Near-Term Effects of Perennial Grasses on Soil Carbon and Nitrogen in Eastern Nebraska
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. WSG Management
2.3. Corn Management
2.4. Soil Sampling and C and N Analysis
2.5. Statistical Analysis
3. Results
3.1. Historic Climate and Crop Productivity
3.2. Soil Organic Carbon and Total Nitrogen Stocks by Soil Layer and Cumulative Depth
4. Discussion
4.1. Warm-Season Grass Aboveground Biomass
4.2. Soil C Stocks under WSGs and Corn
4.3. Soil C and Total N Stocks under All Warm Season Grasses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gelfand, I.; Sahajpal, R.; Zhang, X.; Izaurralde, R.C.; Gross, K.L.; Robertson, G.P. Sustainable Bioenergy Production from Marginal Lands in the Us Midwest. Nature 2013, 493, 514–517. [Google Scholar] [CrossRef]
- Lark, T.J.; Salmon, J.M.; Gibbs, H.K. Cropland Expansion Outpaces Agricultural and Biofuel Policies in the United States. Environ. Res. Lett. 2015, 10, 044003. [Google Scholar] [CrossRef]
- Spawn, S.A.; Lark, T.J.; Gibbs, H.K. Carbon Emissions from Cropland Expansion in the United States. Environ. Res. Lett. 2019, 14, 045009. [Google Scholar] [CrossRef]
- Yu, Z.; Lu, C.; Tian, H.; Canadell, J.G. Largely Underestimated Carbon Emission from Land Use and Land Cover Change in the Conterminous United States. Glob. Chang. Biol. 2019, 25, 3741–3752. [Google Scholar] [CrossRef]
- Werling, B.P.; Dickson, T.L.; Isaacs, R.; Gaines, H.; Gratton, C.; Gross, K.L.; Liere, H.; Malmstrom, C.M.; Meehan, T.D.; Ruan, L.; et al. Perennial Grasslands Enhance Biodiversity and Multiple Ecosystem Services in Bioenergy Landscapes. Proc. Natl. Acad. Sci. USA 2014, 111, 1652–1657. [Google Scholar] [CrossRef]
- Lark, T.J.; Seth, A.S.; Bougie, M.; Gibbs, H.K. Cropland Expansion in the United States Produces Marginal Yields at High Costs to Wildlife. Nat. Commun. 2020, 11, 4295. [Google Scholar] [CrossRef]
- Varvel, G.; Vogel, K.; Mitchell, R.; Follett, R.; Kimble, J. Comparison of Corn and Switchgrass on Marginal Soils for Bioenergy. Biomass Bioenergy 2008, 32, 18–21. [Google Scholar] [CrossRef]
- Follett, R.F.; Vogel, K.P.; Varvel, G.E.; Mitchell, R.B.; Kimble, J. Soil Carbon Sequestration by Switchgrass and No-Till Maize Grown for Bioenergy. BioEnergy Res. 2012, 5, 866–875. [Google Scholar] [CrossRef]
- Jin, V.L.; Schmer, M.R.; Stewart, C.E.; Mitchell, R.B.; Williams, C.O.; Wienhold, B.J.; Varvel, G.E.; Follett, R.F.; Kimble, J.; Vogel, K.P. Management Controls the Net Greenhouse Gas Outcomes of Growing Bioenergy Feedstocks on Marginally Productive Croplands. Sci. Adv. 2019, 5, eaav9318. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Davis, S.C.; Masters, M.D.; Delucia, E.H. Changes in Soil Organic Carbon under Biofuel Crops. GCB Bioenergy 2009, 1, 75–96. [Google Scholar] [CrossRef]
- Bonifas, K.D.; Walters, D.T.; Cassman, K.G.; Lindquist, J.L. Nitrogen Supply Affects Root:Shoot Ratio in Corn and Velvetleaf (Abutilon Theophrasti). Weed Sci. 2005, 53, 670–675. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Allmaras, R.R.; Reicosky, D.C. Estimating Source Carbon from Crop Residues, Roots and Rhizodeposits Using the National Grain-Yield Database. Agron. J. 2006, 98, 622–636. [Google Scholar] [CrossRef]
- Ma, Z.; Wood, C.; Bransby, D. Impact of Row Spacing, Nitrogen Rate, and Time on Carbon Partitioning of Switchgrass. Biomass Bioenergy 2001, 20, 413–419. [Google Scholar] [CrossRef]
- Wilhelm, W.W.; Johnson, J.M.F.; Hatfield, J.L.; Voorhees, W.B.; Linden, D.R. Crop and Soil Productivity Response to Corn Residue Removal. Agron. J. 2004, 96, 1–17. [Google Scholar]
- Lemus, R.; Lal, R. Bioenergy Crops and Carbon Sequestration. Crit. Rev. Plant Sci. 2005, 24, 1–21. [Google Scholar] [CrossRef]
- de Kroon, H.; Hendriks, M.; van Ruijven, J.; Ravenek, J.; Padilla, F.M.; Jongejans, E.; Visser, E.J.W.; Mommer, L. Root Responses to Nutrients and Soil Biota: Drivers of Species Coexistence and Ecosystem Productivity. J. Ecol. 2012, 100, 6–15. [Google Scholar] [CrossRef]
- Mommer, L.; Van Ruijven, J.; De Caluwe, H.; Smit-Tiekstra, A.E.; Wagemaker, C.A.; Ouborg, N.J.; Bögemann, G.M.; Van Der Weerden, G.M.; Berendse, F.; De Kroon, H. Unveiling Below-Ground Species Abundance in a Biodiversity Experiment: A Test of Vertical Niche Differentiation among Grassland Species. J. Ecol. 2010, 98, 1117–1127. [Google Scholar] [CrossRef]
- Von Felten, S.; Schmid, B. Complementarity among Species in Horizontal Versus Vertical Rooting Space. J. Plant Ecol. 2008, 1, 33–41. [Google Scholar] [CrossRef]
- Basso, B.; Ritche, J.T. Simulating Crop Growth and Biogeochemical Fluxes in Response to Land Management Using the Salus Model. In The Ecology of Agricultural Landscapes: Long-Term Research on the Path to Sustainability; Hamilton, S.K., Doll, J.E., Robertson, G.P., Eds.; Oxford University Press: New York, NY, USA, 2015; pp. 252–274. [Google Scholar]
- Martinez-Feria, R.; Basso, B. Predicting Soil Carbon Changes in Switchgrass Grown on Marginal Lands under Climate Change and Adaptation Strategies. GCB Bioenergy 2020, 12, 742–755. [Google Scholar] [CrossRef]
- Liebig, M.A.; Schmer, M.R.; Vogel, K.P.; Mitchell, R.B. Soil Carbon Storage by Switchgrass Grown for Bioenergy. BioEnergy Res. 2008, 1, 215–222. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Mitchell, R.B.; Jin, V.L.; Schmer, M.R.; Eskridge, K.M. Perennial Warm-Season Grasses for Producing Biofuel and Enhancing Soil Properties: An Alternative to Corn Residue Removal. GCB Bioenergy 2017, 9, 1510–1521. [Google Scholar] [CrossRef]
- Sherrod, L.A.; Dunn, G.; Peterson, G.A.; Kolberg, R.L. Inorganic Carbon Analysis by Modified Pressure-Calcimeter Method. Soil Sci. Soc. Am. J. 2002, 66, 299–305. [Google Scholar] [CrossRef]
- Ellert, B.H.; Bettany, J.R. Calculation of Organic Matter and Nutrients Stored in Soils under Contrasting Management Regimes. Can. J. Soil Sci. 1995, 75, 529–538. [Google Scholar] [CrossRef]
- Lee, M.-S.; Mitchell, R.; Heaton, E.; Zumpf, C.; Lee, D.K. Warm-Season Grass Monocultures and Mixtures for Sustainable Bioenergy Feedstock Production in the Midwest, USA. BioEnergy Res. 2019, 12, 43–54. [Google Scholar] [CrossRef]
- Wang, D.; Lebauer, D.S.; Dietze, M.C. A Quantitative Review Comparing the Yield of Switchgrass in Monocultures and Mixtures in Relation to Climate and Management Factors. GCB Bioenergy 2010, 2, 16–25. [Google Scholar] [CrossRef]
- Ricketts, T.H.; Watson, K.B.; Koh, I.; Ellis, A.M.; Nicholson, C.C.; Posner, S.; Richardson, L.L.; Sonter, L.J. Disaggregating the Evidence Linking Biodiversity and Ecosystem Services. Nat. Commun. 2016, 7, 13106. [Google Scholar] [CrossRef]
- Isbell, F.; Adler, P.R.; Eisenhauer, N.; Fornara, D.; Kimmel, K.; Kremen, C.; Letourneau, D.K.; Liebman, M.; Polley, H.W.; Quijas, S.; et al. Benefits of Increasing Plant Diversity in Sustainable Agroecosystems. J. Ecol. 2017, 105, 871–879. [Google Scholar] [CrossRef]
- Bowles, T.M.; Mooshammer, M.; Socolar, Y.; Calderón, F.; Cavigelli, M.A.; Culman, S.W.; Deen, W.; Drury, C.F.; Garcia, A.G.Y.; Gaudin, A.C.M.; et al. Long-Term Evidence Shows That Crop-Rotation Diversification Increases Agricultural Resilience to Adverse Growing Conditions in North America. One Earth 2020, 2, 284–293. [Google Scholar] [CrossRef]
- Hong, C.O.; Owens, V.N.; Bransby, D.; Farris, R.; Fike, J.; Heaton, E.; Kim, S.; Mayton, H.; Mitchell, R.; Viands, D. Switchgrass Response to Nitrogen Fertilizer across Diverse Environments in the USA: A Regional Feedstock Partnership Report. BioEnergy Res. 2014, 7, 777–788. [Google Scholar] [CrossRef]
- Bonin, C.L.; Lal, R.; Tracy, B.F. Evaluation of Perennial Warm-Season Grass Mixtures Managed for Grazing or Biomass Production. Crop Sci. 2014, 54, 2373–2385. [Google Scholar] [CrossRef]
- Kibet, L.C.; Blanco-Canqui, H.; Mitchell, R.B.; Schacht, W.H. Root Biomass and Soil Carbon Response to Growing Perennial Grasses for Bioenergy. Energy Sustain. Soc. 2016, 6, 1. [Google Scholar] [CrossRef]
- Stewart, C.E.; Follett, R.F.; Pruessner, E.G.; Varvel, G.E.; Vogel, K.P.; Mitchell, R.B. Nitrogen and Harvest Effects on Soil Properties under Rainfed Switchgrass and No-Till Corn over 9 years: Implications for Soil Quality. GCB Bioenergy 2015, 7, 288–301. [Google Scholar] [CrossRef]
- Bonin, C.L.; Lal, R. Aboveground Productivity and Soil Carbon Storage of Biofuel Crops in Ohio. GCB Bioenergy 2014, 6, 67–75. [Google Scholar] [CrossRef]
- Agostini, F.; Gregory, A.S.; Richter, G.M. Carbon Sequestration by Perennial Energy Crops: Is the Jury Still Out? BioEnergy Res. 2015, 8, 1057–1080. [Google Scholar] [CrossRef]
- Robertson, G.P.; Hamilton, S.K.; Del Grosso, S.J.; Parton, W.J. The Biogeochemistry of Bioenergy Landscapes: Carbon, Nitrogen, and Water Considerations. Ecol. Appl. 2011, 21, 1055–1067. [Google Scholar] [CrossRef]
- Robertson, G.P.; Hamilton, S.K.; Barham, B.L.; Dale, B.E.; Izaurralde, R.C.; Jackson, R.D.; Landis, D.A.; Swinton, S.M.; Thelen, K.D.; Tiedje, J.M. Cellulosic Biofuel Contributions to a Sustainable Energy Future: Choices and Outcomes. Science 2017, 356, eaal2324. [Google Scholar] [CrossRef]
- Ruan, L.; Bhardwaj, A.K.; Hamilton, S.K.; Robertson, G.P. Nitrogen Fertilization Challenges the Climate Benefit of Cellulosic Biofuels. Environ. Res. Lett. 2016, 11, 064007. [Google Scholar] [CrossRef]
- Stewart, C.E.; Paustian, K.; Conant, R.; Plante, A.; Six, J. Soil Carbon Saturation: Concept, Evidence and Evaluation. Biogeochemistry 2007, 86, 19–31. [Google Scholar] [CrossRef]
- Bouwman, A.F.; Boumans, L.J.M.; Batjes, N.H. Emissions of N2o and No from Fertilized Fields: Summary of Available Measurement Data. Glob. Biogeochem. Cycles 2002, 16, 6-1–6-13. [Google Scholar] [CrossRef]
- Field, J.L.; Evans, S.G.; Marx, E.; Easter, M.; Adler, P.R.; Dinh, T.; Willson, B.; Paustian, K. High-Resolution Techno–Ecological Modelling of a Bioenergy Landscape to Identify Climate Mitigation Opportunities in Cellulosic Ethanol Production. Nat. Energy 2018, 3, 211–219. [Google Scholar] [CrossRef]
- Qin, Z.; Dunn, J.B.; Kwon, H.; Mueller, S.; Wander, M.M. Soil Carbon Sequestration and Land Use Change Associated with Biofuel Production: Empirical Evidence. GCB Bioenergy 2016, 8, 66–80. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.-S.; Cheng, K.; Das, B.S.; et al. Soil Carbon 4 Per Mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Slessarev, E.W.; Mayer, A.; Kelly, C.; Georgiou, K.; Pett-Ridge, J.; Nuccio, E.E. Initial Soil Organic Carbon Stocks Govern Changes in Soil Carbon: Reality or Artifact? Glob. Chang. Biol. 2023, 29, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Lessmann, M.; Ros, G.H.; Young, M.D.; de Vries, W. Global Variation in Soil Carbon Sequestration Potential through Improved Cropland Management. Glob. Chang. Biol. 2022, 28, 1162–1177. [Google Scholar] [CrossRef] [PubMed]
- Berhane, M.; Xu, M.; Liang, Z.; Shi, J.; Wei, G.; Tian, X. Effects of Long-Term Straw Return on Soil Organic Carbon Storage and Sequestration Rate in North China Upland Crops: A Meta-Analysis. Glob. Chang. Biol. 2020, 26, 2686–2701. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, G.-Y.; Tang, Z.-S.; Shangguan, Z.-P. Global Patterns of the Effects of Land-Use Changes on Soil Carbon Stocks. Glob. Ecol. Conserv. 2016, 5, 127–138. [Google Scholar] [CrossRef]
- Jung, J.Y.; Lal, R.; Jastrow, J.D.; Tyler, D.D. Nitrogenous Fertilizer Effects on Soil Structural Properties under Switchgrass. Agric. Ecosyst. Environ. 2011, 141, 215–220. [Google Scholar] [CrossRef]
- Entz, M.H.; Baron, V.S.; Carr, P.M.; Meyer, D.W.; Smith, S.R., Jr.; McCaughey, W.P. Potential of Forages to Diversify Cropping Systems in the Northern Great Plains. Agron. J. 2002, 94, 240–250. [Google Scholar] [CrossRef]
- Frank, A.B.; Berdahl, J.D.; Hanson, J.D.; Liebig, M.A.; Johnson, H.A. Biomass and Carbon Partitioning in Switchgrass. Crop Sci. 2004, 44, 1391–1396. [Google Scholar] [CrossRef]
- Liebig, M.; Johnson, H.; Hanson, J.; Frank, A. Soil Carbon under Switchgrass Stands and Cultivated Cropland. Biomass Bioenergy 2005, 28, 347–354. [Google Scholar] [CrossRef]
- Lee, D.K.; Owens, V.N.; Doolittle, J.J. Switchgrass and Soil Carbon Sequestration Response to Ammonium Nitrate, Manure, and Harvest Frequency on Conservation Reserve Program Land. Agron. J. 2007, 99, 462–468. [Google Scholar] [CrossRef]
- Knops, J.M.H.; Bradley, K.L. Soil Carbon and Nitrogen Accumulation and Vertical Distribution across a 74-Year Chronosequence. Soil Sci. Soc. Am. J. 2009, 73, 2096–2104. [Google Scholar] [CrossRef]
- Garten, C.T.; Brice, D.J.; Castro, H.F.; Graham, R.L.; Mayes, M.A.; Phillips, J.R.; Post, W.M.; Schadt, C.W.; Wullschleger, S.D.; Tyler, D.D.; et al. Response of Alamo Switchgrass Tissue Chemistry and Biomass to Nitrogen Fertilization in West Tennessee, USA. Agric. Ecosyst. Environ. 2011, 140, 289–297. [Google Scholar] [CrossRef]
- Heggenstaller, A.H.; Moore, K.J.; Liebman, M.; Anex, R.P. Nitrogen Influences Biomass and Nutrient Partitioning by Perennial, Warm-Season Grasses. Agron. J. 2009, 101, 1363–1371. [Google Scholar] [CrossRef]
- Bai, Y.; Cotrufo, M.F. Grassland Soil Carbon Sequestration: Current Understanding, Challenges, and Solutions. Science 2022, 377, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Prommer, J.; Walker, T.W.N.; Wanek, W.; Braun, J.; Zezula, D.; Hu, Y.; Hofhansl, F.; Richter, A. Increased Microbial Growth, Biomass, and Turnover Drive Soil Organic Carbon Accumulation at Higher Plant Diversity. Glob. Chang. Biol. 2020, 26, 669–681. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Schimel, J.P.; Jastrow, J.D. The Importance of Anabolism in Microbial Control over Soil Carbon Storage. Nat. Microbiol. 2017, 2, 17105. [Google Scholar] [CrossRef]
May | June | July | August | September | ||||||
---|---|---|---|---|---|---|---|---|---|---|
T-Max | T-Min | T-Max | T-Min | T-Max | T-Min | T-Max | T-Min | T-Max | T-Min | |
Temperature (°C) | ||||||||||
2012 | 26.3 | 11.6 | 29.5 | 15.5 | 35.3 | 19.3 | 31.5 | 14.3 | 27.7 | 8.19 |
2013 | 21.5 | 8.9 | 27.0 | 15.0 | 29.9 | 16.4 | 30.1 | 17.0 | 28.1 | 13.4 |
2014 | 23.3 | 9.3 | 27.9 | 15.4 | 28.7 | 14.4 | 28.4 | 17.2 | 24.3 | 10.6 |
2015 | 21.0 | 9.5 | 27.4 | 15.6 | 29.3 | 17.1 | 27.6 | 15.1 | 27.5 | 14.4 |
2016 | 22.0 | 8.9 | 31.2 | 17.1 | 29.5 | 17.9 | 28.5 | 16.6 | 26.6 | 13.2 |
6-year avg | 22.8 | 9.6 | 28.6 | 15.7 | 30.5 | 17.0 | 29.2 | 16.0 | 26.8 | 12.0 |
30-year avg | 22.8 | 9.8 | 28.4 | 15.5 | 30.4 | 17.6 | 29.4 | 16.3 | 25.8 | 10.9 |
Precipitation (cm) | ||||||||||
2012 | 9.7 | 10.8 | 0.7 | 2.3 | 3.0 | |||||
2013 | 16.3 | 11.9 | 1.6 | 4.6 | 9.6 | |||||
2014 | 16.5 | 21.2 | 1.4 | 17.7 | 7.9 | |||||
2015 | 19.8 | 15.1 | 9.0 | 19.5 | 10.2 | |||||
2016 | 18.7 | 10.3 | 9.5 | 14.3 | 7.5 | |||||
6-year avg | 16.2 | 13.9 | 4.4 | 11.7 | 7.7 | |||||
30-year avg | 11.4 | 12.0 | 8.5 | 7.2 | 4.8 |
Soil Depth | 0–5 cm | 5–15 cm | 15–30 cm | 30–60 cm | 60–90 cm | |
---|---|---|---|---|---|---|
Mg C ha−1 | ||||||
Year | 2012 | 13.3 | 21.9 | 29.9 | 41.1 | 25.1 |
2017 | 13.9 | 21.4 | 29.4 | 41.4 | 24.1 | |
Crop | Switchgrass | 13.1 | 20.9 AB | 30.3 AB | 40.9 AB | 22.5 AB |
Big Bluestem | 13.3 | 20.3 B | 25.0 B | 34.0 B | 17.4 B | |
Low Diversity Mix | 14.3 | 22.1 A | 31.4 A | 46.9 A | 27.0 A | |
No-Till Corn | 13.7 | 22.2 | 30.1 | 41.9 | 26.9 | |
Source of Variation | DF | Pr > F | ||||
Expt | 1 | NS | NS | NS | NS | NS |
Block | 2 | NS | NS | NS | NS | NS |
WSGs | 2 | NS | 0.0878 | 0.0162 | 0.0359 | 0.0209 |
Year | 1 | NS | NS | NS | NS | NS |
Expt×Year | 1 | NS | NS | NS | NS | NS |
WSG×Year | 2 | NS | NS | NS | NS | NS |
Soil Depth | 0–5 cm | 5–15 cm | 15–30 cm | 30–60 cm | 60–90 cm | |
---|---|---|---|---|---|---|
Mg C ha−1 | ||||||
Year | 2012 | 1.19 | 1.96 | 2.65 | 3.96 | 2.65 |
2017 | 1.19 | 1.91 | 2.63 | 3.91 | 2.59 | |
Crop | Switchgrass | 1.15 | 1.90 AB | 2.69 AB | 3.88 AB | 2.41 AB |
Big Bluestem | 1.14 | 1.85 B | 2.39 B | 3.31 B | 2.02B | |
Low Diversity Mix | 1.24 | 2.02 A | 2.79 A | 4.44 A | 2.81 A | |
No-Till Corn | 1.20 | 1.96 | 2.65 | 3.99 | 2.83 | |
Source of Variation | DF | Pr > F | ||||
Expt | 1 | NS | NS | NS | NS | NS |
Block | 2 | NS | NS | NS | NS | NS |
WSGs | 2 | NS | 0.0874 | 0.0144 | 0.0190 | 0.0135 |
Year | 1 | NS | 0.0913 | NS | NS | NS |
Expt×Year | 1 | NS | NS | NS | NS | NS |
WSG×Year | 2 | NS | NS | NS | NS | NS |
Soil Depth | 0–15 cm | 0–30 cm | 0–60 cm | 0–90 cm | 0–15 cm | 0–30 cm | 0–60 cm | 0–90 cm | |
---|---|---|---|---|---|---|---|---|---|
Soil Organic Carbon, Mg C ha−1 | Total Nitrogen, Mg N ha−1 | ||||||||
Year | 2012 | 35.2 | 65.1 | 106 | 131 | 3.149 | 5.80 | 9.76 | 12.4 |
2017 | 35.3 | 64.8 | 106 | 130 | 3.106 | 5.73 | 9.64 | 12.2 | |
Crop | Switchgrass | 34.0 | 64.3 AB | 105 AB | 128 AB | 3.05 | 5.74 AB | 9.61 AB | 12.0 AB |
Big Bluestem | 33.6 | 59.6 B | 93.6 B | 111 B | 2.98 | 5.37 B | 8.68 B | 10.7 B | |
Low Diversity Mix | 36.4 | 67.8 A | 115 A | 142 A | 3.25 | 6.04 A | 10.5 A | 13.3 A | |
No-Till Corn | 35.8 | 65.9 | 108 | 135 | 3.16 | 5.82 | 9.81 | 12.6 | |
Source of Variation | DF | Pr > F | Pr > F | ||||||
Expt | 1 | NS | NS | NS | NS | NS | NS | NS | NS |
Block | 2 | NS | NS | NS | NS | NS | NS | NS | NS |
WSGs | 2 | 0.0989 | 0.0364 | 0.0183 | 0.0150 | 0.0991 | 0.0332 | 0.0078 | 0.0063 |
Year | 1 | NS | NS | NS | NS | NS | NS | NS | NS |
Expt×Year | 1 | NS | NS | NS | NS | NS | NS | NS | NS |
WSG×Year | 2 | NS | NS | NS | NS | NS | NS | NS | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramirez, S., II; Schmer, M.R.; Jin, V.L.; Mitchell, R.B.; Eskridge, K.M. Near-Term Effects of Perennial Grasses on Soil Carbon and Nitrogen in Eastern Nebraska. Environments 2023, 10, 80. https://doi.org/10.3390/environments10050080
Ramirez S II, Schmer MR, Jin VL, Mitchell RB, Eskridge KM. Near-Term Effects of Perennial Grasses on Soil Carbon and Nitrogen in Eastern Nebraska. Environments. 2023; 10(5):80. https://doi.org/10.3390/environments10050080
Chicago/Turabian StyleRamirez, Salvador, II, Marty R. Schmer, Virginia L. Jin, Robert B. Mitchell, and Kent M. Eskridge. 2023. "Near-Term Effects of Perennial Grasses on Soil Carbon and Nitrogen in Eastern Nebraska" Environments 10, no. 5: 80. https://doi.org/10.3390/environments10050080
APA StyleRamirez, S., II, Schmer, M. R., Jin, V. L., Mitchell, R. B., & Eskridge, K. M. (2023). Near-Term Effects of Perennial Grasses on Soil Carbon and Nitrogen in Eastern Nebraska. Environments, 10(5), 80. https://doi.org/10.3390/environments10050080