Near-Term Effects of Perennial Grasses on Soil Carbon and Nitrogen in Eastern Nebraska
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. WSG Management
2.3. Corn Management
2.4. Soil Sampling and C and N Analysis
2.5. Statistical Analysis
3. Results
3.1. Historic Climate and Crop Productivity
3.2. Soil Organic Carbon and Total Nitrogen Stocks by Soil Layer and Cumulative Depth
4. Discussion
4.1. Warm-Season Grass Aboveground Biomass
4.2. Soil C Stocks under WSGs and Corn
4.3. Soil C and Total N Stocks under All Warm Season Grasses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gelfand, I.; Sahajpal, R.; Zhang, X.; Izaurralde, R.C.; Gross, K.L.; Robertson, G.P. Sustainable Bioenergy Production from Marginal Lands in the Us Midwest. Nature 2013, 493, 514–517. [Google Scholar] [CrossRef]
- Lark, T.J.; Salmon, J.M.; Gibbs, H.K. Cropland Expansion Outpaces Agricultural and Biofuel Policies in the United States. Environ. Res. Lett. 2015, 10, 044003. [Google Scholar] [CrossRef][Green Version]
- Spawn, S.A.; Lark, T.J.; Gibbs, H.K. Carbon Emissions from Cropland Expansion in the United States. Environ. Res. Lett. 2019, 14, 045009. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, C.; Tian, H.; Canadell, J.G. Largely Underestimated Carbon Emission from Land Use and Land Cover Change in the Conterminous United States. Glob. Chang. Biol. 2019, 25, 3741–3752. [Google Scholar] [CrossRef]
- Werling, B.P.; Dickson, T.L.; Isaacs, R.; Gaines, H.; Gratton, C.; Gross, K.L.; Liere, H.; Malmstrom, C.M.; Meehan, T.D.; Ruan, L.; et al. Perennial Grasslands Enhance Biodiversity and Multiple Ecosystem Services in Bioenergy Landscapes. Proc. Natl. Acad. Sci. USA 2014, 111, 1652–1657. [Google Scholar] [CrossRef][Green Version]
- Lark, T.J.; Seth, A.S.; Bougie, M.; Gibbs, H.K. Cropland Expansion in the United States Produces Marginal Yields at High Costs to Wildlife. Nat. Commun. 2020, 11, 4295. [Google Scholar] [CrossRef]
- Varvel, G.; Vogel, K.; Mitchell, R.; Follett, R.; Kimble, J. Comparison of Corn and Switchgrass on Marginal Soils for Bioenergy. Biomass Bioenergy 2008, 32, 18–21. [Google Scholar] [CrossRef][Green Version]
- Follett, R.F.; Vogel, K.P.; Varvel, G.E.; Mitchell, R.B.; Kimble, J. Soil Carbon Sequestration by Switchgrass and No-Till Maize Grown for Bioenergy. BioEnergy Res. 2012, 5, 866–875. [Google Scholar] [CrossRef][Green Version]
- Jin, V.L.; Schmer, M.R.; Stewart, C.E.; Mitchell, R.B.; Williams, C.O.; Wienhold, B.J.; Varvel, G.E.; Follett, R.F.; Kimble, J.; Vogel, K.P. Management Controls the Net Greenhouse Gas Outcomes of Growing Bioenergy Feedstocks on Marginally Productive Croplands. Sci. Adv. 2019, 5, eaav9318. [Google Scholar] [CrossRef][Green Version]
- Anderson-Teixeira, K.J.; Davis, S.C.; Masters, M.D.; Delucia, E.H. Changes in Soil Organic Carbon under Biofuel Crops. GCB Bioenergy 2009, 1, 75–96. [Google Scholar] [CrossRef]
- Bonifas, K.D.; Walters, D.T.; Cassman, K.G.; Lindquist, J.L. Nitrogen Supply Affects Root:Shoot Ratio in Corn and Velvetleaf (Abutilon Theophrasti). Weed Sci. 2005, 53, 670–675. [Google Scholar] [CrossRef][Green Version]
- Johnson, J.M.F.; Allmaras, R.R.; Reicosky, D.C. Estimating Source Carbon from Crop Residues, Roots and Rhizodeposits Using the National Grain-Yield Database. Agron. J. 2006, 98, 622–636. [Google Scholar] [CrossRef][Green Version]
- Ma, Z.; Wood, C.; Bransby, D. Impact of Row Spacing, Nitrogen Rate, and Time on Carbon Partitioning of Switchgrass. Biomass Bioenergy 2001, 20, 413–419. [Google Scholar] [CrossRef]
- Wilhelm, W.W.; Johnson, J.M.F.; Hatfield, J.L.; Voorhees, W.B.; Linden, D.R. Crop and Soil Productivity Response to Corn Residue Removal. Agron. J. 2004, 96, 1–17. [Google Scholar]
- Lemus, R.; Lal, R. Bioenergy Crops and Carbon Sequestration. Crit. Rev. Plant Sci. 2005, 24, 1–21. [Google Scholar] [CrossRef]
- de Kroon, H.; Hendriks, M.; van Ruijven, J.; Ravenek, J.; Padilla, F.M.; Jongejans, E.; Visser, E.J.W.; Mommer, L. Root Responses to Nutrients and Soil Biota: Drivers of Species Coexistence and Ecosystem Productivity. J. Ecol. 2012, 100, 6–15. [Google Scholar] [CrossRef]
- Mommer, L.; Van Ruijven, J.; De Caluwe, H.; Smit-Tiekstra, A.E.; Wagemaker, C.A.; Ouborg, N.J.; Bögemann, G.M.; Van Der Weerden, G.M.; Berendse, F.; De Kroon, H. Unveiling Below-Ground Species Abundance in a Biodiversity Experiment: A Test of Vertical Niche Differentiation among Grassland Species. J. Ecol. 2010, 98, 1117–1127. [Google Scholar] [CrossRef]
- Von Felten, S.; Schmid, B. Complementarity among Species in Horizontal Versus Vertical Rooting Space. J. Plant Ecol. 2008, 1, 33–41. [Google Scholar] [CrossRef]
- Basso, B.; Ritche, J.T. Simulating Crop Growth and Biogeochemical Fluxes in Response to Land Management Using the Salus Model. In The Ecology of Agricultural Landscapes: Long-Term Research on the Path to Sustainability; Hamilton, S.K., Doll, J.E., Robertson, G.P., Eds.; Oxford University Press: New York, NY, USA, 2015; pp. 252–274. [Google Scholar]
- Martinez-Feria, R.; Basso, B. Predicting Soil Carbon Changes in Switchgrass Grown on Marginal Lands under Climate Change and Adaptation Strategies. GCB Bioenergy 2020, 12, 742–755. [Google Scholar] [CrossRef]
- Liebig, M.A.; Schmer, M.R.; Vogel, K.P.; Mitchell, R.B. Soil Carbon Storage by Switchgrass Grown for Bioenergy. BioEnergy Res. 2008, 1, 215–222. [Google Scholar] [CrossRef][Green Version]
- Blanco-Canqui, H.; Mitchell, R.B.; Jin, V.L.; Schmer, M.R.; Eskridge, K.M. Perennial Warm-Season Grasses for Producing Biofuel and Enhancing Soil Properties: An Alternative to Corn Residue Removal. GCB Bioenergy 2017, 9, 1510–1521. [Google Scholar] [CrossRef]
- Sherrod, L.A.; Dunn, G.; Peterson, G.A.; Kolberg, R.L. Inorganic Carbon Analysis by Modified Pressure-Calcimeter Method. Soil Sci. Soc. Am. J. 2002, 66, 299–305. [Google Scholar] [CrossRef]
- Ellert, B.H.; Bettany, J.R. Calculation of Organic Matter and Nutrients Stored in Soils under Contrasting Management Regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef][Green Version]
- Lee, M.-S.; Mitchell, R.; Heaton, E.; Zumpf, C.; Lee, D.K. Warm-Season Grass Monocultures and Mixtures for Sustainable Bioenergy Feedstock Production in the Midwest, USA. BioEnergy Res. 2019, 12, 43–54. [Google Scholar] [CrossRef][Green Version]
- Wang, D.; Lebauer, D.S.; Dietze, M.C. A Quantitative Review Comparing the Yield of Switchgrass in Monocultures and Mixtures in Relation to Climate and Management Factors. GCB Bioenergy 2010, 2, 16–25. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Watson, K.B.; Koh, I.; Ellis, A.M.; Nicholson, C.C.; Posner, S.; Richardson, L.L.; Sonter, L.J. Disaggregating the Evidence Linking Biodiversity and Ecosystem Services. Nat. Commun. 2016, 7, 13106. [Google Scholar] [CrossRef][Green Version]
- Isbell, F.; Adler, P.R.; Eisenhauer, N.; Fornara, D.; Kimmel, K.; Kremen, C.; Letourneau, D.K.; Liebman, M.; Polley, H.W.; Quijas, S.; et al. Benefits of Increasing Plant Diversity in Sustainable Agroecosystems. J. Ecol. 2017, 105, 871–879. [Google Scholar] [CrossRef][Green Version]
- Bowles, T.M.; Mooshammer, M.; Socolar, Y.; Calderón, F.; Cavigelli, M.A.; Culman, S.W.; Deen, W.; Drury, C.F.; Garcia, A.G.Y.; Gaudin, A.C.M.; et al. Long-Term Evidence Shows That Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in North America. One Earth 2020, 2, 284–293. [Google Scholar] [CrossRef]
- Hong, C.O.; Owens, V.N.; Bransby, D.; Farris, R.; Fike, J.; Heaton, E.; Kim, S.; Mayton, H.; Mitchell, R.; Viands, D. Switchgrass Response to Nitrogen Fertilizer across Diverse Environments in the USA: A Regional Feedstock Partnership Report. BioEnergy Res. 2014, 7, 777–788. [Google Scholar] [CrossRef]
- Bonin, C.L.; Lal, R.; Tracy, B.F. Evaluation of Perennial Warm-Season Grass Mixtures Managed for Grazing or Biomass Production. Crop Sci. 2014, 54, 2373–2385. [Google Scholar] [CrossRef]
- Kibet, L.C.; Blanco-Canqui, H.; Mitchell, R.B.; Schacht, W.H. Root Biomass and Soil Carbon Response to Growing Perennial Grasses for Bioenergy. Energy Sustain. Soc. 2016, 6, 1. [Google Scholar] [CrossRef][Green Version]
- Stewart, C.E.; Follett, R.F.; Pruessner, E.G.; Varvel, G.E.; Vogel, K.P.; Mitchell, R.B. Nitrogen and Harvest Effects on Soil Properties under Rainfed Switchgrass and No-Till Corn over 9 years: Implications for Soil Quality. GCB Bioenergy 2015, 7, 288–301. [Google Scholar] [CrossRef]
- Bonin, C.L.; Lal, R. Aboveground Productivity and Soil Carbon Storage of Biofuel Crops in Ohio. GCB Bioenergy 2014, 6, 67–75. [Google Scholar] [CrossRef][Green Version]
- Agostini, F.; Gregory, A.S.; Richter, G.M. Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out? BioEnergy Res. 2015, 8, 1057–1080. [Google Scholar] [CrossRef][Green Version]
- Robertson, G.P.; Hamilton, S.K.; Del Grosso, S.J.; Parton, W.J. The Biogeochemistry of Bioenergy Landscapes: Carbon, Nitrogen, and Water Considerations. Ecol. Appl. 2011, 21, 1055–1067. [Google Scholar] [CrossRef]
- Robertson, G.P.; Hamilton, S.K.; Barham, B.L.; Dale, B.E.; Izaurralde, R.C.; Jackson, R.D.; Landis, D.A.; Swinton, S.M.; Thelen, K.D.; Tiedje, J.M. Cellulosic Biofuel Contributions to a Sustainable Energy Future: Choices and Outcomes. Science 2017, 356, eaal2324. [Google Scholar] [CrossRef][Green Version]
- Ruan, L.; Bhardwaj, A.K.; Hamilton, S.K.; Robertson, G.P. Nitrogen Fertilization Challenges the Climate Benefit of Cellulosic Biofuels. Environ. Res. Lett. 2016, 11, 064007. [Google Scholar] [CrossRef]
- Stewart, C.E.; Paustian, K.; Conant, R.; Plante, A.; Six, J. Soil Carbon Saturation: Concept, Evidence and Evaluation. Biogeochemistry 2007, 86, 19–31. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Emissions of N2o and No from Fertilized Fields: Summary of Available Measurement Data. Glob. Biogeochem. Cycles 2002, 16, 6-1–6-13. [Google Scholar] [CrossRef]
- Field, J.L.; Evans, S.G.; Marx, E.; Easter, M.; Adler, P.R.; Dinh, T.; Willson, B.; Paustian, K. High-Resolution Techno–Ecological Modelling of a Bioenergy Landscape to Identify Climate Mitigation Opportunities in Cellulosic Ethanol Production. Nat. Energy 2018, 3, 211–219. [Google Scholar] [CrossRef]
- Qin, Z.; Dunn, J.B.; Kwon, H.; Mueller, S.; Wander, M.M. Soil Carbon Sequestration and Land Use Change Associated with Biofuel Production: Empirical Evidence. GCB Bioenergy 2016, 8, 66–80. [Google Scholar] [CrossRef][Green Version]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil Carbon 4 Per Mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Slessarev, E.W.; Mayer, A.; Kelly, C.; Georgiou, K.; Pett-Ridge, J.; Nuccio, E.E. Initial Soil Organic Carbon Stocks Govern Changes in Soil Carbon: Reality or Artifact? Glob. Chang. Biol. 2023, 29, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Lessmann, M.; Ros, G.H.; Young, M.D.; de Vries, W. Global Variation in Soil Carbon Sequestration Potential through Improved Cropland Management. Glob. Chang. Biol. 2022, 28, 1162–1177. [Google Scholar] [CrossRef] [PubMed]
- Berhane, M.; Xu, M.; Liang, Z.; Shi, J.; Wei, G.; Tian, X. Effects of Long-Term Straw Return on Soil Organic Carbon Storage and Sequestration Rate in North China Upland Crops: A Meta-Analysis. Glob. Chang. Biol. 2020, 26, 2686–2701. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, G.-Y.; Tang, Z.-S.; Shangguan, Z.-P. Global Patterns of the Effects of Land-Use Changes on Soil Carbon Stocks. Glob. Ecol. Conserv. 2016, 5, 127–138. [Google Scholar] [CrossRef][Green Version]
- Jung, J.Y.; Lal, R.; Jastrow, J.D.; Tyler, D.D. Nitrogenous Fertilizer Effects on Soil Structural Properties under Switchgrass. Agric. Ecosyst. Environ. 2011, 141, 215–220. [Google Scholar] [CrossRef]
- Entz, M.H.; Baron, V.S.; Carr, P.M.; Meyer, D.W.; Smith, S.R., Jr.; McCaughey, W.P. Potential of Forages to Diversify Cropping Systems in the Northern Great Plains. Agron. J. 2002, 94, 240–250. [Google Scholar] [CrossRef]
- Frank, A.B.; Berdahl, J.D.; Hanson, J.D.; Liebig, M.A.; Johnson, H.A. Biomass and Carbon Partitioning in Switchgrass. Crop Sci. 2004, 44, 1391–1396. [Google Scholar] [CrossRef][Green Version]
- Liebig, M.; Johnson, H.; Hanson, J.; Frank, A. Soil Carbon under Switchgrass Stands and Cultivated Cropland. Biomass Bioenergy 2005, 28, 347–354. [Google Scholar] [CrossRef]
- Lee, D.K.; Owens, V.N.; Doolittle, J.J. Switchgrass and Soil Carbon Sequestration Response to Ammonium Nitrate, Manure, and Harvest Frequency on Conservation Reserve Program Land. Agron. J. 2007, 99, 462–468. [Google Scholar] [CrossRef][Green Version]
- Knops, J.M.H.; Bradley, K.L. Soil Carbon and Nitrogen Accumulation and Vertical Distribution across a 74-Year Chronosequence. Soil Sci. Soc. Am. J. 2009, 73, 2096–2104. [Google Scholar] [CrossRef][Green Version]
- Garten, C.T.; Brice, D.J.; Castro, H.F.; Graham, R.L.; Mayes, M.A.; Phillips, J.R.; Post, W.M.; Schadt, C.W.; Wullschleger, S.D.; Tyler, D.D.; et al. Response of Alamo Switchgrass Tissue Chemistry and Biomass to Nitrogen Fertilization in West Tennessee, USA. Agric. Ecosyst. Environ. 2011, 140, 289–297. [Google Scholar] [CrossRef]
- Heggenstaller, A.H.; Moore, K.J.; Liebman, M.; Anex, R.P. Nitrogen Influences Biomass and Nutrient Partitioning by Perennial, Warm-Season Grasses. Agron. J. 2009, 101, 1363–1371. [Google Scholar] [CrossRef]
- Bai, Y.; Cotrufo, M.F. Grassland Soil Carbon Sequestration: Current Understanding, Challenges, and Solutions. Science 2022, 377, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Prommer, J.; Walker, T.W.N.; Wanek, W.; Braun, J.; Zezula, D.; Hu, Y.; Hofhansl, F.; Richter, A. Increased Microbial Growth, Biomass, and Turnover Drive Soil Organic Carbon Accumulation at Higher Plant Diversity. Glob. Chang. Biol. 2020, 26, 669–681. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The Importance of Anabolism in Microbial Control over Soil Carbon Storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef]
May | June | July | August | September | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T-Max | T-Min | T-Max | T-Min | T-Max | T-Min | T-Max | T-Min | T-Max | T-Min | |
Temperature (°C) | ||||||||||
2012 | 26.3 | 11.6 | 29.5 | 15.5 | 35.3 | 19.3 | 31.5 | 14.3 | 27.7 | 8.19 |
2013 | 21.5 | 8.9 | 27.0 | 15.0 | 29.9 | 16.4 | 30.1 | 17.0 | 28.1 | 13.4 |
2014 | 23.3 | 9.3 | 27.9 | 15.4 | 28.7 | 14.4 | 28.4 | 17.2 | 24.3 | 10.6 |
2015 | 21.0 | 9.5 | 27.4 | 15.6 | 29.3 | 17.1 | 27.6 | 15.1 | 27.5 | 14.4 |
2016 | 22.0 | 8.9 | 31.2 | 17.1 | 29.5 | 17.9 | 28.5 | 16.6 | 26.6 | 13.2 |
6-year avg | 22.8 | 9.6 | 28.6 | 15.7 | 30.5 | 17.0 | 29.2 | 16.0 | 26.8 | 12.0 |
30-year avg | 22.8 | 9.8 | 28.4 | 15.5 | 30.4 | 17.6 | 29.4 | 16.3 | 25.8 | 10.9 |
Precipitation (cm) | ||||||||||
2012 | 9.7 | 10.8 | 0.7 | 2.3 | 3.0 | |||||
2013 | 16.3 | 11.9 | 1.6 | 4.6 | 9.6 | |||||
2014 | 16.5 | 21.2 | 1.4 | 17.7 | 7.9 | |||||
2015 | 19.8 | 15.1 | 9.0 | 19.5 | 10.2 | |||||
2016 | 18.7 | 10.3 | 9.5 | 14.3 | 7.5 | |||||
6-year avg | 16.2 | 13.9 | 4.4 | 11.7 | 7.7 | |||||
30-year avg | 11.4 | 12.0 | 8.5 | 7.2 | 4.8 |
Soil Depth | 0–5 cm | 5–15 cm | 15–30 cm | 30–60 cm | 60–90 cm | |
---|---|---|---|---|---|---|
Mg C ha−1 | ||||||
Year | 2012 | 13.3 | 21.9 | 29.9 | 41.1 | 25.1 |
2017 | 13.9 | 21.4 | 29.4 | 41.4 | 24.1 | |
Crop | Switchgrass | 13.1 | 20.9 AB | 30.3 AB | 40.9 AB | 22.5 AB |
Big Bluestem | 13.3 | 20.3 B | 25.0 B | 34.0 B | 17.4 B | |
Low Diversity Mix | 14.3 | 22.1 A | 31.4 A | 46.9 A | 27.0 A | |
No-Till Corn | 13.7 | 22.2 | 30.1 | 41.9 | 26.9 | |
Source of Variation | DF | Pr > F | ||||
Expt | 1 | NS | NS | NS | NS | NS |
Block | 2 | NS | NS | NS | NS | NS |
WSGs | 2 | NS | 0.0878 | 0.0162 | 0.0359 | 0.0209 |
Year | 1 | NS | NS | NS | NS | NS |
Expt×Year | 1 | NS | NS | NS | NS | NS |
WSG×Year | 2 | NS | NS | NS | NS | NS |
Soil Depth | 0–5 cm | 5–15 cm | 15–30 cm | 30–60 cm | 60–90 cm | |
---|---|---|---|---|---|---|
Mg C ha−1 | ||||||
Year | 2012 | 1.19 | 1.96 | 2.65 | 3.96 | 2.65 |
2017 | 1.19 | 1.91 | 2.63 | 3.91 | 2.59 | |
Crop | Switchgrass | 1.15 | 1.90 AB | 2.69 AB | 3.88 AB | 2.41 AB |
Big Bluestem | 1.14 | 1.85 B | 2.39 B | 3.31 B | 2.02B | |
Low Diversity Mix | 1.24 | 2.02 A | 2.79 A | 4.44 A | 2.81 A | |
No-Till Corn | 1.20 | 1.96 | 2.65 | 3.99 | 2.83 | |
Source of Variation | DF | Pr > F | ||||
Expt | 1 | NS | NS | NS | NS | NS |
Block | 2 | NS | NS | NS | NS | NS |
WSGs | 2 | NS | 0.0874 | 0.0144 | 0.0190 | 0.0135 |
Year | 1 | NS | 0.0913 | NS | NS | NS |
Expt×Year | 1 | NS | NS | NS | NS | NS |
WSG×Year | 2 | NS | NS | NS | NS | NS |
Soil Depth | 0–15 cm | 0–30 cm | 0–60 cm | 0–90 cm | 0–15 cm | 0–30 cm | 0–60 cm | 0–90 cm | |
---|---|---|---|---|---|---|---|---|---|
Soil Organic Carbon, Mg C ha−1 | Total Nitrogen, Mg N ha−1 | ||||||||
Year | 2012 | 35.2 | 65.1 | 106 | 131 | 3.149 | 5.80 | 9.76 | 12.4 |
2017 | 35.3 | 64.8 | 106 | 130 | 3.106 | 5.73 | 9.64 | 12.2 | |
Crop | Switchgrass | 34.0 | 64.3 AB | 105 AB | 128 AB | 3.05 | 5.74 AB | 9.61 AB | 12.0 AB |
Big Bluestem | 33.6 | 59.6 B | 93.6 B | 111 B | 2.98 | 5.37 B | 8.68 B | 10.7 B | |
Low Diversity Mix | 36.4 | 67.8 A | 115 A | 142 A | 3.25 | 6.04 A | 10.5 A | 13.3 A | |
No-Till Corn | 35.8 | 65.9 | 108 | 135 | 3.16 | 5.82 | 9.81 | 12.6 | |
Source of Variation | DF | Pr > F | Pr > F | ||||||
Expt | 1 | NS | NS | NS | NS | NS | NS | NS | NS |
Block | 2 | NS | NS | NS | NS | NS | NS | NS | NS |
WSGs | 2 | 0.0989 | 0.0364 | 0.0183 | 0.0150 | 0.0991 | 0.0332 | 0.0078 | 0.0063 |
Year | 1 | NS | NS | NS | NS | NS | NS | NS | NS |
Expt×Year | 1 | NS | NS | NS | NS | NS | NS | NS | NS |
WSG×Year | 2 | NS | NS | NS | NS | NS | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez, S., II; Schmer, M.R.; Jin, V.L.; Mitchell, R.B.; Eskridge, K.M. Near-Term Effects of Perennial Grasses on Soil Carbon and Nitrogen in Eastern Nebraska. Environments 2023, 10, 80. https://doi.org/10.3390/environments10050080
Ramirez S II, Schmer MR, Jin VL, Mitchell RB, Eskridge KM. Near-Term Effects of Perennial Grasses on Soil Carbon and Nitrogen in Eastern Nebraska. Environments. 2023; 10(5):80. https://doi.org/10.3390/environments10050080
Chicago/Turabian StyleRamirez, Salvador, II, Marty R. Schmer, Virginia L. Jin, Robert B. Mitchell, and Kent M. Eskridge. 2023. "Near-Term Effects of Perennial Grasses on Soil Carbon and Nitrogen in Eastern Nebraska" Environments 10, no. 5: 80. https://doi.org/10.3390/environments10050080
APA StyleRamirez, S., II, Schmer, M. R., Jin, V. L., Mitchell, R. B., & Eskridge, K. M. (2023). Near-Term Effects of Perennial Grasses on Soil Carbon and Nitrogen in Eastern Nebraska. Environments, 10(5), 80. https://doi.org/10.3390/environments10050080