Comprehensive Evaluation and Development of Irish Compost and Digestate Standards for Heavy Metals, Stability and Phytotoxicity
Abstract
:1. Introduction
Objective
- To compare IS 441 and standards in plant licences/permits and quality data to standards for compost and digestate from other countries with respect to heavy metals (in this, heavy metals are defined as chemical elements that have the potential to cause toxicity to humans, flora and/or fauna, depending on concentration, bio-availability and bio-accumulation), stability and maturity with a view to updating the current national compost standard IS 441 and develop a new digestate standard for Ireland.
- To investigate the changes over the last decade of heavy metals and other parameters (e.g., stability) in Ireland and how they compared with data available from other European countries.
2. Material and Methods
2.1. Collation of the Irish Compost and Digestate Databases
- Source-separated green waste compost (SSGW) included 171 samples from five compost facilities.
- Source-separated biowaste compost (SSBW) included 184 samples from seven compost facilities.
- Sewage sludge compost (SSC) included 86 samples from three facilities.
- Source-separated digestate included 6 samples from six facilities.
2.2. Comparison of Irish Data to Other Databases and Standards
2.3. Structure/Type/Number of Standards
3. Results and Discussion
3.1. Heavy Metals
3.1.1. The Cadmium, Copper, Mercury, Nickel, Lead and Zinc Levels
3.1.2. Comparison of Heavy Metals in Compost Databases with Other Countries
- Irish compost has a higher content of each of the heavy metals compared with The Netherland’s data;
- Irish compost is more like German compost, except for copper/zinc and lead, which were higher in Irish biowaste compost;
- The metal levels were well below the limit values for the JRC End-of-Waste Criteria Report and the EU Fertiliser Products Regulation.
- The limited dataset for digestate suggests that the heavy metal limits previously developed for compost can be adopted for digestate;
- Alignment of the copper, zinc, lead, mercury and cadmium limits with the EU Fertiliser Products Regulation;
- Round up the lead limit from 149 mg/kg to 150 mg/kg;
- Round down the nickel limit from 56 mg/kg to 50 mg/kg;
- Alignment with the JRC Study of the total chromium limit from 92 mg/kg to 100 mg/kg;
- Belgium, Czech Republic, France and Germany have a limit for total arsenic that is either 20 mg/kg or 40 mg/kg. The data we have for total arsenic (Table 3) shows that a limit of 20 mg/kg is achievable. We recommend that total arsenic with a limit of 20 mg/kg is included in the Irish standards;
- France, Germany and Italy and the EU Fertiliser Products Regulation have a limit for hexavalent chromium. From the limited amount of Irish data, we recommend hexavalent chromium with a limit of 2 mg/kg be included in the Irish standard.
3.2. Stability
Stability in Compost
3.3. Stability Database from Belgium and The Netherlands
3.4. Evaluation of Standards for the Measurement of Compost Stability in Other Countries
3.5. Recommended Method for the Measurement of Compost Stability
3.6. Limit Value for Compost Stability for Field Application
3.7. Digestate Stability
3.8. Stability Database in Belgium
3.9. Evaluation of Standards for Stability in Digestate in Other Countries
3.10. Stability in Digestate in Ireland
3.11. Residual Biogas Potential (RBP)
3.12. Respiration Methods
3.13. Oxygen Uptake Rate
3.14. Conclusions and Recommendations on Method for Digestate Stability
- The RBP test is a satisfactory method for demonstrating that an effective digestion process has taken place, and the test gives repeatable results;
- The value of 0.25 L biogas g−1 VS appears appropriate and achievable, as shown in data from Belgium and Ireland;
- There is limited evidence of using VFA concentration as a product stability criterion except as an initial test to indicate if an RBP test should be done;
- The small number of comparative studies carried out has indicated the correlation between the RBP test and respirometric test on digestate. This strengthens the case for the OUR test method.
3.15. Limit Value for Digestate Stability Method
3.16. Maturity
3.16.1. Compost
3.16.2. Digestate
4. Discussion
5. Conclusions
- Collated and analysed laboratory data on compost and digestate quality in Ireland since 2008;
- Compared the Irish data to other databases and standards to update the quality standard for compost and proposed a quality standard for digestate (whole, liquid and fibre);
- Reviewed important publications and regulations.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Anaerobic digestion |
BGK | Bundesgütegemeinschaft Kompost (Compost and Digestate Quality Assurance Organisation) |
CEN | European Committee for Standardization |
CMC | Component material category |
DM | Dry matter |
ECN | European Compost Network |
EPA | Environmental Protection Agency |
EU | European Union |
FM | Fresh matter |
FPR | Fertilising Products Regulation |
IrBEA | Irish Bioenergy Association |
IS | Irish standard |
JRC | Joint Research Centre |
MLV | Munoo-Liisa vitality index |
NSAI | National Standards Authority of Ireland |
OUR | Oxygen Uptake Rate |
QAS | Quality assurance scheme |
RAL | German National Committee for Delivery and Quality Assurance |
RBP | Residual biogas potential |
SEPA | Scottish Environment Protection Agency |
SSBW | Source-separated biowaste |
SSC | Sewage sludge compost |
SSGW | Source-separated green waste |
VFA | Volatile fatty acid |
VFG | Vegetable, fruit and garden waste |
VS | Volatile solids |
VLAREMA | Vlaams Reglement voor duurzaam beheer van Materialenkringlopen en Afvalstoffen (Flemish Regulation on Sustainable Materials Management and Waste) |
WFD | Waste Framework Directive |
WRAP | Waste and Resources Action Programme |
References
- Department of Communications, Climate Action and Environment. A Waste Action Plan for a Circular Economy; Department of Communications, Climate Action and Environment: Dublin, Ireland, 2020. [Google Scholar]
- Department of Environment, Community and Local Government. R × 3 Market Report on Irish Organic Waste Management and Compost Use; Department of Environment, Community and Local Government: Dublin, Ireland, 2012. [Google Scholar]
- Amlinger, F.; Favoino, E.; Pollack, M. Heavy Metals and Organic Compounds from Wastes used as Organic Fertilisers; European Commission: Brussels, Belgium, 2004. [Google Scholar]
- Blok, C.; Baumgarten, A.; Baas, R.; Wever, G.; Lohr, D. Analytical Methods used in soilless culture Soilless Culture. In Soilless Culture: Theory and Practice; Elsevier: Amsterdam, The Netherlands, 2008; pp. 245–290. [Google Scholar]
- Gilbert, J.; Ricci-Jürgensen, M.; Ramola, A. Quantifying the Benefits to Soil of Applying Quality Composts; International Solid Waste Association: Rotterdam, The Netherlands, 2020. [Google Scholar]
- Prasad, M.; Foster, P. Development of an Industry Led Standard Quality Standard for Source Separated Biodegradable Materials Derived Compost; Environmental Protection Agency: Wexford, Ireland, 2008. [Google Scholar]
- Saveyn, H.; Eder, P. End-Of-Waste Criteria for Biodegradable Waste Subjected to Biological Treatment (Compost & Digestate): Technical Proposals; European Commission Joint Research Centre: Brussels, Belgium, 2014. [Google Scholar]
- Umweltbundesamt GmBH. Study to Assess Member States (MS) Practices on By-Product (BP) and End-of-Waste (EoW); Final Report; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- VITO. Towards Risk-Based Draft Limit Values for the Use of Secondary Raw Materials as Fertilizer or Soil Conditioner; VITO: Mol, Belgium, 2013. [Google Scholar]
- Rynk, R. The Art in the Science of Compost Maturity. Compost. Sci. Util. 2013, 11, 94–95. [Google Scholar] [CrossRef]
- Banks, C.J.; Heaven, S.; Zhang, Y.; Sapp, M.; Thwaites, R. A Review of the Application of the Residual Biogas Potential (RBP) Test for PAS110 as Used across the UK’s Anaerobic Digestion Industry, and a Consideration of Potential Alternatives WRAP Report: Project Code: OMK002-014. 2013. Available online: http://www.organics-recycling.org.uk/uploads/article2652/PAS110%20digestate%20stability%20review.pdf (accessed on 23 July 2023).
- Amery, F.; Vandaele, E.; Körner, I.; Loades, K.; Viaene, J.; Vandecasteele, B.; Willeken, K. Compost quality indicators. In SoilCom. Aarslev, Denmark; Report Number 5.1. 2020. Available online: https://ilvo.vlaanderen.be/uploads/documents/soilcom-report-1-compost-quality-indicators.pdf (accessed on 23 July 2023).
- Petersen, U.; Stoppler–Zimmer, H. Anwendungsversuche mit Komposten unterschiedlichen Rottegrades. In Technische Universität Hamburg-Harburg, Abfallwirtschaft, Neue Techniken der Kompostierung, Dokumentation des 2. BMBF-Statusseminars “Neue Techniken der Kompostierung”; Economica Verlag: Heidelberg, Germany, 1996. [Google Scholar]
- Hartmann, R. Studien zur Standortgerechten Kompostanwendung auf drei Pedologisch Unterschiedlichen, Landwirtschaftlich Genutzten Flächen der Weshauser Geest, Niedersachsen; Universität Breme: Bremen, Germany, 2002. [Google Scholar]
- Bloom, P. Einfluss von Komposten auf Stickstoffdynamik und-Haushalt, Wachstum und Ertrag von Spargel (Asparagus officinalis L.); Universität Hannover: Hannover, Germany, 2003. [Google Scholar]
- Fuchs, J.G.; Baier, U.; Berner, A.; Mayer, J.; Schleiss, K. Effects of digestate on the environment and on plant production—Results of a research project. In The Future for Anaerobic Digestion of Organic Waste in Europe; ECN/ORBIT e.V. Workshop; FiBL-Nürnber: Brussels, Switzerland, 2008; p. 11. [Google Scholar]
- Fuchs, J.G.; Berner, A.; Mayer, J.; Schleiss, K. Einfluss von Komposten und Gärgut auf die Bodenfruchtbarkeit. AgarForschung 2008, 15, 276–281. [Google Scholar]
- Groll, K. Application Trials with Biowaste Compost in Grand Duchy Luxembourg; Ingenieurgemeinschaft Luxemburg: Rumelange, Luxembourg, 2007. [Google Scholar]
- Dimambro, M.; Frederickson, J.; Aspray, T.; Wallace, P. Compost stability: Impact and Assessment Environment Agency and WRAP; Project Code OMK009-00; Waste and Resource Action Programme: Banbury, UK, 2015. [Google Scholar]
- Siebert, S.; Gilbert, J.; Clarity, C. Guidelines—Specification for the Use of Quality Compost in Growing Media. In European Quality Assurance Scheme ECNQAS; European Compost Network ECN: Adelaide, Australia, 2018. [Google Scholar]
- Brinton, W.; Evans, E.; Droffner, M.; Brinton, R.B. A standardized Dewar test for evaluation of compost self-heating. BioCycle 1995, 36, 1–16. [Google Scholar]
- RAL GZ 245 Qualitatskriterien und Guterichtlinien (RAL-GZ 245) Garprodukt Fest. Deutsches Institut fur Gutesicherung und Kennzeichnung E.V.;RAL GZ 245 Quality criteria and quality guidelines (RAL-GZ 245) AD product solid. German Institute for Goods Assurance and Labeling E.V. 2007. Available online: https://www.ral-guetezeichen.de/pdfgz/viewer.html?file=/245/RAL-GZ_245.pdf&magazineMode=true (accessed on 23 July 2023).
- European Compost Network. Vanden Auweele Presentation at European Compost Network Working Group on Quality Assurance and Fertilisers; Personal Communication; European Compost Network: Brussels, Belgium, 2019. [Google Scholar]
- Cossu, R.; Raga, R. Test methods for assessing the biological stability of biodegradable waste. Waste Manag. 2008, 28, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Schievano, A.; Pognani, M.; D’Imporzano, G.; Adani, F. Predicting anaerobic biogasification potential of ingestates and digestates of a full-scale biogas plant using chemical and biological parameters. Bioresour. Technol. 2008, 99, 8112–8117. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, M.; Prasad, M.; Lee, A.; Mc Gee, C.; Doyle, O.; Cassidy, J.; Maher, J.M. Compost in Crop Production: Nutrient Availability and Disease Suppressive Properties: EPA (Ireland) Research Report (2008-WRM-MS-7-S1). 2008. Available online: https://www.researchgate.net/profile/Munoo-Prasad/publication/343399145_Nurrient_Release_and_Disease_Supression_Compost_STRIVE_2008_EPA_Report_No_WRMMSS17_1/links/5f28163ca6fdcccc43a66860/Nurrient-Release-and-Disease-Supression-Compost-STRIVE-2008-EPA-Report-No-WRMMSS17-1.pdf (accessed on 23 July 2023).
- Zucconi, F.A.; Pera, A.; Forte, M.; deBertoldi, M. Evaluating Toxicity of Immature Compost. Biocycle 1981, 2, 54–57. [Google Scholar]
- Irish Bioenergy Association an Industry Standard for Anaerobic Digestion Digestate. Irish Bioenergy Association, DCU Alpha Centre, Dublin. 2013. Available online: https://www.irbea.org/ (accessed on 23 July 2023).
- Coelho, J.J.; Prieto, M.L.; Dowling, S.; Hennessy, A.; Casey, I.; Woodtock, T.; Kennedy, N. Physical-chemical traits, phytotoxicity and pathogen detection in liquid anaerobic digestates. Waste Manag. 2018, 78, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Maunuksela, L.; Herranen, M.; Torniainen, M. Quality Assessment of Biogas Plant End Products by Plant Bioassays. Int. J. Environ. Sci. Dev. 2012, 3, 305. [Google Scholar] [CrossRef]
- Saadi, I.; Raviv, M.; Berkovitch, S.; Hanan, A.; Laor, Y. Fate of Soil Applied Olive Mill Wastewater and Potential Phytotoxicity Assessed by Two Bioassay Methods. J. Environ. Qual. 2013, 42, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
- IPTS End of Waste Criteria. Draft Report; European Commission Joint Research Centre: Seville, Spain, 2008. [Google Scholar]
Country | BE | AT | BG | DE | GR | HU | IT | NL | PT | SI | SE | UK | NO | CH | ES | UAE | CA | USA | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | A Organic Agri | A+ | B Non-Agri | 1 | 2 | 3 | 1 | 2 | 0 | 1 | 2 | 3 | Class A | Class B | Class C | Category A | Category B | |||||||||||||||||
Cd | 2 | 1 | 1 | 3 | 2 | 1.7 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | <3 | 2 | 1.5 | <1 | 0.7 | 1.5 | 5 | 1.5 | 3 | 1 | 1.5 | 0 | 0.8 | 2 | 5 | 1 | 1 | 2 | 3 | 3 | 3 | 20 | 39 |
Cr | 70 | 70 | 70 | 250 | 100 | 60 | 100 | 100 | 100 | 300 | 300 | <250 | 100 | <50 | 100 | 150 | 400 | 100 | 250 | 100 | 100 | 50 | 70 | 100 | 150 | 70 | 250 | 300 | 100 | 120 | 1200 | |||
Cr VI | 2 | 2 | 0.5 | |||||||||||||||||||||||||||||||
Cu | 150 | 150 | 70 | 500 | 250 label threshold >100 * | 200 label threshold >100 * | 100 | 100 | 100 | 900 | 900 | <400 | 300 | 230 | <90 | 100 | 200 | 600 | 100 | 500 | 600 | 200 | 50 | 150 | 650 | 1000 | 100 | 70 | 300 | 400 | 150 | 400 | -- | 1500 |
Hg | 1 | 0.7 | 0 | 3 | 1 | 0.5 | 1 | 1 | 1 | 1 | 1 | <2.5 | 1 | 1.5 | <0.3 | 0.7 | 1.5 | 5 | 1 | 3 | 1 | 1 | 0 | 0.6 | 3 | 5 | 1 | 0 | 1.5 | 2.5 | 1.5 | 0.8 | 5 | 17 |
Ni | 30 | 60 | 25 | 100 | 80 | 40 | 50 | 50 | 50 | 80 | 80 | <100 | 50 | 100 | <20 | 50 | 100 | 200 | 50 | 100 | 50 | 50 | 20 | 30 | 50 | 80 | 30 | 25 | 90 | 100 | 50 | 62 | 180 | 420 |
Pb | 150 | 120 | 45 | 200 | 180 | 130 | 150 | 150 | 150 | 150 | 150 | <300 | 100 | 140 | <100 | 100 | 150 | 500 | 120 | 200 | 100 | 200 | 40 | 60 | 80 | 200 | 120 | 45 | 150 | 200 | 120 | 150 | 500 | 300 |
Zn | 400 | 500 | 200 | 1800 | 800 labelling threshold >400 | 600 labelling threshold >400 | 400 | 400 | 400 | 4000 | 400 | <1200 | --- | 500 | <290 | 200 | 500 | 1500 | 400 | 1800 | 800 | 400 | 150 | 400 | 800 | 1500 | 400 | 200 | 500 | 1000 | 350 | 700 | 1850 | 2800 |
Country | BE | BG | CZ | EE | Fr | FI | DE | GR | HU | UK | SI | SE | NO | CH | ES | USA | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | Less than 1 | 1 to 1.9 | 2 to 2.9 | 3 to 3.9 | 4 to 4.9 | 5 to 5.9 | 6 to 6.9 | 7 to 7.9 | 8 to 8.9 | 9 or More | 0 | 1 | 2 | 3 | Class A | Class B | Class C | ||||||||||||||||||||
Cd | 2 | 2 | 1.7 | 2 | 2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 0.1 | 0.2 | 0.4 | 0.5 | 1 | 0.7 | 0.8 | 1 | 1.1 | 1 | 3 | 2 | 3 | 1 | 0 | 0.8 | 2 | 5 | 1 | 2 | 3 | 20 | |
Cr | 100 | 100 | 60 | 100 | # | 60 | 100 | 300 | 100 | 100 | 100 | 100 | 250 | 100 | 8 | 1 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 | 100 | 100 | 250 | 100 | 50 | 70 | 100 | 150 | 1 | 70 | 250 | 300 | - |
Cu | 800 | 100, (150 *) (250 **) | 100, (150 *) (250 **) | 200 | 2 | 600 | 100 | 100 | plausibility values apply must not be exceeded | 400 | 100 | 16 | 32 | 48 | 64 | 80 | 96 | 112 | 128 | 144 | 160 | 200 | 200 | 500 | 600 | 50 | 150 | 650 | 1000 | 70 | 300 | 400 | 750 | ||||
Hg | 1 | 250 labelling threshold >100 | 200 labelling threshold >100 | 1 | 1 | 0 | 300 | 1 | 1 | 1 | 1 | 1 | 3 | 1 | 0.1 | 0.2 | 0.2 | 0.3 | 0 | 0.5 | 0.6 | 0.6 | 0.7 | 1 | 1 | 1 | 3 | 1 | 0 | 0.6 | 3 | 5 | 1 | 0 | 2 | 3 | 8.5 |
Ni | 50 | 1 | 0.5 | 50 | 50 | 40 | 1 | 100 | 50 | 50 | 50 | 80 | 100 | 50 | 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 | 50 | 50 | 100 | 50 | 20 | 30 | 50 | 80 | 1 | 25 | 90 | 100 | 210 |
Pb | 150 | 80 | 40 | 100 | 100 | 130 | 100 | 150 | 150 | 150 | 150 | 300 | 100 | 16 | 32 | 48 | 64 | 80 | 96 | 112 | 128 | 144 | 160 | 120 | 120 | 200 | 100 | 40 | 60 | 80 | 200 | 30 | 45 | 150 | 200 | 150 | |
Zn | --- | 180 | 130 | 300 (600 *) (1200 **) | 300 (600 *) (1200 **) | 600 | 120 | 1500 | 400 | 400 | plausibility values apply must not be exceeded | 1200 | --- | 32 | 64 | 96 | 128 | 160 | 192 | 224 | 256 | 288 | 320 | 400 * | 400 | 1800 | 800 | 150 | 400 | 800 | 1500 | 400 | 200 | 500 | 1000 | 1400 |
Parameter | EU Fertiliser Products Regulation 2019 | JRC Study EoW Biodegradable Waste 2014 | ECN QAS for Compost/Digestate 2018 | IS 441 2011/Prasad and Foster, 2008 | Flemish Material Decree—Vlarema/Vito Study | Flemish Material Decree—Vlarema 2012 | Ireland Green Compost 2019 | Ireland Biowaste Compost 2019 | Ireland Sewage Sludge Compost 2019 | Ireland Digestate 2019 | Recommended Standard Compost and Digestate | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Product Function Category 1 Fertiliser | Product Function Category 3 Soil Improver | Safety Limits Based on Dynamic Model | Compost Applications | 90th Percentile | ||||||||
Cadmium | 1.5 | 2 | 1.5 | 1.3 | 1.3 | 6 | 2 | 1.00 | 0.90 | 0.97 | 0.63 | 1.5 |
Hexavalent Chromium | 2 | 2 | - | - | N/A | - | - | 1 | <1 | - | <1 | 2 |
Total Chromium | 100 | 60 | 92 | 150 | 70 | 59.87 | 32.94 | 43.00 | 14.21 | 100 | ||
Mercury | 1 | 1 | 1 | 0.45 | 0.4 | 1 | 1 | 0.20 | 0.31 | 0.36 | 0.12 | 1 |
Nickel | 50 | 50 | 50 | 40 | 56 | 100 | 30 | 25.46 | 29.45 | 29.50 | 25.45 | 50 |
Lead | 120 | 120 | 120 | 130 | 149 | 300 | 150 | 58.70 | 110.00 | 85.17 | 6.57 | 150 |
Inorganic Arsenic | 40 | 40 | - | - | N/A | - | - | - | - | - | - | - |
Total Arsenic | - | - | - | - | N/A | 20 | 20 | 13.3 | 5.62 | - | 1.36 | 20 |
Biuret | Must not be present | N/A | - | - | N/A | - | - | - | - | - | - | - |
Copper | 300 | 300 | 200 | 300 | 149 | 800 | 150 | 52.30 | 138.84 | 117.80 | 89.79 | 300 |
Zinc | 800 | 800 | 600 | 600 | 397 | - | 400 | 186.00 | 311.68 | 347.38 | 452.32 | 800 |
Parameter | Biowaste Compost—The Netherlands | Green Compost—The Netherlands | Germany’s Compost | SSGW 2008 | SSBW 2008 | SSGW 2019 | SSBW 2019 | SSC 2019 |
---|---|---|---|---|---|---|---|---|
90th Percentile | 95th Percentile | 90th Percentile | ||||||
mg/kg dm | ||||||||
Cadmium | 0.43 | 0.6 | 0.85 | 0.96 | 0.77 | 1.0 | 0.9 | 0.97 |
Chromium | 26 | 21.9 | 41.9 | 57 | 64.9 | 59.9 | 32.9 | 43.0 |
Copper | 49 | 29 | 66.1 | 81.7 | 100 | 52.3 | 138.8 | 117.8 |
Mercury | 0.11 | 0.12 | 0.2 | 0.15 | 0.3 | 0.2 | 0.3 | 0.4 |
Nickel | 13 | 11 | 27.9 | 37.7 | 39.0 | 25.5 | 29.5 | 29.5 |
Lead | 54 | 46.1 | 56 | 113.7 | 100 | 58.7 | 110 | 85.2 |
Zinc | 205 | 154 | 242 | 253.3 | 266 | 186 | 311.7 | 347.4 |
Arsenic | 4.5 | 5.9 | n/a | 9.5 | 6.7 | - | 5.6 | - |
Green Compost | ||||||
---|---|---|---|---|---|---|
Average | Median | StDev | 25th Percentile | 75th Percentile | 95th Percentile | |
Self-heating Test Class of Stability | V | V | - | V | V | V |
Temperature °C | 24.9 | 23.7 | 5.4 | 21.7 | 26.1 | 33.0 |
Oxygen Uptake Rate mmol O2/kg OM/h | 5.3 | 3.7 | 3.5 | 2.5 | 5.3 | 9.2 |
Biowaste Compost (Known as VFG Vegetable, Fruit and Garden) | ||||||
Average | Median | StDev | 25th Percentile | 75th Percentile | 95th Percentile | |
Self-heating Test Class of Stability | V | V | - | V | V | V |
Temperature °C | 25.8 | 24.3 | 6.5 | 22.1 | 27.1 | 40.0 |
Oxygen Uptake Rate mmol O2/kg OM/h | 5.5 | 4.1 | 5.7 | 2.5 | 5.9 | 16.1 |
Parameter | Average Household Biowaste Compost | 90th Percentile Biowaste Compost | Average Green Waste Compost | 90th Percentile Green Compost |
---|---|---|---|---|
OUR mmol O2/kg o.s./hr | 21 | 27 | 12 | 19 |
Country | Standard Name/Reference | Stability Method | Limit Value |
---|---|---|---|
Belgium | Standards for green compost | Self-heating test | <40 °C (IV or V) |
Oxygen Uptake Rate | <15 mmol/kg VS/h | ||
Standards for VFG (food) compost | Self-heating test | <40 °C (IV or V) | |
Oxygen Uptake Rate | <15 mmol/kg VS/h | ||
Ireland | IS 441 and in EPA waste licences | Oxygen Uptake Rate | 13 mmol O2/kg organic solids/h |
Finland | CO2—production | <6 mg CO2/g VS/day | |
Germany | RAL GZ 251 for compost | Self-heating test | Fresh = II Mature = IV Substrate = V |
Germany | RAL-GZ 258 for sewage sludge compost | Self-heating test | Fresh = II, III Mature = IV, V |
The Netherlands | Keurcompost | Oxygen Uptake Rate | No limit specified |
Slovenia | Decree on recovery of biowaste and the use of compost/digestate (Official Gazette of the RS, Nos. 99/13, 56/15 and 56/18) | AT4 | <15 mmolO2/g DM |
United Kingdom | PAS 100 | CO2 microbial respiration rate | <16 mg CO2/g organic matter/day |
USA | EPA | - | |
State requirement | Varies by state | ||
US Compost Council STA | - | ||
USCC STA—Consumer Use Program Acceptable Ranges | CO2 evolution | Less than 4 mg CO2-C per g OM per day | |
USCC STA—Consumer Use Program Preferable Ranges | Less than 2 mg CO2-C per g OM per day | ||
Canada | Guidelines of the Canadian Council of Ministers of the Environment (CCME) are “taken back” to the province/territory to be adopted/adjusted. A total of 7 out of 10 provinces and all three territories have adopted the CCME, with British Columbia/Ontario/Quebec having adjusted them. | Maturity/ stability of compost. Cured for 21 days and one of the following:
| |
Italy | Humic and fulvic acids | 7% dry weight | |
EU Fertiliser Products Regulation | Self-heating test and OUR | III and 25 mmol/kg | |
JRC Study | Self-heating test and OUR | III and 25 mmol/kg | |
ECN QAS | Self-heating test and OUR | Declaration |
Class of Stability Based on Self-Heating Test | Compost Can Be Best Used for |
---|---|
V | Potting mixes, seedling starter |
IV | General purpose gardening, greenhouse cultivation |
III | Grapes, fruit, apples |
II | Field cultivation, e.g., corn, tomatoes, broccoli, greenhouse hotbeds |
I | Compost, raw feedstock, mushroom compost |
Compost Application | Method and Limit |
---|---|
Growing media | OUR with a limit of 15 mmolO2/kg organic solids/h |
Other applications—field/landscaping | OUR with a limit of 25 mmolO2/kg organic solids/h |
Product | Residual Biogas Potential | OUR | OUR |
---|---|---|---|
Litre/Biogas/g VS | mmol/kg VS/ h at 20 °C | mmol/kg VS/h at 30 °C | |
Dried digestate (without manure) | 0.16 | 22 | 35.2 |
Solid fraction digestate (without manure) | 0.05 | 9.0 | 16.2 |
Solid fraction digestate (with manure) | 0.07 | 16.0 | 28.8 |
Country | Standard Reference | Stability Method | Limit Value |
---|---|---|---|
Belgium | Flemish Decree (VLAREMA) | Oxygen Uptake Rate | <50 mmol/kg VS/h |
Finland | Decree of the Ministry of Agriculture and Forestry on Fertiliser Products (24/2011, amendments up to 7/2013) | CO2 production: microbiological activity. | |
Germany | RAL GZ 245—biowaste | Organic acids | ≤1500 mg/L FM |
RAL-GZ 246 for digestate made of renewable energy crops and manure it is | Organic acids | ≤1500 mg/L FM | |
UK | PAS 110 | Residual biogas potential | <0.45 L biogas/g of volatile solids |
Slovenia | Category 1—threshold for digestate containing less than 20% dry matter | Volatile fatty acids | <300 mg/L |
Slovenia | Category 1—threshold for digestate containing more than 20% dry matter | Volatile fatty acids | <100 mg/L |
Slovenia | Category 2—threshold for digestate containing more than 20% dry matter | Volatile fatty acids | <300 mg/L |
America | American Biogas Council Digestate Testing Programme | Must be measured using VFA or CO2 respiration. No limits set | |
EU Fertiliser Products Regulation (for solid and liquid digestate) | Residual biogas potential OUR | 0.25 L biogas/g volatile solids 25 mmol/kg VS/h | |
JRC end-of-waste criteria for biodegradable waste subjected to biological treatment (compost and digestate) | Residual biogas potential OUR Organic acids | 0.25 L biogas/g volatile solids 50 mmol/kg/VS/h 1500 mg/L |
Product | OUR mmol O2/kg VS/h * | Reference |
---|---|---|
Cattle manure | 52.38 | ILVO |
Solid fraction cattle slurry | 65.52 | ILVO |
Composted cattle manure | 14.94 | ILVO |
Processed chicken manure | 108 | ILVO |
Biothermal dried chicken manure and biowaste | 126–180 | VLACO, Belgium |
Green compost | 3.6–9 | VLACO, Belgium |
Solid fraction digestate | 21.6–45 | VLACO, Belgium |
Dried digestate | 27–63 | VLACO, Belgium |
Post-composted solid fraction digestate and substrate | 4.3–12.78 | Arbor, Biorefine |
Post-composted solid fraction digestate and substrate | 23.58 | Arbor, Biorefine |
Irish data Compost SSBW 2019—90th Percentile | Irish Data Compost SSGW 2019—90th Percentile | Irish Data Digestate 2019—90th Percentile | Does the Irish Data Meet the Limits for the Recommended Standards? | Does the Irish Data Meet the Limits for the European Fertiliser Regulation? | |
---|---|---|---|---|---|
Mercury (mg/kg DM) | 0.31 | 0.2 | 0.12 | Yes | Yes |
Cadmium (mg/kg DM) | 0.90 | 1.00 | 0.63 | Yes | Yes |
Nickel (mg/kg DM) | 29.45 | 25.46 | 25.45 | Yes | Yes |
Chromium—total (mg/kg DM) | 32.94 | 59.87 | 14.21 | Yes | Yes No limit in EFR |
Copper (mg/kg DM) | 138.84 | 52.30 | 89.79 | Yes | Yes |
Zinc (mg/kg DM) | 311.68 | 186.00 | 452.32 | Yes | Yes |
Lead (mg/kg DM) | 110.0 | 58.70 | 6.57 | Yes | Yes |
Inorganic arsenic (mg/kg DM) | - | - | - | Not a parameter | No data |
Total arsenic (mg/kg DM) | 5.62 | 13.1 (1 sample) | 1.36 (1 sample) | Yes | Not a parameter |
Hexavalent chromium (mg/kg DM) | <1 | 1 | <1 | Yes | Yes |
Germination test % | 100 (2008 data) | 94 (2008 data) | No data | Yes for compost. No data for digestate | Not a parameter |
Oxygen Uptake Rate (mmol O2/kg Organic solid/h) | 2008 data showed 6 samples ranging from 8.8 to 15.5 | 32.4 to 84.9 (6 samples) | Compost—yes, 50% of Digestate samples meet the limit | Compost—yes, no digestate samples meet the limit in EFR | |
Biogas residual potential(l biogas/g) | n/a | n/a | −0.034 to 0.166 (7 samples) | Yes | Yes |
Parameter | Recommended Compost Standard | Recommended Digestate Standard: Whole, Separated Fibre or Liquor | JRC 2014 End-of-Waste Criteria for Biodegradable Waste Subjected to Biological Treatment (Compost and Digestate) | EU Fertiliser Products Regulation (EFR) |
---|---|---|---|---|
Mercury (mg/kg DM) | 1 | 1 | 1 | |
Cadmium (mg/kg DM) | 2 | 1.5 | 1.5 for PFC 1 and 2 for PFC 3 | |
Nickel (mg/kg DM) | 50 | 50 | 50 | |
Chromium—total (mg/kg DM) | 100 | 100 | - | |
Copper (mg/kg DM) | 300 | 200 | 300 | |
Zinc (mg/kg DM) | 800 | 600 | 800 | |
Lead (mg/kg DM) | 150 | 120 | 120 | |
Total arsenic (mg/kg DM) | 2 | - | 2 | |
Hexavalent chromium (mg/kg DM) | 2 | - | 2 |
Compost | Digestate: Whole, Separated Fibre or Liquor | |
---|---|---|
Heavy Metals | ||
Mercury (mg/kg DM) | 1 | 1 |
Cadmium (mg/kg DM) | 1.5 | 1.5 |
Nickel (mg/kg DM) | 50 | 50 |
Chromium (mg/kg DM) | 100 | 100 |
Copper (mg/kg DM) | 300 | 300 |
Zinc (mg/kg DM) | 800 | 800 |
Lead (mg/kg DM) | 150 | 150 |
Total Arsenic (mg/kg DM) | 20 | 20 |
Hexavalent Chromium (mg/kg DM) | 2 | 2 |
Stability and Maturity | ||
Oxygen Uptake Rate * (mmol O2/kg Organic solid/h) | 15: Growing Media 25: Field Application | 50 |
Biogas Residual Potential * (l biogas/g) | - | 0.25 |
Germination Test For Use in Growing Media Munoo—Liisa Vitality index (MLV | 80% | 80% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prasad, M.; Foster, P. Comprehensive Evaluation and Development of Irish Compost and Digestate Standards for Heavy Metals, Stability and Phytotoxicity. Environments 2023, 10, 166. https://doi.org/10.3390/environments10100166
Prasad M, Foster P. Comprehensive Evaluation and Development of Irish Compost and Digestate Standards for Heavy Metals, Stability and Phytotoxicity. Environments. 2023; 10(10):166. https://doi.org/10.3390/environments10100166
Chicago/Turabian StylePrasad, Munoo, and Percy Foster. 2023. "Comprehensive Evaluation and Development of Irish Compost and Digestate Standards for Heavy Metals, Stability and Phytotoxicity" Environments 10, no. 10: 166. https://doi.org/10.3390/environments10100166
APA StylePrasad, M., & Foster, P. (2023). Comprehensive Evaluation and Development of Irish Compost and Digestate Standards for Heavy Metals, Stability and Phytotoxicity. Environments, 10(10), 166. https://doi.org/10.3390/environments10100166