 0.25 | 0.74 ± 0.00 | 1.5 ± 0.1 | 7.8 ± 0.10 | 69.6 | 181 | 44 | 89 |
6 | 17 May 2016 | 6.5 ± 0.1 | 3.1 ± 0.08 | 0.79 ± 0.01 | 1.3 ± 0.05 | 7.8 ± 0.20 | 90.9 | 180 | 46 | 74 |
Trial | Date | pH | NH4-N † | Moisture | OM ‡ |
---|---|---|---|---|---|
mg kg−1 | g kg−1 | ||||
1 | 25 September 2013 | 7.2 ± 0.05 ‡† | †‡ | 184 ± 2.4 | 27 ± 1.7 |
2 | 2 July 2014 | 7.0 ± 0.16 | 3.7 ± 1.5 | 329 ± 26 | 32 ± 1.4 |
3 | 11 August 2015 | 7.0 ± 0.08 | 3.2 ± 0.8 | 317 ± 17 | 30 ± 3.4 |
4 | 4 November 2015 | 6.3 ± 0.20 | 2.6 ± 0.8 | 346 ± 19 | 30 ± 0.5 |
5 | 3 May 2016 | 6.8 ± 0.12 | 3.4 ± 0.2 | 401 ± 38 | 33 ± 0.8 |
6 | 17 May 2016 | 6.7 ± 0.05 | 3.7 ± 1.2 | 289 ± 6.2 | 35 ± 0.5 |
Trial | Date | Relative Humidity | Temperature | Total Rainfall | Wind Speed | Wind Gusts |
---|---|---|---|---|---|---|
% | °C | mm | m s−1 | |||
1 | 25 September 2013 | 89 | 14 | 0.0 | 2.6 | 7.4 |
2 | 2 July 2014 | 60 | 16 | 0.0 | 1.3 | 3.2 |
3 | 11 August 2015 | 73 | 20 | 0.0 | 0.9 | 2.3 |
4 | 4 November 2015 | 85 | 14 | 8.4 | 2.8 | 5.2 |
5 | 3 May 2016 | 62 | 9 | 7.1 | 2.0 | 4.2 |
6 | 17 May 2016 | 52 | 11 | 1.3 | 0.4 | 1.7 |
Pearson Correlation Coefficients | ||||||
first 24 h | 0.55 ** | −0.51 | 0.13 | 0.49 * | 0.56 ** | |
second 24 h | 0.39 | −0.27 | 0.10 | 0.43 * | 0.55 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherman, J.F.; Young, E.O.; Jokela, W.E. Factors Influencing Ammonia Concentrations above Corn Fields after Dairy Manure Application. Environments 2023, 10, 140. https://doi.org/10.3390/environments10080140
Sherman JF, Young EO, Jokela WE. Factors Influencing Ammonia Concentrations above Corn Fields after Dairy Manure Application. Environments. 2023; 10(8):140. https://doi.org/10.3390/environments10080140
Chicago/Turabian StyleSherman, Jessica F., Eric O. Young, and William E. Jokela. 2023. "Factors Influencing Ammonia Concentrations above Corn Fields after Dairy Manure Application" Environments 10, no. 8: 140. https://doi.org/10.3390/environments10080140
APA StyleSherman, J. F., Young, E. O., & Jokela, W. E. (2023). Factors Influencing Ammonia Concentrations above Corn Fields after Dairy Manure Application. Environments, 10(8), 140. https://doi.org/10.3390/environments10080140