Active Transport, Not Device Use, Associates with Self-Reported School Week Physical Activity in Adolescents
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Data Processing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Herting, M.M.; Chu, X. Exercise, cognition, and the adolescent brain. Birth Defects Res. 2017, 109, 1672–1679. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Dunn, A.; Cooper, D. Affect, exercise, and physical activity among healthy adolescents. J. Sport Exerc. Psychol. 2009, 31, 706–723. [Google Scholar] [CrossRef]
- Hay, J.; Maximova, K.; Durksen, A.; Carson, V.; Rinaldi, R.L.; Torrance, B.; Ball, G.D.C.; Majumdar, S.R.; Plotnikoff, R.C.; Veugelers, P.; et al. Physical activity intensity and cardiometabolic risk in youth. JAMA Pediatrics 2012, 166, 1022–1029. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed.; Department of Health and Human Services: Washington, DC, USA, 2018.
- National Physical Activity Plan Alliance. 2016 US Report Card on Physical Activity for Children and Youth; National Physical Activity Plan Alliance: Columbia, SC, USA, 2016. [Google Scholar]
- Lubans, D.R.; Boreham, C.A.; Kelly, P.; Foster, C.E. The relationship between active travel to school and health-related fitness in children and adolescents: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.; Al-Nakeeb, Y.; Lyons, M. Tracking the commute home from school utilizing GPS and heart rate monitoring: Establishing the contribution to free-living physical activity. J. Phys. Act. Health 2015, 12, 155–162. [Google Scholar] [CrossRef]
- Southward, E.F.; Page, A.S.; Wheeler, B.W.; Cooper, A.R. Contribution of the school journey to daily physical activity in children aged 11–12 years. Am. J. Prev. Med. 2012, 43, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Larouche, R.; Saunders, T.J.; John Faulkner, G.E.; Colley, R.; Tremblay, M. Associations between active school transport and physical activity, body composition, and cardiovascular fitness: A systematic review of 68 studies. J. Phys. Act. Health 2014, 11, 206–227. [Google Scholar] [CrossRef] [PubMed]
- Strasburger, V.C.; Jordan, A.B.; Donnerstein, E. Health effects of media on children and adolescents. Pediatrics 2010, 125, 756–767. [Google Scholar] [CrossRef] [PubMed]
- McGregor, D.E.; Palarea-Albaladejo, J.; Dall, P.M.; Stamatakis, E.; Chastin, S.F.M. Differences in physical activity time-use composition associated with cardiometabolic risks. Prev. Med. Rep. 2019, 13, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Babey, S.H.; Hastert, T.A.; Wolstein, J. Adolescent sedentary behaviors: Correlates differ for television viewing and computer use. J. Adolesc. Health 2013, 52, 70–76. [Google Scholar] [CrossRef]
- Carson, V.; Staiano, A.E.; Katzmarzyk, P.T. Physical activity, screen time, and sitting among US adolescents. Pediatric Exerc. Sci. 2015, 27, 151–159. [Google Scholar] [CrossRef]
- Manz, K.; Schlack, R.; Poethko-Muller, C.; Mensink, G.; Finger, J.; Lampert, T.; KiGGS Study Group. Physical activity and electronic media use in children and adolescents: Results of the KiGGS study: First follow-up (KiGGS wave 1). Bundesgesunheitsblatt Gesundheitsforschung Gesundheitsschutz 2014, 57, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.L.; Araujo, T.L.; Oliveira, L.C.; Matsudo, V.; Fisberg, M. Association between electronic equipment in the bedroom and sedentary lifestyle, physical activity, and body mass index of children. J. Pediatr. (Rio J.) 2015, 91, 574–582. [Google Scholar] [CrossRef]
- Pfledderer, C.; Burns, R.D.; Brusseau, T.A. Association between access to electronic devices in the home environment and cardiorespiratory fitness in children. Children 2019, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Mathers, M.; Canterfold, L.; Olds, T.; Hesketh, K.; Ridley, K.; Wake, M. Electronic media use and adolescent health and well-being: Cross-sectional community study. Acad. Pediatrics 2009, 9, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Rosen, L.D.; Lim, A.F.; Felt, J.; Carrier, L.M.; Cheever, N.A.; Lara-Ruiz, J.M.; Mendoza, J.S.; Rokkum, J. Media and technology use predicts ill-being among children, preteens and teenagers independent of the negative health impacts of exercise and eating habits. Comput. Hum. Behav. 2014, 35, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Nebeling, L.C.; Hennessy, E.; Oh, A.Y.; Dwyer, L.A.; Patrick, H.; Blanck, H.M.; Perna, F.M.; Ferrer, R.A.; Yaroch, A.L. The FLASHE Study: Survey development, dyadic perspectives, and participant characteristics. Am. J. Prev. Med. 2017, 52, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Oh, A.Y.; Davis, T.; Dwyeer, L.A.; Hennessy, E.; Li, T.; Yaroch, A.L.; Nebeling, L.C. Recruitment, enrollment, and response of parent-adolescent dyads in the FLASHE Study. Am. J. Prev. Med. 2017, 52, 849–855. [Google Scholar] [CrossRef]
- Saint-Maurice, P.F.; Kim, Y.; Hibbing, P.; Oh, A.Y.; Perna, F.M.; Welk, G.J. Calibration and validation of the Youth Activity Profile: The FLASHE study. Am. J. Prev. Med. 2017, 52, 880–887. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Erlbaum Associates: Hillsdale, MI, USA, 1988. [Google Scholar]
- Nisson, A.; Andersen, L.B.; Ommundsen, Y.; Froberg, K.; Sardinha, L.B.; Piehl-Aulin, K.; Ekelund, U. Correlates of objectively assessed physical activity and sedentary time in children: A cross-sectional study (The European Heart Study). BMC Public Health 2009, 9, 322. [Google Scholar] [CrossRef]
- Gupta, N.; Mathiassen, S.E.; Mateu-Figeras, G.; Heiden, M.; Hallman, D.M.; Jørgensen, M.B.; Holtermann, A. A comparison of standard and compositional data analysis in studies addressing group differences in sedentary behavior and physical activity. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Brusseau, T.A.; Burns, R.D. Physical activity, health-related fitness, and classroom behavior in children: A discriminant function analysis. Res. Q Exerc. Sport 2018, 89, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Magnon, V.; Vallet, G.T.; Auxiette, C. Sedentary behavior at work and cognitive functioning: A systematic review. Front. Public Health 2018, 6, 239. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.S.; Vasques, D.G.; Martins, C.D.O.; Williams, L.A.; Lopes, A.S. Active commuting: Prevalence, barriers, and associated variables. J. Phys. Act. Health 2011, 8, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Carver, A.; Salmon, J.; Campbell, K.; Baur, L.; Garnett, S.; Crawford, D. How do perceptions of local neighborhood relate to adolescents’ walking and cycling? Am. J. Health Promot. 2005, 20, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Hume, C.; Salmon, J.; Ball, K. Associations of children’s perceived neighborhood environments with walking and physical activity. Am. J. Health Promot. 2007, 21, 201–207. [Google Scholar] [CrossRef]
- Loucaides, C.A.; Jaqo, R.; Theophanous, M. Prevalence and correlates of active traveling to school among adolescents in Cyprus. Cent. Eur. J. Public Health 2010, 18, 151–156. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, J.; Hsu, P.; Chen, S. Factors affecting students’ walking/biking rates: Initial findings from a safe route to school survey in Florida. J. Transp. Saf. Secur. 2010, 2, 14–27. [Google Scholar] [CrossRef]
- Nelson, N.M.; Woods, C.B. Neighborhood perceptions and active commuting to school among adolescent boys and girls. J. Phys. Act. Health 2010, 7, 257–266. [Google Scholar] [CrossRef]
- Federal Highway Administration. NHTS Brief: National Household Travel Survey: Travel to School: The Distance Factor; Federal Highway Administration: Washington, DC, USA, 2008.
- Beck, L.F.; Nguyen, D.D. School transportation mode, by distance between home and school, United States, Consumer Styles 2012. J. Saf. Res. 2017, 62, 245–251. [Google Scholar] [CrossRef]
- Parra-Saldias, M.; Castro-Pinero, J.; Castillo Paredes, A.; Palma Leal, X.; Díaz Martínez, X.; Rodríguez-Rodríguez, F. Active commuting behaviors from high school to university in Chile: A retrospective study. Int. J. Environ. Res. Public Health 2019, 16, 53. [Google Scholar] [CrossRef]
- LeBlanc, A.G.; Katzmarzyk, P.T.; Barreira, T.V.; Broyles, S.T.; Chaput, J.P.; Church, T.S.; Fogelholm, M.; Harrington, D.M.; Hu, G.; Kuriyan, R. Correlates of total sedentary time and screen time in 9–11-year-old children around the world: The international study of childhood obesity, lifestyle and the environment. PLoS ONE 2015, 10, e0129622. [Google Scholar] [CrossRef] [PubMed]
- Tandon, P.S.; Zhou, C.; Sallis, J.F.; Cain, K.L.; Frank, L.D.; Saelens, B.E. Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Delmas, C.; Platat, C.; Schweitzer, B.; Wagner, A.; Oujaa, M.; Simon, C. Association between television in bedroom and adiposity throughout adolescence. Obesity 2007, 15, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
- Barr-Anderson, D.J.; Van Den Berg, P.; Neumark-Sztainer, D.; Story, M. Characteristics associated with older adolescents who have a television in their bedrooms. Pediatrics 2008, 121, 718–724. [Google Scholar] [CrossRef]
- Fanning, J.; Mullen, S.P.; McAuley, E. Increasing physical activity with mobile devices: A meta-analysis. J. Med. Internet Res. 2012, 14, e161. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.G.; Queiros, A.; Neto, M.; Rocha, N.P. Type and quantity of physical activity and screen-based activities of students from the 7th to the 12th grades: Characterization and association. Rev. Portiguesa Saude Publica 2016, 34, 236–243. [Google Scholar] [CrossRef]
- Gorden-Larsen, P.; Nelson, M.C.; Page, P.; Popkin, B.M. Inequality in the built environment underlies key health disparities in physical activity and obesity. Pediatrics 2006, 117, 417–424. [Google Scholar] [CrossRef]
- Hidding, L.M.; Chinapaw, M.J.M.; van Poppel, M.N.M.; Mokkink, L.B.; Altenburg, T.M. An updated systematic review of childhood physical activity questionnaires. Sports Med. 2018, 48, 2797–2842. [Google Scholar] [CrossRef] [PubMed]
- Molina-Garcia, J.; Garcia-Masso, X.; Estevan, I.; Queralt, A. Built environment, psychosocial factors and active commuting to school in adolescents: Clustering a self-organizing map analysis. Int. J. Environ. Res. Public Health 2019, 16, 83. [Google Scholar] [CrossRef] [PubMed]
Total Sample (N = 1445) | Girls (n = 742) | Boys (n = 703) | |
---|---|---|---|
Age (years) | 14.5 (1.6) | 14.4 (1.6) | 14.5 (1.6) |
BMI (kg/m2) | 22.2 (4.9) | 22.2 (5.0) | 22.2 (4.7) |
Phone Use | 2.7 (1.4) | 3.0 † (1.4) | 2.4 (1.3) |
Video Game Use | 2.6 (1.3) | 2.1 (1.2) | 3.0 † (1.2) |
Computer Use | 2.8 (1.3) | 2.8 (1.3) | 2.8 (1.2) |
Television Use | 3.2 (1.1) | 3.2 (1.1) | 3.2 (1.2) |
AT to School | 1.68 (1.4) | 1.55 (1.29) | 1.84 † (1.50) |
AT from School | 1.80 (1.4) | 1.72 (1.42) | 1.87 † (1.53) |
Weekly MVPA (min) | 468.3 (97.4) | 466.3 (95.9) | 470.6 (99.1) |
Model 1 b-coefficient (95% CI) | Model 2 b-coefficient (95% CI) | Model 3 b-coefficient (95% CI) | |
---|---|---|---|
Phone use | −11.81 † (−15.79–−7.83) | −12.81 † (−16.55–−9.06) | 1.23 (−0.48–3.96) |
Video Game Use | 8.99 † (4.78–13.20) | 7.80 † (3.82–11.77) | −0.22 (−2.03–1.60) |
Computer Use | −8.00 † (−12.35–−3.65) | −8.20 † (−12.30–−4.10) | 1.12 (−0.69–2.93) |
Television Use | 0.76 (−3.98–5.51) | 0.86 (−3.65–5.36) | 0.19 (−1.77–2.16) |
AT to School | 14.30 † (7.56–21.03) | 12.32 † (9.72–14.93) | |
AT from School | 10.27 † (4.07–16.46) | 7.18 † (4.79–9.57) | |
Age (years) | −52.8 † (−54.4–−51.3) | ||
Sex (boy referent) | −7.5 † (−12.3–−2.7) | ||
BMI (kg/m2) | −0.33 (−0.76–0.09) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burns, R.D.; Pfledderer, C.D.; Brusseau, T.A. Active Transport, Not Device Use, Associates with Self-Reported School Week Physical Activity in Adolescents. Behav. Sci. 2019, 9, 32. https://doi.org/10.3390/bs9030032
Burns RD, Pfledderer CD, Brusseau TA. Active Transport, Not Device Use, Associates with Self-Reported School Week Physical Activity in Adolescents. Behavioral Sciences. 2019; 9(3):32. https://doi.org/10.3390/bs9030032
Chicago/Turabian StyleBurns, Ryan D., Christopher D. Pfledderer, and Timothy A. Brusseau. 2019. "Active Transport, Not Device Use, Associates with Self-Reported School Week Physical Activity in Adolescents" Behavioral Sciences 9, no. 3: 32. https://doi.org/10.3390/bs9030032
APA StyleBurns, R. D., Pfledderer, C. D., & Brusseau, T. A. (2019). Active Transport, Not Device Use, Associates with Self-Reported School Week Physical Activity in Adolescents. Behavioral Sciences, 9(3), 32. https://doi.org/10.3390/bs9030032