Qualitative and Quantitative Changes in Soil Organic Compounds in Central European Oak Forests with Different Annual Average Precipitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sites Description, Experimental Design and Soil Sampling
2.2. Elemental and 13C and 15N Isotopic Ratio Analysis
2.3. Solid-State 13C Nuclear Magnetic Resonance (NMR) Analysis
2.4. Analysis of FT-IR Spectra
2.5. Thermogravimetric (TG) and Differential Thermal (DTA) Analyses
2.6. Statistical Methods
3. Results and Discussion
3.1. SOC Content in the Different Forest Types
3.2. Stable Isotope Composition (δ13C and δ15N) of SOC
3.3. Thermogravimetric (TG) and Differential Thermal (DTA) Analyses
3.4. Solid-State 13C Nuclear Magnetic Resonance (NMR) Analysis of the SOM of Dry and Humid Forests
3.5. FT-IR Spectra and Curve-Fitting Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Norby, R.J.; DeLucia, E.H.; Gielen, B.; Calfapietra, C.; Giardina, C.P.; King, J.S.; Ledford, J.; McCarthy, H.R.; Moore, D.J.P.; Ceulemans, R.; et al. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl Acad. Sci. USA 2005, 102, 18052–18056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotroczó, Z.; Juhos, K.; Biró, B.; Kocsis, T.; Pabar, S.A.; Varga, C.; Fekete, I. Effect of Detritus Manipulation on Different Organic Matter Decompositions in Temperate Deciduous Forest Soils. Forests 2020, 11, 675. [Google Scholar] [CrossRef]
- Reich, P.B.; Hungate, B.A.; Luo, Y. Carbon-nitrogen interactions in terrestrial ecosystems in response to rising atmospheric carbon dioxide. Annu. Rev. Ecol. Evol. System. 2006, 37, 611–636. [Google Scholar] [CrossRef] [Green Version]
- Fekete, I.; Lajtha, K.; Kotroczó, Z.; Várbíró, G.; Varga, C.; Tóth, J.A.; Demeter, I.; Veperdi, G.; Berki, I. Long term effects of climate change on carbon storage and tree species composition in a dry deciduous forest. Glob. Chang. Biol. 2017, 23, 3154–3168. [Google Scholar] [CrossRef]
- Mátyás, C.; Berki, I.; Bidló, A.; Csóka, G.; Czimber, K.; Führer, E.; Gálos, B.; Gribovszki, Z.; Illés, G.; Hirka, A.; et al. Sustainability of forest cover under climate change on the temperate-continental xeric limits. Forests 2018, 9, 489. [Google Scholar] [CrossRef] [Green Version]
- Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R.A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L. Global changes in drought conditions under different levels of warming. Geophys. Res. Lett. 2018, 45, 3285–3296. [Google Scholar] [CrossRef]
- Stovall, A.E.L.; Shugart, H.; Yang, X. Tree height explains mortality risk during an intense drought. Nat. Commun. 2019, 10, 4385. [Google Scholar] [CrossRef] [Green Version]
- Szepesi, A. Forest health status in Hungary. Environ. Pollut. 1997, 98, 393–398. [Google Scholar] [CrossRef]
- Li, J.; Nie, M.; Pendall, E.; Reich, P.B.; Pei, J.; Noh, N.J.; Zhu, T.; Li, B.; Fang, C. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Chang. Biol. 2020, 26, 1873–1885. [Google Scholar] [CrossRef]
- Balasmeh, O.I.; Karmaker, T. Effect of temperature and precipitation on the vegetation dynamics of high and moderate altitude natural forests in India. J. Indian Soc. Remote Sens. 2020, 48, 121–144. [Google Scholar] [CrossRef]
- Kotroczó, Z.; Krakomperger, Z.; Koncz, G.; Papp, M.; Tóth, J.A. A Síkfőkúti cseres-tölgyes fafaj összetételének és struktúrájának hosszú-távú változása. (Long term changes in the compositionand structure of an oak forest at Síkfőkút; North Hungary). Természetvédelmi Közlemények 2007, 13, 93–100. [Google Scholar]
- McGarvey, J.C.; Thompson, J.R.; Epstein, H.E.; Shugart, H.H., Jr. Carbon storage in old-growth forests of the Mid-Atlantic: Toward better understanding the eastern forest carbon sink. Ecology 2015, 96, 311–317. [Google Scholar] [CrossRef]
- Sun, W.; Liu, X. Review on carbon storage estimation of forest ecosystem and applications in China. For. Ecosyst. 2020, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Sierra, C.A.; Trumbore, S.E.; Davidson, E.A.; Vicca, S.; Janssens, I. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. J. Adv. Model. Earth Syst. 2015, 7, 335–356. [Google Scholar] [CrossRef]
- Dynarski, K.A.; Bossio, D.A.; Scow, K.M. Dynamic Stability of Soil Carbon: Reassessing the “Permanence” of Soil Carbon Sequestration. Front. Environ. Sci. 2020, 8, 514701. [Google Scholar] [CrossRef]
- Varga, C.; Fekete, I.; Kotroczó, Z.; Krakomperger, Z.; Vincze, G. The Effect of litter on soil organic matter (SOM) turnover in Síkfőkút site. Cereal Res. Commun. 2008, 36, 547–550. [Google Scholar]
- Selsted, M.B.; van der Linden, L.; Ibrom, A.; Michelsen, A.; Larsen, K.S.; Pedersen, J.K.; Mikkelsen, T.N.; Pilegaard, K.; Beier, C.; Ambus, P. Soil respiration is stimulated by elevated CO2 and reduced by summer drought: Three years of measurements in a multifactor ecosystem manipulation experiment in a temperate heathland (climaite). Glob. Chang. Biol. 2012, 18, 1216–1230. [Google Scholar] [CrossRef]
- Schindlbacher, A.; Wunderlich, S.; Borken, W.; Kitzler, B.; Zechmeister-Boltenstern, S.; Jandl, R. Soil respiration under climate change: Prolonged summer drought offsets soil warming effect. Glob. Chang. Biol. 2012, 18, 2270–2279. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Brookes, P.C. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biol. Biochem. 2005, 37, 507–515. [Google Scholar] [CrossRef]
- Göransson, H.; Godbold, D.L.; Jones, D.L.; Rousk, J. Bacterial growth and respiration responses upon rewetting dry forest soils: Impact of drought-legacy. Soil Biol. Biochem. 2013, 57, 477–486. [Google Scholar] [CrossRef]
- Zhao, F.; Wu, Y.; Hui, J.; Sivakumar, B.; Meng, X.; Liu, S. Projected soil organic carbon loss in response to climate warming and soil water content in a loess watershed. Carbon Balance Manag. 2016, 16, 24. [Google Scholar] [CrossRef] [PubMed]
- von Lützow, M.; Kögel-Knabner, I.; Ekschmitt, K.; Flessa, H.; Guggenberger, G.; Matzner, E.; Marschner, B. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 2007, 39, 2183–2207. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Z. Recalcitrant carbon controls the magnitude of soil organic matter mineralization in temperate forests of northern China. For. Ecosyst. 2018, 5, 17. [Google Scholar] [CrossRef]
- Fang, C.; Smith, P.; Moncrieff, J.B.; Smith, J.U. Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 2005, 433, 57–59. [Google Scholar] [CrossRef] [PubMed]
- Fekete, I.; Berki, I.; Lajtha, K.; Trumbore, S.; Francioso, O.; Gioacchini, P.; Montecchio, D.; Várbíró, G.; Béni, Á.; Makádi, M.; et al. How will a drier climate change carbon sequestration in soils of the deciduous forests of Central Europe? Biogeochemistry 2021, 152, 13–32. [Google Scholar] [CrossRef]
- Peltre, C.; Fernández, J.M.; Craine, J.M.; Plante, A.F. Relationships between biological and thermal indices of soil organic matter stability differ with soil organic carbon level. Soil Sci. Soc. Am. J. 2013, 77, 2020–2028. [Google Scholar] [CrossRef]
- Zhou, W.J.; Sha, L.Q.; Schaefer, D.A.; Zhang, Y.P.; Song, Q.H.; Tan, Z.H.; Guan, H.L. Direct effects of litter decomposition on soil dissolved organic carbon and nitrogen in a tropical rain forest. Soil Biol. Biochem. 2015, 81, 255–258. [Google Scholar] [CrossRef]
- Ameloot, N.; Graber, E.R.; Verheijen, F.G.A.; De Neve, S. Interactions between biochar stability and soil organisms: Review and research needs. Eur. J. Soil Sci. 2013, 64, 379–390. [Google Scholar] [CrossRef]
- Mani, S.; Merino, A.; García-Oliva, F.; Riotte, J.; Sukumar, R. Soil properties and organic matter quality in relation to climate and vegetation in southern Indian tropical ecosystems. Soil Res. 2018, 56, 80–90. [Google Scholar] [CrossRef]
- Guan, S.; An, N.; Zong, N.; He, Y.; Shi, P.; Zhang, J.; He, N. Climate warming impacts on soil organic carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil Biol. Biochem. 2018, 116, 224–236. [Google Scholar] [CrossRef]
- Plante, A.F.; Fernandez, J.M.; Haddix, M.L.; Steinweg, J.M.; Conant, R.T. Biological, chemical and thermal indices of soil organic matter stability in four grassland soils. Soil Biol. Biochem. 2011, 43, 1051–1058. [Google Scholar] [CrossRef]
- Mastrolonardo, G.; Francioso, O.; Di Foggia, M.; Bonora, S.; Rumpel, C.; Certini, G. Application of thermal and spectroscopic techniques to assess fire-induced changes to soil organic matter in a Mediterranean forest. J. Geochem. Explor. 2014, 143, 174–182. [Google Scholar] [CrossRef]
- Picariello, E.; Baldantoni, D.; Izzo, F.; Langella, A.; De Nicola, F. Soil organic matter stability and microbial community in relation to different plant cover: A focus on forests characterizing Mediterranean area. Appl. Soil Ecol. 2021, 162, 103897. [Google Scholar] [CrossRef]
- Bohn, U.; Gollub, G.; Hettwer, C.; Neuhäuslová, Z.; Raus, T.; Schlüter, H.; Weber, H. Karte der natürlichen Vegetation Europas, Maßstab 1:2,500,000. In Map of the Natural vegetation of Europe. Scale 1:2,500,000; Bundesamt für Naturschutz: Bonn, Germany, 2000. [Google Scholar]
- Bölöni, J.; Molnár, Z.; Bíró, M.; Horváth, F. Distribution of the (semi-)natural habitats in Hungary II. Woodlands and shrublands. Acta Bot. Hung. 2008, 50, 107–148. [Google Scholar] [CrossRef]
- Tonon, G.; Sohi, S.; Francioso, O.; Ferrari, E.; Montecchio, D.; Gioacchini, P.; Ciavatta, C.; Panzacchi, P.; Powlson, D. Effect of soil pH on the chemical composition of organic matter in physically separated soil fractions in two broadleaf woodland sites at Rothamsted, UK. Eur. J. Soil Sci. 2010, 61, 970–979. [Google Scholar] [CrossRef]
- Rumpel, C.; Rabia, N.; Derenne, S.; Quenea, K.; Eusterhues, K.; Kögel-Knabner, I.; Mariotti, A. Alteration of soil organic matter following treatment with hydrofluoric acid (HF). Org. Geochem. 2006, 37, 1437–1451. [Google Scholar] [CrossRef]
- Conte, P.; Spaccini, R.; Piccolo, A. State of the art of CPMAS 13C-NMR spectroscopy applied to natural organic matter. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 44, 215–223. [Google Scholar] [CrossRef]
- Preston, C.M. Environmental NMR: Solid-state methods. eMagRes 2014, 3, 29–42. [Google Scholar] [CrossRef]
- Baldock, J.A.; Oades, J.M.; Waters, A.G.; Peng, X.; Vassallo, A.M.; Wilson, M.A. Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy. Biogeochemistry 1992, 16, 1–42. [Google Scholar] [CrossRef]
- Tinti, A.; Tugnoli, V.; Bonora, S.; Francioso, O. Recent applications of vibrational mid-infrared (IR) spectroscopy for studying soil components: A review. J. Cent. Eur. Agric. 2015, 16, 1–22. [Google Scholar] [CrossRef]
- Margenot, A.J.; Calderón, F.J.; Bowles, T.M.; Parikh, S.J.; Jackson, L.E. Soil organic matter functional group composition in relation to organic carbon, nitrogen, and phosphorus fractions in organically managed tomato fields. Soil Sci. Soc. Am. J. 2015, 79, 772–782. [Google Scholar] [CrossRef]
- Tkachenko, Y.; Niedzielski, P. FTIR as a Method for Qualitative Assessment of Solid Samples in Geochemical Research: A Review. Molecules 2022, 27, 8846. [Google Scholar] [CrossRef] [PubMed]
- Mastrolonardo, G.; Francioso, O.; Di Foggia, M.; Bonora, S.; Forte, C.; Certini, G. Soil pyrogenic organic matter characterisation by spectroscopic analysis: A study on combustion and pyrolysis residues. J. Soils Sediments 2015, 15, 769–780. [Google Scholar] [CrossRef]
- Bowling, D.R.; Pataki, D.E.; Randerson, J.T. Carbon isotopes in terrestrial ecosystems pools and CO2 fluxes. New Phytol. 2008, 178, 24–40. [Google Scholar] [CrossRef] [Green Version]
- Böstrom, B.; Comstedt, D.; Ekblad, A. Can isotopic fractionation during respiration explain the 13C-enriched sporocarps of ectomycorrhizal and saprotrophic fungi? New Phytol. 2008, 177, 1012–1019. [Google Scholar] [CrossRef]
- Führer, E.; Csiha, I.; Szabados, I.; Pödör, Z.; Jagodics, A. Aboveground and belowground dendromass in a stand of Turkey oak. Erdészettudományi Közlemények 2014, 4, 109–119. [Google Scholar]
- Brüggemann, N.; Gessler, A.; Kayler, Z.; Keel, S.G.; Badeck, F.; Barthel, M.; Boeckx, P.; Buchmann, N.; Brugnoli, E.; Esperschutz, J.; et al. Carbon allocation and carbon isotope fluxes in the plant-soil-atmosphere continuum: A review. Biogeosciences 2011, 8, 3457–3489. [Google Scholar] [CrossRef] [Green Version]
- Jensen, K.D.; Beier, C.; Michelsen, A.; Emmett, B.A. Effects of experimental drought on microbial processes in two temperate heathlands at contrasting water conditions. Appl. Soil Ecol. 2003, 24, 165–176. [Google Scholar] [CrossRef]
- Liu, J.; Bi, X.; Ma, M.; Jiang, L.; Du, L.; Li, S.; Sun, Q.; Zou, G.; Liu, H. Precipitation and irrigation dominate soil water leaching in cropland in Northern China. Agric. Water Manag. 2019, 211, 165–171. [Google Scholar] [CrossRef]
- Francioso, O.; Montecchio, D.; Gioacchini, P.; Ciavatta, C. Thermal analysis (TG-DTA) and isotopic characterization (13C-15N) of humic acids from different origins. Appl. Geochem. 2005, 20, 537–544. [Google Scholar] [CrossRef]
- Amundson, R.; Austin, A.T.; Scuur, E.A.G.; Yoo, K.; Matzek, V.; Kendall, C.; Uebersax, A.; Brenner, D.; Baisden, W.T. Global patterns of the isotopic composition of soil and plant nitrogen. Glob. Biogeochem. Cycles 2003, 17, 1031. [Google Scholar] [CrossRef]
- Craine, J.M.; Brookshire, E.N.J.; Cramer, M.D.; Hasselquist, N.J.; Koba, K.; Marin-Spiotta, E.; Wang, L. Ecological interpretation of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 2015, 396, 317–329. [Google Scholar] [CrossRef] [Green Version]
- Béni, Á.; Lajtha, K.; Osorio, D.; Fekete, I. Field-flow fractionation and gel permeation methods for total soil fungal mass determination. Soil Sci. Annu. 2021, 72, 143901. [Google Scholar] [CrossRef]
- Haynes, R.J.; Swift, R.S. Effects of soil acidification and subsequent leaching on levels of extractable nutrients in a soil. Plant Soil 1986, 95, 327–336. [Google Scholar] [CrossRef]
- Boiteau, R.M.; Kukkadapu, R.; Cliff, J.B.; Smallwood, C.R.; Kovarik, L.; Wirth, M.G.; Engelhard, M.H.; Varga, T.; Dohnalkova, A.; Perea, D.E.; et al. Calcareous organic matter coatings sequester siderophores in alkaline soils. Sci. Total Environ. 2020, 724, 138250. [Google Scholar] [CrossRef]
- Rowley, M.C.; Grand, S.; Verrecchia, É.P. Calcium-mediated stabilisation of soil organic carbon. Biogeochemistry 2018, 137, 27–49. [Google Scholar] [CrossRef] [Green Version]
- Rowley, M.C.; Grand, S.; Spangenberg, J.E.; Verrecchia, E.P. Evidence linking calcium to increased organo-mineral association in soils. Biogeochemistry 2021, 153, 223–241. [Google Scholar] [CrossRef]
- Durukan, A.; Şahin, S.; Geboloğlu, N.; Aydın, M.; Karaman, M.R.; Sağlam, N.; Turan, M.A. Effect of Ca and B-Humate applications on Plant growth and quality characteristics of Cauliflower Leaves. Soil-Water J. 2013, 2, 703–712. [Google Scholar]
- Barreto, M.S.C.; Elzinga, E.J.; Ramlogan, M.; Rouff, A.A.; Alleoni, L.R.F. Calcium enhances adsorption and thermal stability of organic compounds on soil minerals. Chem. Geol. 2020, 559, 119804. [Google Scholar] [CrossRef]
- Ostertag, R.; Marin-Spiotta, E.; Silver, W.L.; Schulten, J. Litterfall and decomposition in relation to soil carbon pools along a secondary forest chronosequence in Puerto Rico. Ecosystems 2008, 11, 701–714. [Google Scholar] [CrossRef]
- Marschner, B.; Brodowski, S.; Dreves, A.; Gleixner, G.; Gude, A.; Grootes, P.M.; Hamer, U.; Heim, A.; Jandl, G.; Ji, R.; et al. How relevant is recalcitrance for the stabilization of organic matter in soils? J. Plant Nutr. Soil Sci. 2008, 171, 91–110. [Google Scholar] [CrossRef] [Green Version]
- Sollins, P.; Swantson, C.; Kleber, M.; Filley, T.; Kramer, M.; Crow, S.; Caldwell, B.A.; Lajtha, K.; Bowden, R. Organic C and N stabilization in a forest soil: Evidence from sequential density fractionation. Soil Biol. Biochem. 2006, 38, 3313–3324. [Google Scholar] [CrossRef] [Green Version]
- Kiem, R.; Kögel-Knabner, I. Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biol. Biochem. 2003, 35, 101–118. [Google Scholar] [CrossRef]
- Krivoshein, P.K.; Volkov, D.S.; Rogova, O.B.; Proskurnin, M.A. FTIR Photoacoustic and ATR Spectroscopies of Soils with Aggregate Size Fractionation by Dry Sieving. ACS Omega 2022, 7, 2177–2197. [Google Scholar] [CrossRef] [PubMed]
- Artz, R.R.; Chapman, S.J.; Robertson, A.H.J.; Potts, J.M.; Laggoun-Defarge, F.; Gogo, S.; Comont, L.; Disnar, J.R.; Francez, A.-J. FTIR spectroscopy can be used as a screening tool for organic matter quality in regenerating cutover peatlands. Soil Biol. Biochem. 2008, 40, 515–527. [Google Scholar] [CrossRef]
- Du, C.; Zhou, J. Evaluation of soil fertility using infrared spectroscopy: A review. Environ. Chem. Lett. 2009, 7, 97–113. [Google Scholar] [CrossRef]
- Vergnoux, A.; Guiliano, M.; Di Rocco, R.; Domeizel, M.; Theraulaz, F.; Dolmen, P. Quantitative and mid-infrared changes of humic substances from burned soils. Environ. Res. 2011, 111, 205–214. [Google Scholar] [CrossRef]
- Hong, S.; Gan, P.; Chen, A. Environmental controls on soil pH in planted forest and its response to nitrogen deposition. Environ. Res. 2019, 172, 159–165. [Google Scholar] [CrossRef]
- Rombolà, A.G.; Meredith, W.; Snape, C.E.; Baronti, S.; Genesio, L.; Vaccari, F.P.; Miglietta, F.; Fabbri, D. Fate of soil organic carbon and polycyclic aromatic hydrocarbons in a vineyard soil treated with biochar. Environ. Sci. Technol. 2015, 49, 11037–11044. [Google Scholar] [CrossRef]
- Singh, B.P.; Cowie, A.L.; Smernik, R.J. Biochar Carbon Stability in a Clayey Soil as a Function of Feedstock and Pyrolysis Temperature. Environ. Sci. Technol. 2012, 46, 11770–11778. [Google Scholar] [CrossRef]
Name of the Site | Coordinates | Forest Types | MAP (mm) | MAT (C) | Type of Soil | |
---|---|---|---|---|---|---|
N° | E° | |||||
Zalaegerszeg | 46.8180 | 16.8147 | Humid | 695 | 10.3 | Luvisols |
Bak | 46.7551 | 16.8059 | Humid | 716 | 10.1 | Luvisols |
Szilvágy | 46.7397 | 16.6521 | Humid | 722 | 10.1 | Luvisols |
Bajánysenye | 46.8230 | 16.4029 | Humid | 733 | 10.2 | Luvisols |
Ispánk | 46.8785 | 16.4400 | Humid | 726 | 9.9 | Luvisols |
Hévízgyörk | 47.6170 | 19.5032 | Meso | 556 | 10.4 | Cambisols |
Kerepes | 47.4014 | 19.1550 | Meso | 574 | 10 | Cambisols |
Sirok | 47.9221 | 20.1718 | Meso | 565 | 9 | Luvisols |
Kerecsend | 47.7925 | 20.3249 | Dry | 570 | 10.3 | Chernozems |
South-Demjén | 47.8306 | 20.3556 | Dry | 581 | 10.1 | Phaeozems |
Aszaló | 48.2281 | 20.9331 | Dry | 558 | 9.8 | Phaeozems |
Füle | 47.0281 | 18.2719 | Dry | 571 | 10.7 | Chernozems |
Galgamácsa | 47.5027 | 19.2608 | Dry | 550 | 10.6 | Phaeozems |
Füzesabony | 47.4916 | 20.2708 | Dry | 553 | 10.4 | Chernozems |
Humid | Meso | Dry | |
---|---|---|---|
SOC% | 3.4 ± 0.2 a | 4.4 ± 0.2 b | 5.0 ± 0.2 b |
N% | 0.24 ± 0.01 a | 0.31 ± 0.01 b | 0.39 ± 0.01 c |
C/N | 12 | 12 | 11 |
δ13C‰ | −26.3 ± 0.1 a | −25.9 ± 0.1 b | −25.8 ± 0.1 b |
δ15N‰ | −0.57 ± 0.10 a | 0.33 ± 0.09 b | 0.95 ± 0.26 b |
Forest Types | Depth (cm) | Alkyl C (0–50 ppm) | O-alkyl C (50–110 ppm) | Aromatic + Phenolic C (110–165 ppm) | Carboxyl + Carbonyl C (165–220 ppm) | Total Signal | Alkyl/O-alkyl C Ratio | Potential Resistance to Decomposition Ratio |
---|---|---|---|---|---|---|---|---|
humid | 0–5 | 33.3 ± 2.02 | 52.7 ± 0.57 | 10.3 ± 1.0 | 3.8 ± 0.9 | 100 | 0.63 ± 0.05 | 0.78 ± 0.04 |
humid | 5–15 | 34.3 ± 0.29 | 51.6 ± 1.44 | 9.5 ± 0.9 | 4.6 ± 0.6 | 100 | 0.66 ± 0.03 | 0.78 ± 0.03 |
humid | 15–30 | 36.4 ± 2.60 | 49.8 ± 1.70 | 10.1 ± 0.6 | 3.8 ± 0.0 | 100 | 0.74 ± 0.08 | 0.87 ± 0.06 |
dry | 0–5 | 27.6 ± 3.0 | 51.8 ± 1.50 | 14.0 ± 1.2 | 6.6 ± 0.9 | 100 | 0.54 ± 0.07 | 0.72 ± 0.05 |
dry | 5–15 | 26.1 ± 0.60 | 51.2 ± 0.60 | 14.6 ± 0.9 | 8.0 ± 0.0 | 100 | 0.51 ± 0.01 | 0.69 ± 0.01 |
dry | 15–30 | 24.9 ± 0.30 | 49.1 ± 1.20 | 17.0 ± 1.2 | 9.1 ± 0.3 | 100 | 0.51 ± 0.01 | 0.72 ± 0.02 |
Wave Number (cm−1) | Assignments | Humid (Area ± SD%) | Meso (Area ± SD%) | Dry (Area ± SD%) |
---|---|---|---|---|
1724–1727 | C = O stretching in carboxyl acids | 7.4 ± 1.7 | 0.5 ± 0.01 | 5.0 ± 0.7 |
1679–1669 | Amide I; C = O stretching; C = C stretching in linear olefins; C = O stretching in aryl acids | 19.0 ± 1.3 | 12.0 ± 2.2 | 11.7 ± 1.9 |
1635–1632 | Hydration water; C = C stretching in linear olefins and aromatic ring, (oleic acid, waxes, cutin) | 25.9 ± 2.4 | 29.9 ± 3.1 | 28.6 ± 3.0 |
1591–1583 | Benzene derivatives C = C skeletal vibration | 25.5 ± 2.0 | 23.4 ± 1.3 | 27.9 ± 2.4 |
1561–1542 | Amide II; COO− asymmetric stretching | 7.4 ± 3.1 | 2.8 ± 1.1 | 8.6 ± 1.2 |
1530–1524 | Lignin | 7.1 ± 2.3 | 8.5 ± 2.0 | 9.9 ± 1.6 |
1508–1495 | Benzene derivatives C = C skeletal vibration | nd | 6.1 ± 2.4 | 5.6 ± 1.3 |
1460–1452 | CH2 scissoring vibration and CH3 asymmetrical deformation | 2.2 ± 1.7 | 5.1 ± 1.0 | 4.1 ± 0.9 |
1420–1395 | CH2 deformation (e.g., fatty acid) | 7.7 ± 2.2 | 5.6 ± 1.6 | 4.3 ± 1.4 |
1386–1250 | CH3 symmetrical deformation; COO− symmetric stretching; C-O stretch in phenolic OH | 4.8 ± 0.9 | 3.9 ± 1.2 | 8.1 ± 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fekete, I.; Francioso, O.; Simpson, M.J.; Gioacchini, P.; Montecchio, D.; Berki, I.; Móricz, N.; Juhos, K.; Béni, Á.; Kotroczó, Z. Qualitative and Quantitative Changes in Soil Organic Compounds in Central European Oak Forests with Different Annual Average Precipitation. Environments 2023, 10, 48. https://doi.org/10.3390/environments10030048
Fekete I, Francioso O, Simpson MJ, Gioacchini P, Montecchio D, Berki I, Móricz N, Juhos K, Béni Á, Kotroczó Z. Qualitative and Quantitative Changes in Soil Organic Compounds in Central European Oak Forests with Different Annual Average Precipitation. Environments. 2023; 10(3):48. https://doi.org/10.3390/environments10030048
Chicago/Turabian StyleFekete, István, Ornella Francioso, Myrna J. Simpson, Paola Gioacchini, Daniela Montecchio, Imre Berki, Norbert Móricz, Katalin Juhos, Áron Béni, and Zsolt Kotroczó. 2023. "Qualitative and Quantitative Changes in Soil Organic Compounds in Central European Oak Forests with Different Annual Average Precipitation" Environments 10, no. 3: 48. https://doi.org/10.3390/environments10030048
APA StyleFekete, I., Francioso, O., Simpson, M. J., Gioacchini, P., Montecchio, D., Berki, I., Móricz, N., Juhos, K., Béni, Á., & Kotroczó, Z. (2023). Qualitative and Quantitative Changes in Soil Organic Compounds in Central European Oak Forests with Different Annual Average Precipitation. Environments, 10(3), 48. https://doi.org/10.3390/environments10030048