Recorded Behavior as a Valuable Resource for Diagnostics in Mobile Phone Addiction: Evidence from Psychoinformatics
Abstract
:1. Introduction
2. Materials & Methods
2.1. Participants
Variables of Interest Paired in Self-Report vs. Recorded | Mean and Standard Devitation (Median and Interquartile Range) | Significance Test (Wilcoxon Signed Rank Test) |
---|---|---|
Self-reported weekly phone use (N = 58) | 15.79 (SD = 18.04) (10.00 (IR = 13.50)) | z = −1.90, p = 0.06 |
Recorded weekly phone use (N = 58) | 10.16 (SD = 6.06) (9.51 (IR = 8.65)) | |
Self-reported incoming calls each week (N = 58) | 3.83 (SD = 3.62) (3.00 (IR = 4.00)) | z = −4.43, p < 0.01 * |
Recorded incoming calls each week (N = 58) | 6.55 (SD = 5.10) (5.25 (IR = 6.14)) | |
Self-reported outgoing calls each week (N = 58) | 3.72 (SD = 3.70) (2.75 (IR = 3.25)) | z = −6.45, p < 0.01 * |
Recorded outgoing calls each week (N = 58) | 14.31 (SD = 10.35) (10.75 (IR = 13.53)) | |
Self-reported incoming SMS each week (N = 58) | 9.30 (SD = 6.12) (9.00 (IR = 8.75)) | z = −3.79, p < 0.01 * |
Recorded incoming SMS each week (N = 58) | 24.05 (SD = 27.52) (16.28 (IR = 20.46)) | |
Self-reported outgoing SMS each week (N = 44) | 10.72 (SD = 9.86) (9.00 (IR = 10.75) | z = −0.76, p = 0.22 + |
Recorded outgoing SMS each week (N = 58) | 17.83 (SD = 26.37) (10.26 (IR = 16.29) | |
Recorded outgoing SMS each week (N = 44) | 18.40 (SD = 26.38) (11.24 (IR = 16.12) |
2.2. Questionnaire to Assess (Problematic) Use of the Mobile Phone
2.3. Mobile Phone Application (Menthal)
2.4. Statistical Analyses
3. Results
3.1. Age, Gender and the Variables of Investigation
3.2. Self-Reported vs. Recorded Behavior of Mobile Phone Use: A Comparison
3.3. Correlating Mobile Phone Addiction Data from Self-Report vs. Actual Recorded Mobile Phone Addiction
Phone Use Recorded in Hours a Week | Number of Incoming Calls | Number of Outgoing Calls | Number of Incoming SMS | Number of Outgoing SMS | |
---|---|---|---|---|---|
Self-report MPPUS (rho) | ρ = 0.41, p = 0.001 * (N = 58) | ρ = 0.03, p = 0.80 (N = 58) | ρ = −0.01, p = 0.94 (N = 58) | ρ = 0.10, p = 0.45 (N = 58) | ρ = 0.04, p = 0.79 (N = 44) |
Recorded MPPUS (rho) | ρ = 0.37, p = 0.004 * (N = 58) | ρ = 0.04, p = 0.79 (N = 58) | ρ = 0.24, p = 0.08 (N = 58) | ρ = 0.36, p = 0.006 * (N = 58) | ρ = 0.42, p = 0.001 * (N = 58) |
Results from Fisher’s Z-Test | z = 0.25 p = 0.80 | z = −0.05 p = 0.96 | z = −1.34 p = 0.18 + | z = −1.45 p = 0.15 + | z = −1.98 p = 0.047 |
4. Discussion
5. Conclusions
Acknowledgment
Author Contributions
Conflicts of Interest
References
- Bianchi, A.; Phillips, J.G. Psychological predictors of problem mobile phone use. Cyberpsychol. Behav. 2005, 8, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Holden, C. Behavioral addictions debut in proposed DSM-V. Science 2010, 327, 935–935. [Google Scholar] [CrossRef] [PubMed]
- Young, K.S. Internet addiction: The emergence of a new clinical disorder. Cyberpsychol. Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Ko, C.H.; Yen, J.Y.; Yen, C.F.; Chen, C.S.; Chen, C.C. The association between Internet addiction and psychiatric disorder: A review of the literature. Eur. Psychiatry 2012, 27, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Shaw, M.; Black, D.W. Internet Addiction: Definition, Assessment, Epidemiology and Clinical Management. CNS Drugs 2008, 22, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Lee, J.Y.; Won, W.Y.; Park, J.W.; Min, J.A.; Hahn, C.; Gu, X.; Choi, J.H.; Kim, D.J. Development and validation of a smartphone addiction scale (SAS). PLoS ONE 2013, 8, e56936. [Google Scholar] [CrossRef] [PubMed]
- Kwon, M.; Kim, D.J.; Cho, H.; Yang, S. The smartphone addiction scale: Development and validation of a short version for adolescents. PLoS ONE 2013, 8, e83558. [Google Scholar] [CrossRef] [PubMed]
- Montag, C.; Kannen, C.; Lachmann, B.; Sariyska, R.; Duke, É.; Reuter, M.; Markowetz, A. The importance of analogue zeitgebers to reduce digital addictive tendencies in the 21st century. Addict. Behav. Rep. 2015, 2, 23–27. [Google Scholar] [CrossRef]
- Markowetz, A.; Błaszkiewicz, K.; Montag, C.; Switala, C.; Schlaepfer, T.E. Psycho-Informatics: Big Data shaping modern psychometrics. Med. Hypotheses 2014, 82, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Yarkoni, T. Psychoinformatics new horizons at the interface of the psychological and computing sciences. Curr. Dir. Psychol. Sci. 2012, 21, 391–397. [Google Scholar] [CrossRef]
- Montag, C.; Reuter, M.; Markowetz, A. The Impact of Psychoinformatics on Internet Addiction. In Internet Addiction; Springer International Publishing: Berlin, Germany; Heidelberg, Germany, 2015; pp. 143–150. [Google Scholar]
- Gustafson, D.H.; McTavish, F.M.; Chih, M.Y.; Atwood, A.K.; Johnson, R.A.; Boyle, M.G.; Levy, M.S.; Driscoll, H.; Chisholm, S.M.; Dillenburg, L.; et al. Smartphone application to support recovery from alcoholism: A randomized clinical trial. JAMA Psychiatry 2014, 71, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Boase, J.; Ling, R. Measuring mobile phone use: Self-report versus log data. J. Comput. Mediat. Commun. 2013, 18, 508–519. [Google Scholar] [CrossRef]
- Lin, Y.H.; Lin, Y.C.; Lee, Y.H.; Lin, P.H.; Lin, S.H.; Chang, L.R.; Tseng, H.W.; Yen, L.Y.; Yang, C.C.; Kuo, T.B. Time distortion associated with smartphone addiction: Identifying smartphone addiction via a mobile application (App). J. Psychiatr. Res. 2015, 65, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Montag, C.; Błaszkiewicz, K.; Lachmann, B.; Andone, I.; Sariyska, R.; Trendafilov, B.; Reuter, M.; Markowetz, A. Correlating Personality and Actual Phone Usage: Evidence from Psychoinformatics. J. Individ. Differ. 2014, 35, 158–165. [Google Scholar] [CrossRef]
- Ko, C.H.; Yen, J.Y.; Yen, C.F.; Chen, C.S.; Weng, C.C.; Chen, C.C. The association between Internet addiction and problematic alcohol use in adolescents: The problem behavior model. Cyberpsychol. Behav. 2008, 11, 571–576. [Google Scholar] [CrossRef] [PubMed]
- Lam, L.T.; Peng, Z.W.; Mai, J.C.; Jing, J. Factors associated with Internet addiction among adolescents. Cyberpsychol. Behav. 2009, 12, 551–555. [Google Scholar] [CrossRef] [PubMed]
- Montag, C.; Błaszkiewicz, K.; Sariyska, R.; Lachmann, B.; Andone, I.; Trendafilov, B.; Eibes, M.; Markowetz, A. Smartphone usage in the 21st century: Who is active on WhatsApp? BMC Res. Notes 2015, 8, 331. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montag, C.; Błaszkiewicz, K.; Lachmann, B.; Sariyska, R.; Andone, I.; Trendafilov, B.; Markowetz, A. Recorded Behavior as a Valuable Resource for Diagnostics in Mobile Phone Addiction: Evidence from Psychoinformatics. Behav. Sci. 2015, 5, 434-442. https://doi.org/10.3390/bs5040434
Montag C, Błaszkiewicz K, Lachmann B, Sariyska R, Andone I, Trendafilov B, Markowetz A. Recorded Behavior as a Valuable Resource for Diagnostics in Mobile Phone Addiction: Evidence from Psychoinformatics. Behavioral Sciences. 2015; 5(4):434-442. https://doi.org/10.3390/bs5040434
Chicago/Turabian StyleMontag, Christian, Konrad Błaszkiewicz, Bernd Lachmann, Rayna Sariyska, Ionut Andone, Boris Trendafilov, and Alexander Markowetz. 2015. "Recorded Behavior as a Valuable Resource for Diagnostics in Mobile Phone Addiction: Evidence from Psychoinformatics" Behavioral Sciences 5, no. 4: 434-442. https://doi.org/10.3390/bs5040434
APA StyleMontag, C., Błaszkiewicz, K., Lachmann, B., Sariyska, R., Andone, I., Trendafilov, B., & Markowetz, A. (2015). Recorded Behavior as a Valuable Resource for Diagnostics in Mobile Phone Addiction: Evidence from Psychoinformatics. Behavioral Sciences, 5(4), 434-442. https://doi.org/10.3390/bs5040434