Meditation-Induced States, Vagal Tone, and Breathing Activity Are Related to Changes in Auditory Temporal Integration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Participants
2.3. Apparatus and Physiological Recordings
2.4. Instruments
2.4.1. Freiburg Mindfulness Inventory-14 (FMI-14)
2.4.2. Metronome Task
2.4.3. Interventions
2.5. Procedure
2.6. Data Reduction, Statistical Approach
2.7. Outlier Analysis
3. Results
3.1. Sample Description
3.2. Descriptive Analysis
3.3. Mediation Analysis
3.4. Relationship Between Trait-mindfulness and the Metronome Task
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Integrated Beats | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
ISI = 3 s | 0 s | 3 s | 6 s (excluded) | excluded | excluded | excluded | excluded | excluded |
ISI = 2 s | 0 s | 2 s | 4 s (excluded) | excluded | excluded | excluded | excluded | excluded |
ISI = 1.333 s | 0 s | 1.33 s | 2.66 s | 3.99 s (excluded) | excluded | excluded | excluded | excluded |
ISI = 1 s | 0 s | 1 s | 2 s | 3 s | 4 s (excluded) | excluded | excluded | excluded |
ISI = 0.5 s | 0 s | 0.5 s | 1 s | 1.5 s | 2 s | 2.5 s | 3 s | 3.5 s (excluded) |
ISI = 0.333 s | 0 s | 0.33 s | 0.66 s | 0.99 s | 1.33 s | 1.665 s | 1.99 s | 2.33 s |
ISI | > 3 s Criterion | > 8 Criterion | SUM (Both Criteria) | % of Trials |
---|---|---|---|---|
0.333 | 0 | 4 | 4 | 0.53 |
0.5 | 93 | 2 | 95 | 12.63 |
1 | 29 | 1 | 30 | 3.98 |
1.333 | 201 | 0 | 201 | 26.72 |
2 | 164 | 0 | 164 | 21.80 |
3 | 93 | 0 | 93 | 12.36 |
580 | 7 | 587 | 13.01 | |
% of trials | 12.86 | 0.15 | 13.01 |
Grouping | % of Trials | Peak ISI |
---|---|---|
1 | 18.54 | 3 |
2 | 35.44 | 1.333 |
3 | 8.58 | 0.5 |
4 | 27.70 | 0.5 |
5 | 0.95 | 0.333 |
6 | 1.62 | 0.333 |
7 | 0.53 | 0.333 |
8 | 6.48 | 0.333 |
>8 | 0.16 | 0.33 |
References
- Craig, A.D.B. Emotional moments across time: A possible neural basis for time perception in the anterior insula. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1933–1942. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.D. How Do You Feel?: An Interoceptive Moment with Your Neurobiological Self; Princeton University Press: Princeton, NJ, USA, 2015; ISBN 978-0-691-15676-7. [Google Scholar]
- Wittmann, M. The inner experience of time. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1955–1967. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, M. The inner sense of time: How the brain creates a representation of duration. Nat. Rev. Neurosci. 2013, 14, 217–223. [Google Scholar] [CrossRef]
- Droit-Volet, S.; Fayolle, S.; Lamotte, M.; Gil, S. Time, Emotion and the Embodiment of Timing. Timing Time Percept. 2013, 1, 99–126. [Google Scholar] [CrossRef] [Green Version]
- Critchley, H.D.; Wiens, S.; Rotshtein, P.; Ohman, A.; Dolan, R.J. Neural systems supporting interoceptive awareness. Nat. Neurosci. 2004, 7, 189–195. [Google Scholar] [CrossRef]
- Kabat-Zinn, J. An outpatient program in behavioral medicine for chronic pain patients based on the practice of mindfulness meditation: Theoretical considerations and preliminary results. Gen. Hosp. Psychiatry 1982, 4, 33–47. [Google Scholar] [CrossRef]
- Marlatt, G.A.; Kristeller, J.L. Mindfulness and meditation. In Integrating Spirituality into Treatment: Resources for Practitioners; American Psychological Association: Washington, DC, USA, 1999; pp. 67–84. ISBN 978-1-55798-581-1. [Google Scholar]
- Hölzel, B.K.; Lazar, S.W.; Gard, T.; Schuman-Olivier, Z.; Vago, D.R.; Ott, U. How Does Mindfulness Meditation Work? Proposing Mechanisms of Action from a Conceptual and Neural Perspective. Perspect. Psychol. Sci. J. Assoc. Psychol. Sci. 2011, 6, 537–559. [Google Scholar] [CrossRef]
- Tang, Y.-Y.; Hölzel, B.K.; Posner, M.I. The neuroscience of mindfulness meditation. Nat. Rev. Neurosci. 2015, 16, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, M.; Schmidt, S. Mindfulness meditation and the experience of time. In Meditation-Neuroscientific Approaches and Philosophical Implications; Studies in Neuroscience, Consciousness and Spirituality; Springer International Publishing: Cham, Switzerland, 2014; pp. 199–209. ISBN 978-3-319-01633-7. [Google Scholar]
- Kabat-Zinn, J. Coming to Our Senses: Healing Ourselves and the World through Mindfulness; Hyperion: New York, NY, USA, 2005; ISBN 978-0-7499-2588-8. [Google Scholar]
- Wittmann, M.; Otten, S.; Schötz, E.; Sarikaya, A.; Lehnen, H.; Jo, H.-G.; Kohls, N.; Schmidt, S.; Meissner, K. Subjective expansion of extended time-spans in experienced meditators. Front. Psychol. 2015, 5, 1586. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, M. Modulations of the experience of self and time. Conscious. Cogn. 2015, 38, 172–181. [Google Scholar] [PubMed]
- Sauer, S.; Lemke, J.; Wittmann, M.; Kohls, N.; Mochty, U.; Walach, H. How long is now for mindfulness meditators? Personal. Individ. Differ. 2012, 52, 750–754. [Google Scholar] [CrossRef]
- Kornmeier, J.; Friedel, E.; Wittmann, M.; Atmanspacher, H. EEG correlates of cognitive time scales in the Necker-Zeno model for bistable perception. Conscious. Cogn. 2017, 53, 136–150. [Google Scholar] [CrossRef]
- Pöppel, E. Pre-semantically defined temporal windows for cognitive processing. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 1887–1896. [Google Scholar] [CrossRef] [Green Version]
- Montemayor, C.; Wittmann, M. The Varieties of Presence: Hierarchical Levels of Temporal Integration. Timing Time Percept. 2014, 2, 325–338. [Google Scholar] [CrossRef]
- White, P.A. The three-second “subjective present”: A critical review and a new proposal. Psychol. Bull. 2017, 143, 735–756. [Google Scholar] [CrossRef]
- Varela, F.J. Present-Time Consciousness. J. Conscious. Stud. 1999, 6, 111–140. [Google Scholar]
- Wernery, J.; Atmanspacher, H.; Kornmeier, J.; Candia, V.; Folkers, G.; Wittmann, M. Temporal Processing in Bistable Perception of the Necker Cube. Perception 2015, 44, 157–168. [Google Scholar] [CrossRef] [PubMed]
- Carter, O.L.; Presti, D.E.; Callistemon, C.; Ungerer, Y.; Liu, G.B.; Pettigrew, J.D. Meditation alters perceptual rivalry in Tibetan Buddhist monks. Curr. Biol. 2005, 15, R412–R413. [Google Scholar] [CrossRef] [Green Version]
- Berkovich-Ohana, A.; Glicksohn, J.; Goldstein, A. Mindfulness-induced changes in gamma band activity—Implications for the default mode network, self-reference and attention. Clin. Neurophysiol. 2012, 123, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Lutz, A.; Jha, A.P.; Dunne, J.D.; Saron, C.D. Investigating the Phenomenological Matrix of Mindfulness-related Practices from a Neurocognitive Perspective. Am. Psychol. 2015, 70, 632–658. [Google Scholar] [CrossRef] [Green Version]
- Kramer, R.S.S.; Weger, U.W.; Sharma, D. The effect of mindfulness meditation on time perception. Conscious. Cogn. 2013, 22, 846–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Droit-Volet, S.; Fanget, M.; Dambrun, M. Mindfulness meditation and relaxation training increases time sensitivity. Conscious. Cogn. 2015, 31, 86–97. [Google Scholar] [CrossRef]
- Brochard, R.; Abecasis, D.; Potter, D.; Ragot, R.; Drake, C. The “ticktock” of our internal clock: Direct brain evidence of subjective accents in isochronous sequences. Psychol. Sci. 2003, 14, 362–366. [Google Scholar] [CrossRef] [PubMed]
- Szelag, E. Temporal Integration of the Brain as Studied with the Metronome Paradigm. In Time, Temporality, Now: Experiencing Time and Concepts of Time in an Interdisciplinary Perspective; Atmanspacher, H., Ruhnau, E., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 121–131. ISBN 978-3-642-60707-3. [Google Scholar]
- Van Noorden, L.; Moelants, D. Resonance in the Perception of Musical Pulse. J. New Music Res. 1999, 28, 43–66. [Google Scholar] [CrossRef]
- Fraisse, P. 6—Rhythm and Tempo. In Psychology of Music; Deutsch, D., Ed.; Cognition and Perception; Academic Press: San Diego, CA, USA, 1982; pp. 149–180. ISBN 978-0-12-213562-0. [Google Scholar]
- Arnling Bååth, R. Subjective rhythmization: A replication and an assessment of two theoretical explanations. Music Percept. 2015, 33, 244–254. [Google Scholar] [CrossRef]
- Szelag, E.; von Steinbüchel, N.; Reiser, M.; Gilles de Langen, E.; Pöppel, E. Temporal constraints in processing of nonverbal rhythmic patterns. Acta Neurobiol. Exp. 1996, 56, 215–225. [Google Scholar]
- Szelag, E.; von Steinbüchel, N.; Pöppel, E. Temporal processing disorders in patients with Broca’s aphasia. Neurosci. Lett. 1997, 235, 33–36. [Google Scholar] [CrossRef]
- Von Steinbüchel, N.; Wittmann, M.; Strasburger, H.; Szelag, E. Auditory temporal-order judgement is impaired in patients with cortical lesions in posterior regions of the left hemisphere. Neurosci. Lett. 1999, 264, 168–171. [Google Scholar] [CrossRef]
- Wittmann, M. Moments in time. Front. Integr. Neurosci. 2011, 5, 66. [Google Scholar] [CrossRef]
- Pöppel, E. A hierarchical model of temporal perception. Trends Cogn. Sci. 1997, 1, 56–61. [Google Scholar] [CrossRef]
- Lutz, A.; Dunne, J.D.; Davidson, R.J. Meditation and the Neuroscience of Consciousness. In Cambridge Handbook of Consciousness; Zelazo, P.D., Moscovitch, M., Thompson, E., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 19–497. [Google Scholar]
- Marchand, W.R. Neural mechanisms of mindfulness and meditation: Evidence from neuroimaging studies. World J. Radiol. 2014, 6, 471–479. [Google Scholar] [CrossRef]
- Farb, N.A.S.; Segal, Z.V.; Mayberg, H.; Bean, J.; McKeon, D.; Fatima, Z.; Anderson, A.K. Attending to the present: Mindfulness meditation reveals distinct neural modes of self-reference. Soc. Cogn. Affect. Neurosci. 2007, 2, 313–322. [Google Scholar] [CrossRef]
- Fox, K.C.R.; Dixon, M.L.; Nijeboer, S.; Girn, M.; Floman, J.L.; Lifshitz, M.; Ellamil, M.; Sedlmeier, P.; Christoff, K. Functional neuroanatomy of meditation: A review and meta-analysis of 78 functional neuroimaging investigations. Neurosci. Biobehav. Rev. 2016, 65, 208–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittmann, M.; Simmons, A.N.; Aron, J.L.; Paulus, M.P. Accumulation of neural activity in the posterior insula encodes the passage of time. Neuropsychologia 2010, 48, 3110–3120. [Google Scholar] [CrossRef] [Green Version]
- Meissner, K.; Wittmann, M. Body signals, cardiac awareness, and the perception of time. Biol. Psychol. 2011, 86, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Cellini, N.; Mioni, G.; Levorato, I.; Grondin, S.; Stablum, F.; Sarlo, M. Heart rate variability helps tracking time more accurately. Brain Cogn. 2015, 101, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Walach, H.; Buchheld, N.; Buttenmüller, V.; Kleinknecht, N.; Schmidt, S. Measuring mindfulness—The Freiburg Mindfulness Inventory (FMI). Personal. Individ. Differ. 2006, 40, 1543–1555. [Google Scholar] [CrossRef]
- Sauer, S.; Walach, H.; Offenbächer, M.; Lynch, S.; Kohls, N. Measuring Mindfulness: A Rasch Analysis of the Freiburg Mindfulness Inventory. Religions 2011, 2, 693–706. [Google Scholar] [CrossRef] [Green Version]
- Sauer, S.; Walach, H.; Schmidt, S.; Hinterberger, T.; Lynch, S.; Büssing, A.; Kohls, N. Assessment of Mindfulness: Review on State of the Art. Mindfulness 2013, 4, 3–17. [Google Scholar] [CrossRef]
- Kabat-Zinn, J.; Kesper-Grossman, U. Die Heilende Kraft der Achtsamkeit; Arbor Verlag: Freiamt im Schwarzwald, Germany, 2004. [Google Scholar]
- Kabat-Zinn, J. Achtsamkeit und Meditation im Täglichen Leben; Arbor Verlag: Freiamt im Schwarzwald, Germany, 2007. [Google Scholar]
- Bakker, G. Der Umweg; Jumbo Neue Medien und Verlag: Hamburg, Germany, 2012. [Google Scholar]
- Leon, D. Mein Venedig; Diogenes Verlag: Zürich, Switzerland, 2005. [Google Scholar]
- Mazzantini, M. Das Meer am Morgen; Jumbo Neue Medien und Verlag: Hamburg, Germany, 2012. [Google Scholar]
- Tarvainen, M.P.; Ranta-aho, P.O.; Karjalainen, P.A. An advanced detrending method with application to HRV analysis. IEEE Trans. Biomed. Eng. 2002, 49, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research—Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Front. Psychol. 2017, 8, 213. [Google Scholar] [CrossRef] [PubMed]
- Friedman, B.H.; Allen, M.T.; Christie, I.C.; Santucci, A.K. Validity concerns of common heart-rate variability indices. IEEE Eng. Med. Biol. Mag. 2002, 21, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Kleiger, R.E.; Stein, P.K.; Bigger, J.T. Heart rate variability: Measurement and clinical utility. Ann. Noninvasive Electrocardiol. 2005, 10, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Luft, C.D.B.; Takase, E.; Darby, D. Heart rate variability and cognitive function: Effects of physical effort. Biol. Psychol. 2009, 82, 164–168. [Google Scholar] [CrossRef]
- Khandoker, A.H.; Karmakar, C.; Brennan, M.; Palaniswami, M.; Voss, A. Poincaré Plot Methods for Heart Rate Variability Analysis; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-7374-9. [Google Scholar]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Hill, L.K.; Siebenbrock, A. Are all measures created equal? Heart rate variability and respiration. Biomed. Sci. Instrum. 2009, 45, 71–76. [Google Scholar]
- Penttilä, J.; Helminen, A.; Jartti, T.; Kuusela, T.; Huikuri, H.V.; Tulppo, M.P.; Coffeng, R.; Scheinin, H. Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: Effects of various respiratory patterns. Clin. Physiol. 2001, 21, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Malik, M.; Bigger, J.T.; Camm, A.J.; Kleiger, R.E.; Malliani, A.; Moss, A.J.; Schwartz, P.J. Heart rate variabilityStandards of measurement, physiological interpretation, and clinical use. Eur. Heart J. 1996, 17, 354–381. [Google Scholar] [CrossRef]
- Berntson, G.G.; Bigger, J.T.; Eckberg, D.L.; Grossman, P.; Kaufmann, P.G.; Malik, M.; Nagaraja, H.N.; Porges, S.W.; Saul, J.P.; Stone, P.H.; et al. Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology 1997, 34, 623–648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, A.F. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach; Guilford Press: New York, NY, USA, 2013; ISBN 978-1-60918-230-4. [Google Scholar]
- Preacher, K.J.; Hayes, A.F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef] [Green Version]
- MacKinnon, D.P.; Lockwood, C.M.; Williams, J. Confidence Limits for the Indirect Effect: Distribution of the Product and Resampling Methods. Multivar. Behav. Res. 2004, 39, 99. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef] [PubMed]
- Shrout, P.E.; Bolger, N. Mediation in experimental and nonexperimental studies: New procedures and recommendations. Psychol. Methods 2002, 7, 422–445. [Google Scholar] [CrossRef] [PubMed]
- Holmbeck, G.N. Toward terminological, conceptual, and statistical clarity in the study of mediators and moderators: Examples from the child-clinical and pediatric psychology literatures. J. Consult. Clin. Psychol. 1997, 65, 599–610. [Google Scholar] [CrossRef] [PubMed]
- Preacher, K.J.; Hayes, A.F. Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef] [Green Version]
- Vos, P.G. Waarneming van Metrische Toon Reeksen; Nijmegen: Nijmegen, The Netherlands, 1973. [Google Scholar]
- Parncutt, R. A Perceptual Model of Pulse Salience and Metrical Accent in Musical Rhythms. Music Percept. Interdiscip. J. 1994, 11, 409–464. [Google Scholar] [CrossRef]
- Arstila, V.; Lloyd, D. Subjective Time: The Philosophy, Psychology, and Neuroscience of Temporality; MIT Press: Cambridge, MA, USA, 2014; ISBN 978-0-262-01994-1. [Google Scholar]
- Berkovich-Ohana, A.; Wittmann, M. A typology of altered states according to the consciousness state space (CSS) model: A special reference to subjective time. J. Conscious. Stud. 2017, 24, 37–61. [Google Scholar]
- Pollatos, O.; Laubrock, J.; Wittmann, M. Interoceptive Focus Shapes the Experience of Time. PLoS ONE 2014, 9, e86934. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. A model of neurovisceral integration in emotion regulation and dysregulation. J. Affect. Disord. 2000, 61, 201–216. [Google Scholar] [CrossRef]
- Thayer, J.F.; Lane, R.D. Claude Bernard and the heart-brain connection: Further elaboration of a model of neurovisceral integration. Neurosci. Biobehav. Rev. 2009, 33, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Thayer, J.F.; Ahs, F.; Fredrikson, M.; Sollers, J.J.; Wager, T.D. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci. Biobehav. Rev. 2012, 36, 747–756. [Google Scholar] [CrossRef]
- Hansen, A.L.; Johnsen, B.H.; Thayer, J.F. Vagal influence on working memory and attention. Int. J. Psychophysiol. Psychophysiol. 2003, 48, 263–274. [Google Scholar] [CrossRef]
- Thompson, E. Waking, Dreaming, Being: Self and Consciousness in Neuroscience, Meditation, and Philosophy; Columbia University Press: New York, NY, USA, 2014; ISBN 978-0-231-53831-2. [Google Scholar]
- Wittmann, M. Altered States of Consciousness: Experiences Out of Time and Self; MIT Press: Cambridge, MA, USA, 2018; ISBN 978-0-262-03831-7. [Google Scholar]
Variable | Meditation Group (n = 41) | Story Group (n = 43) | p-Value a |
---|---|---|---|
Age (mean ± SD) | 25 ± 3.7 | 25 ± 3.4 | 0.937 |
Gender (female (%)) | 25 (29.8) | 25 (29.8) | 0.791 b |
Educational level | 0.953 b | ||
Secondary school (n (%)) | 1 (1.2) | 1 (1.2) | |
High school (n (%)) | 27 (32.1) | 27 (32.1) | |
University degree (n (%)) | 13 (15.5) | 15 (17.9) | |
Meditation experience (mean ± SD) | 223 ± 511 | 218 ± 484 | 0.963 |
Trait-mindfulness (FMI) | |||
Acceptance (mean ± SD) | 24 ± 3.4 | 23 ± 2.6 | 0.204 |
Presence (mean ± SD) | 19 ± 4.2 | 18 ± 2.1 | 0.203 |
Sum (mean ± SD) | 42 ± 4.8 | 41 ± 3.9 | 0.213 |
Variable | Meditation Group (n = 41) | Story Group (n = 43) | p-Value |
---|---|---|---|
Resting RMSSD (mean ± SD) | 36.8 ± 22.6 | 35.4 ± 22.3 | 0.774 |
Resting HF (mean ± SD) | 48.7 ± 19.8 | 48.4 ± 21 | 0.950 |
Resting BR (mean ± SD) | 4.3 ± 0.86 | 4.2 ± 0.96 | 0.692 |
Resting BRSD (mean ± SD) | 0.90 ± 0.47 | 0.98 ± 0.56 | 0.480 |
Intervention RMSSD (mean ± SD) | 48.4 ± 33.7 | 38.9 ± 23.3 | 0.139 |
Intervention HF (mean ± SD) | 41.1 ± 21.3 | 35.9 ± 17.9 | 0.263 |
Intervention BR (mean ± SD) | 5.1 ± 1 | 4.1 ± 0.88 | 0.000 *** |
Intervention BRSD (mean ± SD) | 1.4 ± 0.65 | 1.1 ± 0.62 | 0.006 ** |
Diff. RMSSD (mean ± SD) | 11.4 ± 18.3 | 3.4 ± 11.8 | 0.019 * |
Diff. HF (mean ± SD) | −7.5 ± 26.3 | −9.1 ± 24.7 | 0.798 |
Diff. BR (mean ± SD) | 0.73 ± 0.81 | −0.17 ± 0.69 | 0.000 *** |
Diff. BRSD (mean ± SD) | 0.50 ± 0.55 | 0.03 ± 0.46 | 0.000 *** |
X Independent Variable | M Diff Mediating Variables | Y Diff Dependent Variables | Effect of X→M (a) | Effect of M→Y (b) | Specific Indirect Effects (a, b) | Direct Effect X→Y (c’) | Total Effect (c) | Type of Effect |
---|---|---|---|---|---|---|---|---|
RMSSD | Area under the curve AUC | 8.59 * | −0.00 | −0.00 | 0.04 | 0.01 | none | |
HF | 1.56 | 0.00 | 0.00 | |||||
BR mean | 0.80 *** | 0.07 | 0.06 | |||||
BR SD | 0.49 *** | −0.19 | −0.09 | |||||
Meditation vs. Story | RMSSD | Integration interval at 3 s ISI | 8.87 * | −0.00 | −0.05 | 0.21 * | 0.06 | Direct effect |
HF | 3.02 | 0.00 | 0.00 | |||||
BR mean | 0.77 *** | −0.12 | −0.09 | |||||
BR SD | 0.45 *** | −0.01 | −0.00 | |||||
RMSSD | Integration interval at 2 s ISI | 8.31 * | 0.00 | 0.01 | −0.11 | −0.06 | none | |
HF | 0.57 | 0.00 | 0.00 | |||||
BR mean | 0.82 *** | 0.03 | 0.02 | |||||
BR SD | 0.50 *** | 0.01 | 0.01 | |||||
RMSSD | Integration interval at 1.33 s ISI | 9.67 * | 0.00 | 0.01 | −0.01 | 0.01 | none | |
HF | −1.86 | −0.00 | 0.00 | |||||
BR mean | 0.75 *** | 0.03 | 0.01 | |||||
BR SD | 0.53 *** | −0.00 | −0.00 | |||||
RMSSD | Integration interval at 1 s ISIs | 8.68 * | −0.00 | −0.00 | 0.00 | −0.01 | Indirect effect | |
HF | −1.00 | −0.00 * | 0.00 | |||||
BR mean | 0.77 *** | 0.17 *** | 0.13 * | |||||
BR SD | 0.49 *** | −0.29 ** | −0.14 * | |||||
RMSSD | Integration interval at 0.5 s ISIs | 9.68 * | 0.00 | −0.00 | 0.05 | 0.03 | none | |
HF | 1.95 | 0.00 | 0.00 | |||||
BR mean | 0.77 *** | 0.00 | 0.00 | |||||
BR SD | 0.48 *** | −0.06 | −0.02 | |||||
RMSSD | Integration interval at 0.33 s ISIs | 8.73 * | 0.00 * | 0.01 * | 0.00 | −0.00 | Indirect effect | |
HF | 1.92 | 0.00 | 0.00 | |||||
BR mean | 0.79 *** | 0.00 | 0.00 | |||||
BR SD | 0.48 *** | −0.06 | −0.03 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linares Gutierrez, D.; Kübel, S.; Giersch, A.; Schmidt, S.; Meissner, K.; Wittmann, M. Meditation-Induced States, Vagal Tone, and Breathing Activity Are Related to Changes in Auditory Temporal Integration. Behav. Sci. 2019, 9, 51. https://doi.org/10.3390/bs9050051
Linares Gutierrez D, Kübel S, Giersch A, Schmidt S, Meissner K, Wittmann M. Meditation-Induced States, Vagal Tone, and Breathing Activity Are Related to Changes in Auditory Temporal Integration. Behavioral Sciences. 2019; 9(5):51. https://doi.org/10.3390/bs9050051
Chicago/Turabian StyleLinares Gutierrez, Damisela, Sebastian Kübel, Anne Giersch, Stefan Schmidt, Karin Meissner, and Marc Wittmann. 2019. "Meditation-Induced States, Vagal Tone, and Breathing Activity Are Related to Changes in Auditory Temporal Integration" Behavioral Sciences 9, no. 5: 51. https://doi.org/10.3390/bs9050051
APA StyleLinares Gutierrez, D., Kübel, S., Giersch, A., Schmidt, S., Meissner, K., & Wittmann, M. (2019). Meditation-Induced States, Vagal Tone, and Breathing Activity Are Related to Changes in Auditory Temporal Integration. Behavioral Sciences, 9(5), 51. https://doi.org/10.3390/bs9050051