Looking for Nano- and Microplastics in Meiofauna Using Advanced Methodologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meiofauna Positive Controls
2.2. Meiofauna from Natural Sites
2.3. Sample Treatment
2.4. Microscopy and Microchemical Analyses
2.5. Quality Assurance and Quality Controls
3. Results and Discussion
3.1. Meiofauna Positive Controls
3.2. Meiofauna from Natural Sites
3.3. Microscopy and Microchemical Analyses
3.3.1. General Findings
3.3.2. Positive Controls
3.3.3. Meiofauna from Natural Sites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schmid-Araya, J.M.; Hildrew, A.G.; Robertson, A.; Schmid, P.E.; Winterbottom, J. The importance of meiofauna in food webs: Evidence from an acid stream. Ecology 2002, 83, 1271–1285. [Google Scholar] [CrossRef]
- Schratzberger, M.; Ingels, J. Meiofauna matters: The roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 2018, 502, 12−25. [Google Scholar] [CrossRef]
- Giere, O. Meiobenthology. The Microscopic Fauna in Aquatic Sediments; Springer: Berlin, Germany, 2009; p. 328. [Google Scholar]
- Todaro, M.A.; Luporini, P. Not too big for its mouth: Direct evidence of a macrodasyidan gastrotrich preyed in nature by a dileptid ciliate. Eur. Zool. J. 2022, 89, 785–790. [Google Scholar] [CrossRef]
- Giere, O. Pollution and Meiofauna—Old Topics, New Hazards. In Perspectives in Meiobenthology; Springer Briefs in Biology; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Gigault, J.; ter Hall, A.; Baudrimont, M.; Pascal P-y Gauffre, F.; Phi, T.-L.; El Hadri, H.; Grassl, B.; Reynaud, S. Current Opinion: What Is a Nanoplastic? Environ. Pollut. 2018, 235, 1030–1034. [Google Scholar] [CrossRef] [PubMed]
- Piccardo, M.; Renzi, M.; Terlizzi, T. Nanoplastics in the oceans: Theory, experimental evidence and real world. Mar. Pollut. Bull. 2020, 157, 111317. [Google Scholar] [CrossRef] [PubMed]
- Imhof, H.K.; Schmid, J.; Niessner, R.; Ivleva, N.P.; Laforsch, C. A novel, highly efficient method for the separation and quantification of plastic particles in sediments of aquatic environments. Limnol. Oceanogr. Methods 2012, 10, 524–537. [Google Scholar] [CrossRef]
- Masura, J.; Baker, J.; Foster, G.; Curtney, A. Laboratory Methods for the Analysis of Microplastics in the Marine Environment: Recommendations for Quantifying Synthetic Particles in Waters and Sediments; National Oceanic and Atmospheric Administration: Kansas, MO, USA,, 2015.
- Barboza, L.G.A.; Vethaak, A.D.; Lavorante, B.R.B.O.; Lundebye, A.K.; Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Poll. Bull. 2018, 133, 336–348. [Google Scholar] [CrossRef] [PubMed]
- Gusmão, F.; Di Domenico, M.; Amaral, C.Z.; Martínez, A.; Gonzalez, B.C.; Worsaae, K.; Ivar do Sul, J.A.; da Cunha Lana, P. In situ ingestion of microfibers by meiofauna from sandy beaches. Environ. Pollut. 2015, 216, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Corinaldesi, C.; Canensi, S.; Carugati, L.; Lo Martire, M.; Marcellini, F.; Nepote, E.; Sabbatini, S.; Danovaro, R. Organic enrichment can increase the impact of microplastics on meiofaunal assemblages in tropical beach systems. Environ. Pollut. 2021, 292, 118415. [Google Scholar] [CrossRef]
- Lagos, A.M.; Leon, V.; Colorado, A.; Giraldo, D.; Fragozo, L.; Quiroga, S.Y.; Martínez, A. Effects of microplastics pollution on the abundance and composition of interstitial meiofauna. Rev. Biol. Trop. 2023, 71, e50031. [Google Scholar] [CrossRef]
- Füser, H.; Mueller, M.-T.; Traunspurger, W. Ingestion of microplastics by meiobenthic communities in small-scale microcosm experiments. Sci. Total Environ. 2020, 746, 141276. [Google Scholar] [CrossRef] [PubMed]
- Teawook, K.; Dongsung, K.; Je Hyeok, O. Ingestion of microplastics by free-living marine nematodes, especially Enoplolaimus spp., in Mallipo Beach, South Korea. Plankton Benthos Res. 2021, 16, 109–117. [Google Scholar] [CrossRef]
- Farady, S.E. Microplastics as a new, ubiquitous pollutant: Strategies to anticipate management and advise seafood consumers. Mar. Policy 2019, 104, 103–107. [Google Scholar] [CrossRef]
- Ranjani, M.; Veerasingam, S.; Venkatachalapathy, R.; Mugilarasan, M.; Bagaev, A.; Mukhanov, V.; Vethamony, P. Assessment of potential ecological risk of microplastics in the coastal sediments of India: A meta-analysis. Mar. Pollut. Bull. 2021, 163, 111969. [Google Scholar] [CrossRef] [PubMed]
- Lai, H.; Liu, X.; Qu, M. Nanoplastics and Human Health: Hazard Identification and Biointerface. Nanomaterials 2022, 12, 1298. [Google Scholar] [CrossRef] [PubMed]
- Todaro, M.A.; Faranapova, O.; Onorati, F.; Pellegrini, D.; Tongiorgi, P. Tigriopus fulvus (Copepoda, Harpacticoida) a possible test-species in harbour sediment toxicity bioassessment: Life cycle and preliminary bioassays. Biol. Mar. Medit. 2001, 8, 1–10. [Google Scholar]
- Furno, M.F.; Poli, A.; Ferrero, D.; Tardelli, F.; Manzini, C.; Oliva, M.; Pretti, C.; Campani, T.; Casini, S.; Fossi, M.C.; et al. The Culturable Mycobiota of Sediments and Associated Microplastics: From a Harbor to a Marine Protected Area, a Comparative Study. J. Fungi. 2022, 8, 927. [Google Scholar] [CrossRef]
- Renzi, M.; Grazioli, E.; Bertacchini, E.; Blaskovic, A. Microparticles in table salt: Levels and chemical composition of the smallest dimensional fraction. J. Mar. Sci. Eng. 2019, 7, 310. [Google Scholar] [CrossRef]
- Bertoli, M.; Renzi, M.; Pastorino, P.; Lesa, D.; Mele, A.; Anselmi, S.; Barcelò, D.; Prearo, M.; Pizzul, E. Microplastics and leaf litter decomposition dynamics: New insight from a lotic ecosystem (Northeastern Italy). Ecol. Indic. 2023, 147, 109995. [Google Scholar] [CrossRef]
- Hermsen, E.; Mintening, S.M.; Besseling, E.; Koelmans, A.A. Quality criteria for the analysis of microplastic in biota samples: A critical review. Environ. Sci. Technol. 2018, 52, 10230–10240. [Google Scholar] [CrossRef]
- Sullivan, D.S.; Bisalputra, T. The morphology of a harpacticoid copepod gut: A review and synthesis. J. Morphol. 1980, 164, 89–105. [Google Scholar] [CrossRef] [PubMed]
- Sangkham, S.; Faikhaw, O.; Munkong, N.; Sakunkoo, P.; Arunlertaree, C.; Chavali, M.; Mousazadeh, M.; Tiwari, A. A review on microplastics and nanoplastics in the environment: Their occurrence, exposure routes, toxic studies, and potential effects on human health. Mar. Poll. Bull. 2022, 181, 113832. [Google Scholar] [CrossRef] [PubMed]
- Autgoda, T.; Piyumali, H.; Wijesekara, H.; Sonne, C.; Lam, S.S.; Mahatantila, K.; Vithanage, M. Nanoplastic occurrence, transformation, and toxicity: A review. Environ. Chem. Lett. 2023, 21, 363–381. [Google Scholar] [CrossRef]
- Caldwell, J.; Taladriz-Blanco, P.; Lehner, R.; Lubskyy, A.; Ortuso, R.D.; Rothen-Rutishauser, B.; Petri- Fink, A. The micro-, submicron-, and nanoplastic hunt: A review of detection methods for plastic particles. Chemosphere 2022, 293, 133514. [Google Scholar] [CrossRef]
- GESAMP. Guidelines for the Monitoring and Assessment of Plastic Litter and Microplastics in the Ocean; Kershaw, P.J., Turra, A., Galgani, F., Eds.; GESAMP Reports and Studies, No. 99; GESAMP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection: London, UK, 2019; 130p. [Google Scholar]
- Waddel, E.N. Development and Use of a Tissue-Destruction Method to Extract Microplastics Inblue Crabs (Callinectes sapidus). Ph.D. Thesis, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA, 2018. [Google Scholar]
- Karami, A.; Golieskardi, A.; Choo, C.K.; Romano, N.; Ho, Y.B.; Salamatinia, B. A high-performance protocol for extraction of microplastics in fish. Sci. Total Environ. 2017, 578, 485–494. [Google Scholar] [CrossRef]
- Kühn, S.; van Werven, B.; van Oyen, A.; Meijboom, A.; Bravo Rebolledo, E.L.; van Franeker, J.A. The use of potassium hydroxide (KOH) solution as a suitable approach to isolate plastics ingested by marine organisms. Mar. Pollut. Bull. 2017, 115, 86–90. [Google Scholar] [CrossRef]
- Wagner, J.; Wang, Z.M.; Ghosal, S.; Rochman, C.; Gassel, M.; Wall, S. Novel method for the extraction and identification of microplastics in ocean trawl and fish gut matrices. Anal. Methods 2017, 9, 1479–1490. [Google Scholar] [CrossRef]
- Cole, M.; Webb, H.; Lindeque, P.K.; Fileman, E.S.; Halsband, C.; Galloway, T.S. Isolation of microplastics in biota-rich seawater samples and marine organisms. Sci. Rep. 2014, 4, 4528. [Google Scholar] [CrossRef]
- Vladár, A.E.; Hodoroaba, V.-D. Chapter 2.1.1—Characterization of nanoparticles by scanning electron microscopy. In Micro and Nano Technologies, Characterization of Nanoparticles; Hodoroaba, V.-D., Unger, W.E.S., Shard, A.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 7–27. [Google Scholar]
- Lee, K.W.; Shim, W.J.; Kwon, O.Y.; Kang, J.H. Size-Dependent Effects of Micro Polystyrene Particles in the Marine Copepod Tigriopus japonicus. Environ. Sci. Technol. 2013, 47, 11278–11283. [Google Scholar] [CrossRef]
- Huys, R.; Todaro, M.A. Meloriastacus ctenidis gen. et sp. nov.: A primitive interstitial copepod (Harpacticoida, Leptastacidae) from Tuscany. Ital. J. Zool. 1997, 64, 181–196. [Google Scholar] [CrossRef]
- Todaro, M.A. Meiofauna from the Meloria Shoals: Gastrotricha, biodiversity and seasonal dynamics. Biol. Mar. Medit. 1998, 5, 587–590. [Google Scholar]
- Marchant, D.J.; Martínez Rodríguez, A.; Francelle, P.; Jones, J.I.; Kratina, P. Contrasting the effects of microplastic types, concentrations and nutrient enrichment on freshwater communities and ecosystem functioning. Ecotoxicol. Environ. Saf. 2023, 255, 114834. [Google Scholar] [CrossRef] [PubMed]
Taxon | Particle Size (µm) | n. Particles × 106 |
---|---|---|
Chironomid larvae (n = 9) | 1 | 4.03 (±1.26) |
Tigripus fulvus (n = 20) | 3.70 (±1.19) | |
Chironomid larvae (n = 9) | 1–3 | 3.35 (±1.32) |
Tigriopus fulvus (n = 20) | 3.55 (±0.65) | |
Chironomid larvae (n = 9) | 3 | 2.73 (±1.04) |
Tigriopus fulvus (n = 20) | 3.39 (±0.46) |
Taxon | Site | n. Specimens | n. Items | Microplastics | Chemical Determination | Length (µm) |
---|---|---|---|---|---|---|
Copepoda | M | 50 | 3 | 1 | PP | 256.9 |
Copepoda | Y | 25 | 4 | 1 | PE | 492.6 |
Polychaeta | M | 50 | 1 | 0 | - | - |
Polychaeta | Y | 25 | 2 | 0 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todaro, M.A.; Anselmi, S.; Bentivoglio, T.; Pretti, C.; Cavallo, A.; Renzi, M. Looking for Nano- and Microplastics in Meiofauna Using Advanced Methodologies. Environments 2023, 10, 81. https://doi.org/10.3390/environments10050081
Todaro MA, Anselmi S, Bentivoglio T, Pretti C, Cavallo A, Renzi M. Looking for Nano- and Microplastics in Meiofauna Using Advanced Methodologies. Environments. 2023; 10(5):81. https://doi.org/10.3390/environments10050081
Chicago/Turabian StyleTodaro, M. Antonio, Serena Anselmi, Tecla Bentivoglio, Carlo Pretti, Andrea Cavallo, and Monia Renzi. 2023. "Looking for Nano- and Microplastics in Meiofauna Using Advanced Methodologies" Environments 10, no. 5: 81. https://doi.org/10.3390/environments10050081
APA StyleTodaro, M. A., Anselmi, S., Bentivoglio, T., Pretti, C., Cavallo, A., & Renzi, M. (2023). Looking for Nano- and Microplastics in Meiofauna Using Advanced Methodologies. Environments, 10(5), 81. https://doi.org/10.3390/environments10050081