Emission of Terpenoid Compounds from Rice Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flow-Through Chamber Experiment
2.1.1. Measurement Site and Plant Materials
2.1.2. Flow-Through Chamber
2.1.3. Gas Sampling
2.2. Tower Flux Measurement
2.2.1. Measurement Site and Plant Materials
2.2.2. Relaxed Eddy Accumulation Method
2.3. GC-MS Analysis
3. Results
3.1. Flow-Through Chamber Measurement in the Field
3.2. Flow-Through Chamber Measurement in the Laboratory
3.3. Additional Wind Velocity Experiment
3.4. Flux above the Rice Paddy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arneth, A.; Monson, R.K.; Schurgers, G.; Niinemets, U.; Palmer, P.I. Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? Atmos. Chem. Phys. 2008, 8, 4605–4620. [Google Scholar] [CrossRef] [Green Version]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Doschung, J., Eds.; IPCC: Geneva, Switzerland, 2013; pp. 571–657. [Google Scholar]
- Atkinson, R.; Arey, J. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: A review. Atmos. Environ. 2003, 37, S197–S219. [Google Scholar] [CrossRef]
- Tani, A.; Mochizuki, T. Review: Exchanges of volatile organic compounds between terrestrial ecosystems and the atmosphere. J. Agric. Meteorol. 2021, 77, 66–80. [Google Scholar] [CrossRef]
- Shrivastava, M.; Cappa, C.D.; Fan, J.; Goldstein, A.H.; Guenther, A.B.; Jimenez, J.L.; Kuang, C.; Laskin, A.; Martin, S.T.; Ng, N.L.; et al. Recent advances in understanding secondary organic aerosol: Implications for global climate forcing. Rev. Geophys. 2017, 55, 509–559. [Google Scholar] [CrossRef] [Green Version]
- Statistics Bureau of Japan 2021 Areas Cultivated Fields, The Portal Site of Official Statistics of Japan. Available online: http://www.maff.go.jp/j/tokei/kouhyou/sakumotu/index.html (accessed on 13 July 2022). (In Japanese).
- Food and Agriculture Organization. Rice Market Monitor; FAO: Rome, Italy, 2018; Volume XXI, pp. 1–36. [Google Scholar]
- Zhang, G.; Xiao, X.; Dong, J.; Xin, F.; Zhang, Y.; Qin, Y.; Doughty, R.B.; Moore, B. Fingerprint of rice paddies in spatial–temporal dynamics of atmospheric methane concentration in monsoon Asia. Nat. Commun. 2020, 11, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akiyama, H.; Yagi, K. Direct N2O emissions from rice paddy fields: Summary of available data. Glob. Biogeochem. Cycles 2005, 19, 1–10. [Google Scholar] [CrossRef]
- Winer, A.; Arey, J.; Atkinson, R.; Aschmann, S.; Long, W.; Morrison, C.; Olszyk, D. Emission rates of organics from vegetation in California’s central valley. Atmos. Environ. 1992, 26A, 2647–2659. [Google Scholar] [CrossRef]
- Redeker, K.R.; Meinardi, S.; Blake, D.; Sass, R. Gaseous emissions from flooded rice paddy agriculture. J. Geophys. Res. 2003, 108, 4386. [Google Scholar] [CrossRef] [Green Version]
- Tani, A.; Saito, T.; Hayashi, K.; Sato, H.; Arai, R.; Tako, Y.; Kiyota, M. Identification of volatile organic compounds emitted from and measurement of the rates of ethylene emission, photosynthesis and transpiration of dwarf rice species. CELSS J. 1999, 12, 15–20. [Google Scholar]
- Bao, H.; Kondo, A.; Kaga, A.; Tada, M.; Sakaguti, K.; Inoue, Y.; Shimoda, Y.; Narumi, D.; Machimura, T. Biogenic volatile organic compound emission potential of forests and paddy fields in the Kinki region of Japan. Environ. Res. 2008, 106, 156–169. [Google Scholar] [CrossRef]
- Bao, H.; Lal, K.; Kondo, A.; Kaga, A.; Inoue, Y. Modeling the in fluence of biogenic volatile organic compound emissions on ozone concentration during summer season in the Kinki region of Japan. Atmos. Environ. 2010, 44, 421–431. [Google Scholar] [CrossRef]
- Hatanaka, A. The biogeneration of green odour by green leaves. Biochemistry 1993, 5, 1201–1218. [Google Scholar] [CrossRef]
- Fall, R.; Karl, T.; Jordon, A.; Lindinger, W. Biogenic C5VOCs: Release from leaves after freeze-thaw wounding and occurrence in air at a high mountain observatory. Atmos. Environ. 2001, 35, 3905–3916. [Google Scholar] [CrossRef]
- Engelberth, J.; Alborn, H.T.; Schmelz, E.A.; Tumlinson, J.H. Airborne signals prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. USA 2004, 101, 1781–1785. [Google Scholar] [CrossRef] [Green Version]
- Saito, M.; Miyata, A.; Nagai, H.; Yamada, T. Seasonal variation of carbon dioxide exchange in rice paddy field in Japan. Agric. For. Meteorol. 2005, 135, 93–109. [Google Scholar] [CrossRef]
- Miyata, A.; Iwata, T.; Nagai, H.; Yamada, T.; Yoshikoshi, H.; Mano, M.; Ono, K.; Han, G.H.; Harazono, Y.; Ohtaki, E.; et al. Seasonal variation of carbon dioxide and methane fluxes at single cropping paddy fields in central and western Japan. Phyton-Ann. Rei Bot. 2005, 45, 89–97. [Google Scholar]
- Mano, M.; Miyata, A.; Nagai, H.; Yamada, T.; Ono, K.; Kobayashi, Y.; Saito, M. Random Sampling Errors in CO2Fluxes Measured by the Open-Path Eddy Covariance Method and their Influence on Estimating Annual Carbon Budget. J. Agric. Meteorol. 2007, 63, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Businger, A.; Oncley, P. Flux measurement with conditional sampling. J. Atmos. Ocean. Technol. 1990, 7, 349–352. [Google Scholar] [CrossRef]
- Mochizuki, T.; Tani, A.; Takahashi, Y.; Saigusa, N.; Ueyama, M. Long-term measurement of terpenoid flux above a Larix kaempferi forest using a relaxed eddy accumulation method. Atmos. Environ. 2014, 83, 53–61. [Google Scholar] [CrossRef]
- Guenther, A.B.; Zimmerman, P.R.; Harley, P.C.; Monson, R.K.; Fall, R. Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses. J. Geophys. Res. 1993, 98, 12609–12617. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.S.; Ko, T.G.; Wiggins, G.; Grant, J. Molecular and genomic basis of volatile-mediated indirect defense against insects in rice. Plant J. 2008, 55, 491–503. [Google Scholar] [CrossRef]
- Taniguchi, S.; Hosokawa-Shinonaga, Y.; Tamaoki, D.; Yamada, S.; Akimitsu, K.; Gomi, K. Jasmonate induction of the monoterpene linalool confers resistance to rice bacterial blight and its biosynthesis is regulated by JAZ protein in rice. Plant Cell Environ. 2014, 37, 451–461. [Google Scholar] [CrossRef]
- Lee, G.W.; Lee, S.; Chung, M.; Jeong, Y.S.; Chung, B.Y. Rice terpene synthase 20 (OsTPS20) plays an important role in producing terpene volatiles in response to abiotic stresses. Protoplasma 2015, 252, 997–1007. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.W.; Chung, M.; Kang, M.; Chung, B.Y.; Lee, S. Direct suppression of a rice bacterial blight (Xanthomonas oryzae pv. oryzae) by monoterpene (S)-limonene. Protoplasma 2016, 253, 683–690. [Google Scholar] [CrossRef]
- Cheng, A.X.; Xiang, C.Y.; Li, J.X.; Yang, C.Q.; Hu, W.L.; Wang, L.J.; Lou, Y.G.; Chen, X.Y. The rice (E)-β-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry 2007, 68, 1632–1641. [Google Scholar] [CrossRef]
- Yoshitomi, K.; Taniguchi, S.; Tanaka, K.; Uji, Y.; Akimitsu, K.; Gomi, K. Rice terpene synthase 24 (OsTPS24) encodes a jasmonate-responsive monoterpene synthase that produces an antibacterial γ-terpinene against rice pathogen. J. Plant Physiol. 2016, 191, 120–126. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Y.; Chen, X.; Chen, H.; Yuan, J.S.; Tobias, G.K.; Guo, Z.; Chen, F. The rice terpene synthase gene OsTPS19 functions as an (S)-limonene synthase in planta, and its overexpression leads to enhanced resistance to the blast fungus Magnaporthe oryzae. Plant Biotechnol. J. 2018, 16, 1778–1787. [Google Scholar] [CrossRef] [Green Version]
- Valea, I.; Motegi, A.; Kawamura, N.; Kawamoto, K.; Miyao, A.; Ozawa, R. The rice wound-inducible transcription factor RERJ1 sharing same signal transduction pathway with OsMYC2 is necessary for defense response to herbivory and bacterial blight. Plant Mol. Biol. 2022, 109, 651–666. [Google Scholar] [CrossRef] [PubMed]
- Mujiono, K.; Tohi, T.; Sobhy, I.S.; Hojo, Y.; Shinya, T.; Galis, I. Herbivore-induced and constitutive volatiles are controlled by different oxylipin-dependent mechanisms in rice. Plant Cell Environ. 2021, 44, 2687–2699. [Google Scholar] [CrossRef] [PubMed]
- Mei, X.; Liu, X.; Zhou, Y.; Wang, X.; Zeng, L.; Fu, X.; Li, J.; Tang, J.; Dong, F.; Yang, Z. Formation and emission of linalool in tea (Camellia sinensis) leaves infested by tea green leafhopper (Empoasca (Matsumurasca) onukii Matsuda). Food Chem. 2017, 237, 356–363. [Google Scholar] [CrossRef]
- Piesik, D.; Weaver, D.K.; Peck, G.E.; Morrill, W.L. Mechanically-injured wheat plants release greater amounts of the secondary metabolites linalool and linalool oxide. J. Plant Prot. Res. 2006, 46, 29–39. [Google Scholar]
- Haase, K.B.; Jordan, C.; Mentis, E.; Cottrell, L.; Mayne, H.R.; Talbot, R.; Sive, B.C. Changes in monoterpene mixing ratios during summer storms in rural New Hampshire (USA). Atmos. Chem. Phys. 2011, 11, 11465–11476. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, K.; Takase, H.; Matsuyama, S.; Kobayashi, H.; Matsuo, H.; Ikoma, G.; Takata, R. Effect of light exposure on linalool biosynthesis and accumulation in grape berries. Biosci. Biotechnol. Biochem. 2016, 80, 2376–2382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Halitschke, R.; Schuman, M.C.; Baldwin, I.T. Light dominates the diurnal emissions of herbivore-induced volatiles in wild tobacco. BMC Plant Biol. 2021, 21, 401. [Google Scholar] [CrossRef] [PubMed]
- Gnyp, M.L.; Miao, Y.; Yuan, F.; Ustin, S.L.; Yu, K.; Yao, Y.; Huang, S.; Bareth, G. Field Crops Research Hyperspectral canopy sensing of paddy rice aboveground biomass at different growth stages. Field Crops Res. 2014, 155, 42–55. [Google Scholar] [CrossRef]
Measurement Day | Koshihikari | Nipponbare | IR72 |
---|---|---|---|
27 July | 8 | 4 | |
28 July | 48 | 349 | |
29 July | 162 | 58 | |
30 July | 931 | 1259 | |
31 July | 72 | 11 | |
3 August | 580 | 105 | |
4 August | 493 | 528 |
Measurement Day | Koshihikari | Nipponbare | IR72 |
---|---|---|---|
14 June | 9 ± 15 | 0 | 0 |
8 July | 13 ± 3 | 98 ± 31 | 23 ± 8 |
15 July | 11 ± 2 | 16 ± 5 | 12 ± 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tani, A.; Sakami, T.; Yoshida, M.; Yonemura, S.; Ono, K. Emission of Terpenoid Compounds from Rice Plants. Environments 2023, 10, 49. https://doi.org/10.3390/environments10030049
Tani A, Sakami T, Yoshida M, Yonemura S, Ono K. Emission of Terpenoid Compounds from Rice Plants. Environments. 2023; 10(3):49. https://doi.org/10.3390/environments10030049
Chicago/Turabian StyleTani, Akira, Takuya Sakami, Mariko Yoshida, Seiichiro Yonemura, and Keisuke Ono. 2023. "Emission of Terpenoid Compounds from Rice Plants" Environments 10, no. 3: 49. https://doi.org/10.3390/environments10030049
APA StyleTani, A., Sakami, T., Yoshida, M., Yonemura, S., & Ono, K. (2023). Emission of Terpenoid Compounds from Rice Plants. Environments, 10(3), 49. https://doi.org/10.3390/environments10030049