Model Application for Estimation of Agri-Environmental Indicators of Kiwi Production: A Case Study in Northern Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Irrigation Management
2.3. Nitrogen Fertilization Management
2.4. Field Measurements and Analysis
2.5. Model Description and Calibration
2.5.1. Model Description
2.5.2. CropSyst Calibration, Validation, and Evaluation
2.6. Environmental Performance Indicators
2.6.1. Nitrogen Budget Components (%TAN)
2.6.2. Residual Soil Nitrogen (kg N ha−1)
2.6.3. Nitrogen Productivity Factor (kg N Mg−1)
2.6.4. Irrigation Water Productivity (m3 Mg−1)
2.6.5. Estimation of Environmental Performance
3. Results and Discussion
3.1. Model Performance
3.2. Simulation of N Budget
3.2.1. Soil Inorganic N
3.2.2. N Leaching Losses
3.2.3. Atmospheric N Losses
3.2.4. Kiwi N Uptake
3.3. Environmental Performance: Agri-Environmental Indicators
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Irrigation Management Practices 2020 | Irrigation Management Practices 2021 | ||||||
---|---|---|---|---|---|---|---|
Plot A | Plot B | Plot A | Plot B | ||||
Date of Application | Irrigation (mm) | Date of Application | Irrigation (mm) | Date of Application | Irrigation (mm) | Date of Application | Irrigation (mm) |
1 May | 36 | 2 May | 36 | 11 April | 36 | 9 April | 25 |
8 May | 36 | 10 May | 48 | 4 May | 36 | 1 May | 12.5 |
14 May | 36 | 16 May | 36 | 8 May | 36 | 7 May | 12.5 |
18 May | 36 | 18 May | 24 | 13 May | 36 | 11 May | 25 |
30 May | 36 | 4 June | 36 | 18 May | 36 | 14 May | 12.5 |
4 June | 36 | 20 June | 12 | 22 May | 36 | 19 May | 18.75 |
14 June | 36 | 25 June | 24 | 27 May | 36 | 27 May | 31.2 |
21 June | 36 | 4 July | 36 | 11 June | 36 | 10 June | 18.75 |
29 June | 36 | 11 July | 36 | 15 June | 36 | 16 June | 25 |
3 July | 36 | 15 July | 36 | 20 June | 36 | 21 June | 25 |
8 July | 36 | 18 July | 25 | 24 June | 36 | 24 June | 25 |
13 July | 36 | 22 July | 25 | 29 June | 36 | 28 June | 25 |
18 July | 36 | 26 July | 25 | 3 July | 36 | 2 July | 25 |
21 July | 36 | 30 July | 25 | 7 July | 36 | 5 July | 36 |
25 July | 36 | 5 August | 25 | 11 July | 36 | 9 July | 31.2 |
29 July | 36 | 13 August | 25 | 14 July | 36 | 13 July | 31.2 |
2 August | 36 | 19 August | 25 | 18 July | 36 | 17 July | 25 |
4 August | 24 | 24 August | 25 | 22 July | 36 | 21 July | 25 |
12 August | 24 | 29 August | 25 | 26 July | 36 | 26July | 25 |
16 August | 24 | 1 September | 25 | 30 July | 36 | 30 July | 31.2 |
19-August | 24 | 8 September | 25 | 2 August | 36 | 2 August | 25 |
23 August | 24 | 6 August | 36 | 5 August | 25 | ||
28 August | 24 | 9 August | 36 | 10 August | 25 | ||
12 August | 36 | 13 August | 25 | ||||
16 August | 36 | 16 August | 87.5 | ||||
21 August | 36 | 26 August | 62 | ||||
25 August | 36 | 30 August | 31.2 | ||||
29 August | 36 | 2 September | 31.2 | ||||
2 September | 36 | 8 September | 31.2 | ||||
6 September | 36 | ||||||
10 September | 36 | ||||||
14 September | 36 | ||||||
18 September | 36 | ||||||
23 September | 36 | ||||||
27 September | 36 | ||||||
5 October | 36 | ||||||
19 October | 18 | ||||||
23 October | 18 | ||||||
28 October | 18 |
References
- Faostat. 2020. Available online: https://www.fao.org/faostat/en/#home (accessed on 15 July 2022).
- Hellenic Statistical Authority. 2019. Available online: https://www.statistics.gr/el/statistics/-/publication/SPG06/- (accessed on 20 August 2022).
- Sotiropoulos, T.; Koukourikou-Petridou, M.; Petridis, A.; Stylianidis, D.; Almaliotis, D.; Papadakis, I.; Therios, I.; Molassiotis, A. ‘Tsechelidis’ Kiwifruit. HortScience 2009, 44, 466–468. [Google Scholar] [CrossRef]
- Dichio, B.; Montanaro, G.; Sofo, A.; Xiloyannis, C. Stem and whole-plant hydraulics in olive (Olea europaea) and kiwifruit (Actinidia deliciosa). Trees 2013, 27, 183–191. [Google Scholar] [CrossRef]
- Holzapfel, E.A.; Merino, R.; Marino, M.A.; Matta, R. Water production functions in kiwi. Irrig. Sci. 2000, 19, 73–79. [Google Scholar] [CrossRef]
- Francia, M.; Giovanelli, J.; Golfarelli, M. Multi-sensor profiling for precision soil-moisture monitoring. Comput. Electron. Agric. 2022, 197, 106924. [Google Scholar] [CrossRef]
- Torres-Ruiz, J.M.; Perulli, G.D.; Manfrini, L.; Zibordi, M.; Lopéz Velasco, G.; Anconelli, S.; Pierpaoli, E.; Corelli-Grappadelli, L.; Morandi, B. Time of irrigation affects vine water relations and the daily patterns of leaf gas exchanges and vascular flows to kiwifruit (Actinidia deliciosa Chev.). Agric. Water Manag. 2016, 166, 101–110. [Google Scholar] [CrossRef]
- Santoni, F.; Barboni, T.; Paolini, J.; Costa, J. Influence of cultivating parameters on the composition of volatile compounds and physicochemical characteristics of kiwi fruit. J. Sci. Food Agric. 2013, 93, 604–610. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Lu, Y.; Kang, T.; Gao, J.; Chen, Z.; Zhou, J. Reducing nitrogen fertilization of intensive kiwifruit orchards decreases nitrate accumulation in soil without compromising crop production. J. Integr. Agric. 2018, 17, 1421–1431. [Google Scholar] [CrossRef]
- Lassaletta, L.; Billen, G.; Grizzetti, B.; Anglade, J.; Garnier, J. 50 years trends in nitrogen use efficiency of world cropping systems: The relationship between yield and nitrogen input to cropland. Environ. Res. Lett. 2014, 9, 105011. [Google Scholar] [CrossRef]
- Sutton, M.A.; Bleeker, A.; Howard, C.M.; Bekunda, M.; Grizzetti, B.; de Vries, W.; van Grinsven, H.J.M.; Abrol, Y.P.; Adhya, T.K.; Billen, G.; et al. Our Nutrient World: The challenge to produce more food and energy with less pollution. In On behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative; Centre for Ecology and Hydrology: Edinburgh, UK, 2013; pp. 1–114. [Google Scholar]
- Zhou, J.Y.; Gu, B.J.; Schlesinger, W.H.; Ju, X.T. Significant accumulation of nitrate in Chinese semi-humid croplands. Sci. Rep. 2016, 6, 25088. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.A.; Erisman, J.W.; Leip, A.; Van Grinsven, H.; Winiwarter, W. Too much of a good thing. Nature 2011, 472, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, G.; Maucieri, C.; Squartini, A.; Stevanato, P.; Tolomio, M.; Toffanin, A.; Borin, M. Soil indicators for comparing medium-term organic and conventional agricultural systems. Eur. J. Agron. 2023, 142, 126669. [Google Scholar] [CrossRef]
- de Olde, E.M.; Moller, H.; Marchand, F.; McDowell, R.W.; MacLeod, C.J.; Sautier, M.; Halloy, S.; Barber, A.; Benge, J.; Bockstaller, C.; et al. When experts disagree: The need to rethink indicator selection for assessing sustainability of agriculture. Environ. Dev. Sustain. 2017, 19, 1327–1342. [Google Scholar] [CrossRef]
- Westfall, D.G.; Havlin, J.L.; Hergert, G.W.; Raun, W.R. Nitrogen Management in Dryland Cropping Systems. J. Prod. Agric. 1996, 9, 192–199. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.; Daniel, T.; Walters, D.T. Agroecosystems, Nitrogen-use Efficiency, and Nitrogen Management. Ambio 2002, 31, 132–140. [Google Scholar] [CrossRef]
- Daly, A.B.; Jilling, A.; Bowles, T.M.; Buchkowski, R.W.; Frey, S.D.; Kallenbach, C.M.; Keiluweit, M.; Mooshammer, M.; Schimel, J.P.; Grandy, A.S. A holistic framework integrating plant-microbe-mineral regulation of soil bioavailable nitrogen. Biogeochemistry 2021, 154, 211–229. [Google Scholar] [CrossRef]
- Müller, K.; Holmes, A.; Deurer, M.; Clothier, B.E. Eco-efficiency as a sustainability measure for kiwifruit production in New Zealand. J. Clean. Prod. 2015, 106, 333–342. [Google Scholar] [CrossRef]
- Salo, T.J.; Palosuo, T.; Kersebaum, K.C.; Nendel, C.; Angulo, C.; Ewert, F.; Bindi, M.; Calanca, A.P.; Klein, T.; Moriondo, M.; et al. Comparing the performance of 11 crop simulation models in predicting yield response to nitrogen fertilization. J. Agric. Sci. 2016, 154, 1218–1240. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Martin, S.; Campbell, G.S. CropSyst, a cropping systems model: Water/nitrogen budgets and crop yield. Agric. Syst. 1994, 46, 335–359. [Google Scholar] [CrossRef]
- Leghari, S.J.; Hu, K.; Liang, H.; Wei, Y. Modeling water and nitrogen balance of different cropping systems in the North China Plain. Agronomy 2019, 9, 696. [Google Scholar] [CrossRef]
- Wajid, A.; Hussain, K.; Ilyas, A.; Habib-ur-Rahman, M.; Shakil, Q.; Hoogenboom, G. Crop models: Important tools in decision support system to manage wheat production under vulnerable environments. Agriculture 2021, 11, 1166. [Google Scholar] [CrossRef]
- Janssen, S.; van Ittersum, M.K. Assessing farm innovations and responses to policies: A review of bio-economic farm models. Agric. Syst. 2007, 94, 622–636. [Google Scholar] [CrossRef]
- Abi Saab, M.T.; Todorovic, M.; Albrizio, R. Comparing AquaCrop and CropSyst models in simulating barley growth and yield under different water and nitrogen regimes. Does calibration year influence the performance of crop growth models? Agric. Water Manag. 2015, 147, 21–33. [Google Scholar] [CrossRef]
- Hammer, G.L.; Kropff, M.J.; Sinclair, T.R.; Porter, J.R. Future contributions of crop modelling from heuristics and supporting decision making to understanding genetic regulation and aiding crop improvement. Eur. J. Agron. 2002, 18, 15–31. [Google Scholar] [CrossRef]
- Li, T.; Feng, Y.; Li, X. Predicting crop growth under different cropping and fertilizing management practices. Agric. For. Meteorol. 2009, 149, 985–998. [Google Scholar] [CrossRef]
- Todorovic, M.; Albrizio, R.; Zivotic, L.; Abi Saab, M.T.; Stöckle, C.; Steduto, P. Assessment of AquaCrop, CropSyst, and WOFOST models in the simulation of sunflower growth under different water regimes. Agron. J. 2009, 101, 509–521. [Google Scholar] [CrossRef]
- Confalonieri, R.; Gusberti, D.; Bocchi, S.; Acutis, M. The CropSyst model to simulate the N balance of rice for alternative management. Agron. Sustain. Dev. 2006, 26, 241–249. [Google Scholar] [CrossRef]
- Tahir, N.; Li1, J.; Ma, Y.; Ullah, A.; Zhu, P.; Peng, C.; Hussain, B.; Danish, S. 20 Years nitrogen dynamics study by using APSIM nitrogen model simulation for sustainable management in Jilin China. Sci. Rep. 2021, 11, 17505. [Google Scholar] [CrossRef]
- McCown, R.L.; Hammer, G.L.; Hargreaves, J.N.G.; Holzwoth, D.P.; Freebairrn, D.M. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst. 1996, 50, 255–271. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, Z.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef]
- Ebrayi, K.N.; Pathak, H.; Kalhra, N.; Bhatia, A.; Jain, N. Simulation of Nitrogen Dynamics in soil using Infocrop model. Environ. Monit. Assess. 2007, 131, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Stöckle, C.O.; Nelson, R.L. CropSyst user’s manual (version 3.0). In Biological Systems Engineering Dept; Washington State University: Pullman, WA, USA, 2000. [Google Scholar]
- Stöckle, C.O.; Donatelli, M.; Nelson, R.L. CropSyst: A cropping systems simulation model. Eur. J. Agron. 2003, 18, 289–307. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Williams, J.R. EPIC, Erosion, Productivity Impact Calculator: 1 Model Documentation. In U.S. Dept. of Agriculture Technical Bulletin; No. 1768; USA Government Printing Office: Washington, DC, USA, 1990; p. 235. [Google Scholar]
- Wagenet, R.J.; Hutson, J.L. LEACM: A Process-Based Model of Water and Solute Movements, Transformations, Plant Uptake and Chemical Reactions in the Unsaturated Zone (Version 2.0); Water Resources Institute, Cornell University: Ithaca, NY, USA, 1989; Volume 2. [Google Scholar]
- Fragkou, E.; Tsegas, G.; Karagounis, A.; Barbas, F.; Moussiopoulos, N. Quantifying the impact of a smart farming system application on local-scale air quality of smallhold farms in Greece. Air. Qual. Atmos. Hlth. 2022, 16, 1–14. [Google Scholar] [CrossRef]
- Tsanakas, K.; Karymbalis, E.; Gaki-Papanastassiou, K.; Maroukian, H. Geomorphology of the Pieria Mtns, Northern Greece. J. Maps 2019, 15, 499–508. [Google Scholar] [CrossRef]
- Aristotle University of Thessaloniki. 2015. Available online: https://iris.gov.gr/SoilServices/ (accessed on 7 April 2023).
- Norman, R.J.; Edberg, J.C.; Stucki, J.W. Determination of nitrate in soil extracts by dual-wavelength ultraviolet spectrophotometry. Soil Sci. Soc. Am. J. 1985, 49, 1182–1185. [Google Scholar] [CrossRef]
- Nelson, D.W. Determination of ammonium in KCl extracts of soils by the salicylate method. Commun. Soil Sci. Plant Anal. 1983, 14, 1051–1062. [Google Scholar] [CrossRef]
- Corwin, D.L.; Waggoner, B.L.; Rhoades, J.D. A functional model of solute transport that accounts for bypass. J. Environ. Qual. 1991, 20, 647–658. [Google Scholar] [CrossRef]
- Stöckle, C.O.; Campbell, G. Simulation of crop response to water and nitrogen: An example using spring wheat. Trans. ASAE 1989, 32, 66–74. [Google Scholar] [CrossRef]
- Godwin, D.C.; Jones, A.C. Nitrogen dynamics in soil-plant systems. In Modelling Plant and Soil Systems; Hanks, J., Ritchue, J.T., Eds.; American Society of Agronomy: Madison, WI, USA, 1991; Volume 31, pp. 287–321. [Google Scholar]
- Langeveld, J.W.A.; Verhagen, A.; Neeteson, J.J.; van Keulen, H.; Conijn, J.G.; Schils, R.L.M.; Oenema, J. Evaluating farm performance using agri-environmental indicators: Recent experiences for nitrogen management in The Netherlands. J. Environ. Manag. 2007, 82, 363–376. [Google Scholar] [CrossRef]
- Bockstaller, C.; Guichard, L.; Makowski, D.; Aveline, A.; Girardin, P.; Plantureux, S. Agri-environmental indicators to assess cropping and farming systems: A review. Agron. Sustain. Dev. 2008, 28, 139–149. [Google Scholar] [CrossRef]
- Villar-Mir, J.M.; Villar-Mir, P.; Stockle, C.O.; Ferrer, F.; Aran, M. On-farm monitoring of soil nitrate-nitrogen in irrigated cornfields in the Ebro Valley (northeast Spain). Agron. J. 2002, 94, 373–380. [Google Scholar] [CrossRef]
- Vázquez, N.; Pardo, A.; Suso, M.L.; Quemada, M. A methodology for measuring drainage and nitrate leaching in unevenly irrigated vegetable crops. Plant Soil 2005, 269, 297–308. [Google Scholar] [CrossRef]
- Vázquez, N.; Pardo, A.; Suso, M.L.; Quemada, M. Drainage and nitrate leaching under processing tomato growth with drip irrigation and plastic mulching. Agric. Ecosyst. Environ. 2006, 112, 313–323. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html (accessed on 3 August 2022).
- Lu, Y.; Zhou, J.; Sun, L.; Gao, J.; Raza, S. Long-term land-use change from cropland to kiwifruit orchard increases nitrogen load to the environment: A substance flow analysis. Agric. Ecosyst. Environ. 2022, 335, 108013. [Google Scholar] [CrossRef]
- Cameira, M.R.; Pereira, A.; Ahuja, L.; Ma, L. Sustainability and environmental assessment of fertigationin an intensive olive grove under Mediterranean conditions. Agric. Water Manag. 2014, 146, 346–360. [Google Scholar] [CrossRef]
- Chartzoulakis, K.; Michelakis, N.; Vougioukalou, E. Growth and production of kiwi under different irrigation systems. Fruits 1991, 46, 75–81. [Google Scholar]
- Gao, J.; Lu, Y.; Chen, Z.; Wang, L.; Zhou, J. Land-use change from cropland to orchard leads to high nitrate accumulation in the soils of a small catchment. Land Degrad. Dev. 2019, 30, 2150–2161. [Google Scholar] [CrossRef]
- Quemada, M.; Baranski, M.; Nobel-de Lange, M.N.J.; Vallejo, A.; Cooper, J.M. Meta-analysis of strategies to control nitrate leaching in irrigated agricultural systems and their effects on crop yield. Agric. Ecosyst. Environ. 2013, 174, 1–10. [Google Scholar] [CrossRef]
- Gheysari, M.; Mirlatify, S.M.; Homaee, M.; Asadi, M.E.; Hoogenboom, G. Nitrate leaching in a silage maize field under different irrigation and nitrogen fertilizer rates. Agric. Water Manag. 2009, 96, 946–954. [Google Scholar] [CrossRef]
- Koukoulakis, P.; Papadopoulos, A. Interpretation of Soil Analysis; Stamoulis Publications: Stamoulis, Greece, 2001; p. 372. (In Greek) [Google Scholar]
- Zhang, S.; Chen, S.; Hu, T.; Geng, C.; Liu, J. Optimization of irrigation and nitrogen levels for a trade-off: Yield, quality, water use efficiency and environment effect in a drip-fertigated apple orchard based on TOPSIS method. Sci. Hortic. 2023, 309, 111700. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. In FAO Irrigation and Drainage Paper; No. 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- USDA Soil Conservation Service. National Engineering Handbook, Section 4, Hydrology; USDA Soil Conservation Service: Washington, DC, USA, 1972.
- Phogat, V.; Skewes, M.A.; Cox, J.W.; Sanderson, G.; Alam, J.; Šimůnek, J. Seasonal simulation of water, salinity and nitrate dynamics under drip irrigated mandarin (Citrus reticulata) and assessing management options for drainage and nitrate leaching. J. Hydrol. 2014, 513, 504–516. [Google Scholar] [CrossRef]
Meteorological Data 2020 | Month | Year | |||||||||||
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | ||
Pr (mm) | 3.60 | 38.70 | 100.50 | 192.90 | 19.50 | 27.00 | 4.20 | 79.50 | 5.40 | 39.00 | 6.60 | 200.40 | 717.30 |
Tmean (°C) | 4.26 | 7.93 | 9.73 | 12.37 | 17.80 | 21.40 | 23.41 | 23.43 | 21.05 | 16.05 | 9.97 | 9.22 | 14.72 |
Tmax (°C) | 11.75 | 14.70 | 15.99 | 19.12 | 25.15 | 28.08 | 29.63 | 29.78 | 27.89 | 23.01 | 16.86 | 12.81 | 21.23 |
Tmin (°C) | −1.67 | 1.85 | 4.15 | 6.13 | 10.85 | 14.89 | 17.78 | 18.09 | 15.34 | 10.73 | 4.92 | 5.85 | 9.08 |
RHmean (%) | 75.29 | 74.49 | 82.25 | 78.33 | 75.35 | 77.68 | 80.02 | 82.80 | 79.02 | 82.84 | 86.27 | 91.25 | 80.47 |
RHmax (%) | 92.57 | 93.99 | 97.91 | 97.70 | 96.39 | 96.82 | 96.23 | 97.49 | 95.92 | 97.79 | 98.00 | 98.66 | 96.62 |
RHmin (%) | 48.40 | 49.93 | 58.03 | 51.85 | 48.94 | 53.42 | 58.52 | 60.56 | 55.21 | 58.66 | 62.77 | 76.84 | 56.93 |
Rs (MJ m−2 day−1) | 8.93 | 12.09 | 13.72 | 18.89 | 22.65 | 25.38 | 26.74 | 22.14 | 18.26 | 12.81 | 8.09 | 4.05 | 16.15 |
u2 (m s−1) | 0.29 | 0.65 | 0.30 | 0.35 | 0.07 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.14 |
Meteorological Data 2021 | Month | Year | |||||||||||
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | ||
Pr (mm) | 105.60 | 13.20 | 54.00 | 30.00 | 30.00 | 21.90 | 2.70 | 1.80 | 0.90 | 33.30 | 2.10 | 57.60 | 353.10 |
Tmean (°C) | 6.87 | 7.78 | 8.61 | 11.84 | 18.41 | 21.96 | 24.58 | 24.73 | 19.30 | 13.06 | 11.07 | 5.29 | 14.46 |
Tmax (°C) | 11.96 | 14.07 | 14.46 | 18.24 | 25.51 | 28.58 | 30.91 | 31.19 | 25.50 | 17.59 | 15.40 | 10.57 | 20.33 |
Tmin (°C) | 2.36 | 2.39 | 2.71 | 5.66 | 11.50 | 15.73 | 18.37 | 18.95 | 14.27 | 9.49 | 7.51 | 1.11 | 9.17 |
RHmean (%) | 80.63 | 78.67 | 73.51 | 79.23 | 76.83 | 80.28 | 76.72 | 79.10 | 83.50 | 92.88 | 94.43 | 85.48 | 81.77 |
RHmax (%) | 95.21 | 94.61 | 92.05 | 96.53 | 96.11 | 96.78 | 94.27 | 94.91 | 96.23 | 99.30 | 99.72 | 97.41 | 96.09 |
RHmin (%) | 59.98 | 57.05 | 50.89 | 55.51 | 53.15 | 58.13 | 53.56 | 57.62 | 61.54 | 78.68 | 82.79 | 63.49 | 61.03 |
Rs (MJ m−2 day−1) | 7.32 | 11.58 | 15.10 | 18.97 | 25.65 | 24.78 | 26.90 | 23.15 | 17.21 | 11.57 | 7.25 | - | 17.22 |
u2 (m s−1) | 0.44 | 0.40 | 2.83 | 0.34 | 0.03 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.03 | 0.01 | 0.34 |
Properties | Plot A | Plot B | ||||
---|---|---|---|---|---|---|
0–30 cm | 30–60 cm | 60–90 cm | 0–30 cm | 30–60 cm | 60–90 cm | |
S (%) | 45.1 | 60.1 | 77.5 | 43.5 | 55.8 | 57.8 |
Si (%) | 32.8 | 25.8 | 14.1 | 33.5 | 25.5 | 25.8 |
C (%) | 22.1 | 14.1 | 8.4 | 23.1 | 18.7 | 16.4 |
Soil texture (USDA) | Loam | Sandy loam | Sandy loam | Loam | Sandy loam | Sandy loam |
pH | 7.5 | 7.9 | 8.1 | 7.7 | 7.9 | 8.0 |
OM (%) | 1.4 | 0.5 | 0.3 | 1.2 | 0.5 | 0.3 |
CEC (cmolc kg−1) | 20.6 | 13.6 | 8.5 | 18.6 | 15.2 | 12.9 |
ECe (dS m−1) | 0.4 | 0.7 | 0.9 | 0.5 | 0.7 | 0.4 |
ESP | 0.9 | 1.3 | 1.4 | 1.0 | 1.1 | 1.3 |
CaCO3 (%) | 1.7 | 4.6 | 6.6 | 4.2 | 11.4 | 11.3 |
Olsen P (mg kg−1) | 24.1 | 7.5 | 6.5 | 23.2 | 5.7 | 4.1 |
Exchang. K (mg kg−1) | 304.5 | 98.1 | 72.3 | 546.3 | 206.0 | 103.0 |
Exchang. Na (mg kg−1) | 42.0 | 35.3 | 25.0 | 40.7 | 39.7 | 39.7 |
Exchang. Ca (mg kg−1) | 3996.4 | 2630.3 | 1897.7 | 2906.4 | 2836.2 | 2669.9 |
Exchang. Mg (mg kg−1) | 309.3 | 157.7 | 107.7 | 284.4 | 237.5 | 137.1 |
pH | EC25 °C (dS m−1) | SAR | NO3-N (mg L−1) | |
---|---|---|---|---|
2020 | 7.7 | 0.44 | 0.3 | 1.7 |
2021 | 7.8 | 0.50 | 0.3 | 2.2 |
Plot A | Plot B | ||||||
---|---|---|---|---|---|---|---|
Date of Application | DOY | N Fertilizer (kg ha−1) | Method of Application | Date of Application | DOY | N Fertilizer (kg ha−1) | Method of Application |
2020 | |||||||
8 March | 68 | 96 | Broadcasting | 10 March | 70 | 96 | Broadcasting |
17 April | 108 | 44 | Broadcasting | 15 April | 106 | 17.6 | Broadcasting |
26 April | 117 | 0.6 | Foliar application | 25 April | 116 | 0.6 | Foliar application |
30 May | 151 | 0.2 | Foliar application | 29 May | 150 | 0.2 | Foliar application |
10 June | 162 | 18 | Broadcasting | 6 June | 158 | 16.2 | Broadcasting |
21 June | 173 | 0.3 | Foliar application | 18 June | 170 | 0.3 | Foliar application |
29 June | 181 | 30 | Fertigation | 25 June | 177 | 8 | Fertigation |
8 July | 190 | 21 | Fertigation | 11 July | 193 | 6 | Fertigation |
21 July | 203 | 21 | Fertigation | 18 July | 200 | 6 | Fertigation |
2021 | |||||||
9 March | 68 | 33 | Broadcasting | 10 March | 69 | 38.5 | Broadcasting |
5 April | 95 | 0.3 | Foliar application | 3 April | 93 | 0.3 | Foliar application |
20 April | 110 | 56 | Broadcasting | 22 April | 112 | 53.2 | Broadcasting |
28 April | 118 | 0.3 | Foliar application | 29 April | 119 | 0.3 | Foliar application |
8 May | 128 | 0.2 | Foliar application | 11 May | 131 | 0.2 | Foliar application |
18 May | 138 | 0.3 | Foliar application | 23 May | 143 | 0.3 | Foliar application |
4 June | 155 | 56 | Broadcasting | 6 June | 157 | 49 | Broadcasting |
14 June | 165 | 0.2 | Foliar application | 16 June | 167 | 0.2 | Foliar application |
3 July | 184 | 30 | Fertigation | 28 June | 179 | 26 | Fertigation |
18 July | 199 | 21 | Fertigation | 5 July | 186 | 8 | Fertigation |
Evaluated Parameters | Statistical Criteria | ||||
---|---|---|---|---|---|
MAE 1 | MAPE 2 | PBIAS 2 | RMSE 1 | NRMSE | |
Yield | 108 | 2.50 | 0.41 | 1422.96 | 0.03 |
Soil inorganic N | 55.45 | 19.44 | −13 | 68.87 | 0.24 |
RSN (kg N ha−1) | NPF (kg N Mg−1) | IWP (kg m−3) | |
---|---|---|---|
Plot A | 220 | 4.8 | 4.6 |
Plot B | 181 | 3.7 | 6.4 |
Plot A | Plot B | |||||||
---|---|---|---|---|---|---|---|---|
ETc | Pe | IrN | Ir | ETc | Pe | IrN | Ir | |
2020 | ||||||||
March | 21 | 100 | −80 | 21 | 100 | −80 | ||
April | 37 | 122 | −85 | 46 | 122 | −76 | ||
May | 93 | 20 | 73 | 180 | 99 | 20 | 79 | 144 |
June | 138 | 27 | 111 | 144 | 138 | 27 | 111 | 72 |
July | 156 | 4 | 152 | 252 | 156 | 4 | 152 | 208 |
August | 127 | 77 | 50 | 180 | 127 | 77 | 50 | 125 |
September | 88 | 5 | 83 | 33 | 0 | 33 | 50 | |
October | 41 | 30 | 11 | |||||
Total | 481 | 756 | 426 | 599 | ||||
2021 | ||||||||
March | 29 | 54 | −25 | 29 | 54 | −25 | ||
April | 37 | 30 | 7 | 36 | 46 | 30 | 16 | 25 |
May | 94 | 30 | 64 | 216 | 100 | 30 | 70 | 112 |
June | 140 | 22 | 118 | 180 | 140 | 22 | 118 | 119 |
July | 159 | 3 | 156 | 288 | 159 | 3 | 156 | 230 |
August | 131 | 2 | 129 | 288 | 131 | 2 | 129 | 281 |
September | 83 | 1 | 82 | 252 | 49 | 1 | 48 | 62 |
October | 47 | 33 | 14 | 90 | ||||
Total | 571 | 1350 | 538 | 829 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kokkora, M.; Koukouli, P.; Karpouzos, D.; Georgiou, P. Model Application for Estimation of Agri-Environmental Indicators of Kiwi Production: A Case Study in Northern Greece. Environments 2023, 10, 69. https://doi.org/10.3390/environments10040069
Kokkora M, Koukouli P, Karpouzos D, Georgiou P. Model Application for Estimation of Agri-Environmental Indicators of Kiwi Production: A Case Study in Northern Greece. Environments. 2023; 10(4):69. https://doi.org/10.3390/environments10040069
Chicago/Turabian StyleKokkora, Maria, Panagiota Koukouli, Dimitrios Karpouzos, and Pantazis Georgiou. 2023. "Model Application for Estimation of Agri-Environmental Indicators of Kiwi Production: A Case Study in Northern Greece" Environments 10, no. 4: 69. https://doi.org/10.3390/environments10040069
APA StyleKokkora, M., Koukouli, P., Karpouzos, D., & Georgiou, P. (2023). Model Application for Estimation of Agri-Environmental Indicators of Kiwi Production: A Case Study in Northern Greece. Environments, 10(4), 69. https://doi.org/10.3390/environments10040069