Dopaminergic and Noradrenergic Contributions to Divergent and Convergent Creativity Task Performance, a Systematic Review
Abstract
1. Introduction
2. Methods
3. Results
4. Discussion
Supplementary Materials
Funding
Conflicts of Interest
References
- Aberg, K. C., Doell, K. C., & Schwartz, S. (2017). The “creative right brain” revisited: Individual creativity and associative priming in the right hemisphere relate to hemispheric asymmetries in reward brain function. Cerebral Cortex, 27(10), 4946–4959. [Google Scholar] [CrossRef]
- Agnoli, S., Mastria, S., Zanon, M., & Corazza, G. E. (2023). Dopamine supports idea originality: The role of spontaneous eye blink rate on divergent thinking. Psychological Research, 87(1), 17–27. [Google Scholar] [CrossRef]
- Ahmadlou, M., Houba, J. H. W., Van Vierbergen, J. F. M., Giannouli, M., Gimenez, G. A., Van Weeghel, C., Darbanfouladi, M., Shirazi, M. Y., Dziubek, J., Kacem, M., De Winter, F., & Heimel, J. A. (2021). A cell type-specific cortico-subcortical brain circuit for investigatory and novelty-seeking behavior. Science, 372(6543), eabe9681. [Google Scholar] [CrossRef]
- Alexander, J. K., Hillier, A., Smith, R. M., Tivarus, M. E., & Beversdorf, D. Q. (2007). Noradrenergic modulation of cognitive flexibility during stress. Frontiers in Human Neuroscience, 19, 468–478. [Google Scholar]
- Andreasen, N. C. (2008). The relationship between creativity and mood disorders. Dialogues in Clinical Neuroscience, 10, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Ang, Y. S., Manohar, S., Plant, O., Kienast, A., Le Heron, C., Muhammed, K., Hu, M., & Husain, M. (2018). Dopamine modulates option generation for behavior. Current Biology, 28(10), 1561–1569.e3. [Google Scholar] [CrossRef] [PubMed]
- Appling, C., Nuraini, N., Hart, E., Wang, D., Tosh, A., Beversdorf, D., & Ferguson, B. (2025). Heart rate variability prediction of stimulant-induced creativity gains in attention-deficit/hyperactivity disorder. Journal of Clinical Medicine, 14(10), 3570. [Google Scholar] [CrossRef]
- Baas, M., Boot, N., van Gaal, S., de Dreu, C. K. W., & Cools, R. (2020). Methylphenidate does not affect convergent and divergent creative processes in healthy adults. Neuroimage, 205, 116279. [Google Scholar] [CrossRef]
- Beversdorf, D. Q. (2018). Neuropsychopharmacological regulation of performance on creativity-related tasks. Current Opinion in Behavioral Sciences, 27, 55–63. [Google Scholar] [CrossRef]
- Beversdorf, D. Q. (2020). The role of the noradrenergic system in autism spectrum disorders, implications for treatment. Seminars in Pediatric Neurology, 35, 100834. [Google Scholar] [CrossRef]
- Beversdorf, D. Q., Carpenter, A. L., Alexander, J. K., Jenkins, N. T., Tilley, M. R., White, C. A., Hillier, A. J., Smith, A. M., & Gu, H. H. (2018). Influence of serotonin transporter SLC6A4 genotype on the effect of psychosocial stress on cognitive performance: An exploratory pilot study. Cognitive and Behavioral Neurology, 31, 79–85. [Google Scholar] [CrossRef]
- Beversdorf, D. Q., Carpenter, A. L., Miller, R. F., Cios, J. S., & Hillier, A. (2008). Effect of propranolol on verbal problem solving in autism spectrum disorder. Neurocase, 14, 378–383. [Google Scholar] [CrossRef]
- Beversdorf, D. Q., Hughes, J. D., Steinberg, B. A., Lewis, L. D., & Heilman, K. M. (1999). Noradrenergic modulation of cognitive flexibility in problem solving. Neuroreport, 10(13), 2763–2767. [Google Scholar] [CrossRef]
- Beversdorf, D. Q., White, D. M., Chever, D. C., Hughes, J. D., & Bornstein, R. A. (2002). Central beta-adrenergic modulation of cognitive flexibility. Neuroreport, 13(18), 2505–2507. [Google Scholar] [CrossRef]
- Boot, N., Nevicka, B., & Bass, M. (2017). Subclinical symptoms of attentiondeficit/hyperactivity disorder (ADHD) are associated with specific creative processes. Personality and Individual Differences, 114, 73–81. [Google Scholar] [CrossRef]
- Cai, D. J., Mednick, S. A., Harrison, E. M., Kanady, J. C., & Mednick, S. C. (2009). REM, not incubation, improves creativity by priming associative networks. Proceedings of the National Academy of Sciences of the United States of America, 106(25), 10130–10134. [Google Scholar] [CrossRef]
- Campbell, H. L., Tivarus, M. E., Hillier, A., & Beversdorf, D. Q. (2008). Increased task difficulty results in greater impact of noradrenergic modulation of cognitive flexibility. Pharmacology Biochemistry and Behavior, 88, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Canesi, M., Rusconi, M. L., Moroni, F., Ranghetti, A., Cereda, E., & Pezzoli, G. (2016). Creative thinking, professional artists, and Parkinson’s disease. Journal of Parkinson’s Disease, 6(1), 239–246. [Google Scholar] [CrossRef] [PubMed]
- Carson, S. H. (2011). Creativity and psychopathology: A shared vulnerability model. The Canadian Journal of Psychiatry, 56(3), 144–152. [Google Scholar] [CrossRef] [PubMed]
- Chermahini, S. A., & Hommel, B. (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociated divergent and convergent thinking. Cognition, 115, 458–465. [Google Scholar] [CrossRef]
- Chermahini, S. A., & Hommel, B. (2012). More creative through positive mood? Not everyone! Frontiers in Human Neuroscience, 6, 319. [Google Scholar] [CrossRef]
- Choi, Y., Novak, J., Hillier, A., Votolato, N. A., & Beversdorf, D. Q. (2006). The effect of α-2 adrenergic agonists on memory and cognitive flexibility. Cognitive and Behavioral Neurology, 19, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Chong, A., Tolomeo, S., Xiong, Y., Angeles, D., Cheung, M., Becker, B., Lai, P. S., Lei, Z., Malavasi, F., Tang, Q., Chew, S. H., & Ebstein, R. P. (2021). Blending oxytocin and dopamine with everyday creativity. Scientific Reports, 11(1), 16185. [Google Scholar] [CrossRef] [PubMed]
- Colautti, L., Magenes, S., Rago, S., Camerin, S., Zanaboni Dina, C., Antonietti, A., & Cancer, A. (2023). Creative thinking in Tourette’s syndrome: A comparative study of patients and healthy controls. Journal of Clinical and Experimental Neuropsychology, 45(5), 482–497. [Google Scholar] [CrossRef]
- Colzato, L. S., de Haan, A. M., & Hommel, B. (2015). Food for creativity: Tyrosine promotes deep thinking. Psychological Research, 79(5), 709–714. [Google Scholar] [CrossRef]
- Coull, J. T., Jones, M. E. P., Egan, T. D., Frith, C. D., & Maze, M. (2004). Attentional effects of noradrenaline vary with arousal level: Selective activation of thalamic pulvinar in humans. NeuroImage, 22, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Cristofori, I., Salvi, C., Beeman, M., & Grafman, J. (2018). The effects of expected reward on creative problem solving. Cognitive, Affective, & Behavioral Neuroscience, 18(5), 925–931. [Google Scholar] [CrossRef]
- de Manzano, O., Cervenka, S., Karabanov, A., Farde, L., & Ullén, F. (2010). Thinking outside a less intact box: Thalamic dopamine D2 receptor densities are negatively related to psychometric creativity in healthy individuals. PLoS ONE, 5(5), e10670. [Google Scholar] [CrossRef]
- Douglas, V. I., Barr, R. G., Desilets, J., & Sherman, E. (1995). Do high doses of stimulants impair flexible thinking in attention-deficit hyperactivity disorder? Journal of the American Academy of Child & Adolescent Psychiatry, 34(7), 877–885. [Google Scholar] [CrossRef]
- Drago, V., Foster, P. S., Okun, M. S., Haq, I., Sudhyadhom, A., Skidmore, F. M., & Heilman, K. M. (2009). Artistic creativity and DBS: A case report. Journal of the Neurological Sciences, 276(1–2), 138–142. [Google Scholar] [CrossRef]
- Faigel, H. C. (1991). The effect of beta blockade on stress-induced cognitive dysfunction in adolescents. Clinical Pediatrics, 30, 441–445. [Google Scholar] [CrossRef]
- Farah, M. J., Haimm, C., Sankoorikal, G., Smith, M. E., & Chatterjee, A. (2009). When we enhance cognition with Adderall, do we sacrifice creativity? A preliminary study. Psychopharmacology, 202, 541–547. [Google Scholar] [CrossRef]
- Faust-Socher, A., Kenett, Y. N., Cohen, O. S., Hassin-Baer, S., & Inzelberg, R. (2014). Enhanced creative thinking under dopaminergic therapy in Parkinson disease. Annals of Neurology, 75(6), 935–942. [Google Scholar] [CrossRef] [PubMed]
- Funk, J. B., Chessare, J. B., Weaver, M. T., & Exley, A. R. (1993). Attention deficit hyperactivity disorder, creativity, and the effects of methylphenidate. Pediatrics, 91, 816–819. [Google Scholar] [CrossRef]
- Gao, Z., Liu, X., Zhang, D., Liu, M., & Hao, N. (2021). Subcortical structures and visual divergent thinking: A resting-state functional MRI analysis. Brain Structure & Function, 226(8), 2617–2627. [Google Scholar] [CrossRef]
- Ghacibeh, G. A., Shenker, J. I., Shenal, B., Uthman, B. M., & Heilman, K. M. (2006). Effect of vagus nerve stimulation on creativity and cognitive flexibility. Epilepsy & Behavior, 8(4), 720–725. [Google Scholar] [CrossRef]
- González-Carpio Hernández, G., & Serrano Selva, J. P. (2016). Medication and creativity in attention deficit hyperactivity disorder (ADHD). Psicothema, 28(1), 20–25. [Google Scholar] [CrossRef] [PubMed]
- Green, A. E., Cohen, M. S., Raab, H. A., Yedibalian, C. G., & Gray, J. R. (2015). Frontopolar activity and connectivity support dynamic conscious augmentation of creative state. Human Brain Mapping, 36, 923–934. [Google Scholar] [CrossRef]
- Guo, X., Wang, Y., Kan, Y., Wu, M., Ball, L. J., & Duan, H. (2024). The HPA and SAM axis mediate the impairment of creativity under stress. Psychophysiology, 61(3), e14472. [Google Scholar] [CrossRef]
- Gvirts, H. Z., Mayseless, N., Segev, A., Lewis, D. Y., Feffer, K., Barnea, Y., Bloch, Y., & Shamay-Tsoory, S. G. (2017). Novelty-seeking trait predicts the effect of stimulant medication on creativity. Journal of Psychopharmacology, 31(5), 599–605. [Google Scholar] [CrossRef]
- Hecht, P. M., Will, M. J., Schachtman, T. R., Welby, L. M., & Beversdorf, D. Q. (2014). Beta-adrenergic antagonist effects on a novel cognitive flexibility task in rodents. Behavioural Brain Research, 260, 148–154. [Google Scholar] [CrossRef]
- Heilman, K. M., Nadeau, S. E., & Beversdorf, D. Q. (2003). Creative innovation: Possible brain mechanisms. Neurocase, 9, 369–379. [Google Scholar] [CrossRef]
- Heldmann, M., Rinckens, C., Brüggemann, N., Al-Khaled, M., & Münte, T. F. (2024). Creative thinking and cognitive estimation in Parkinson’s disease. Neurological Research and Practice, 6(1), 9. [Google Scholar] [CrossRef]
- Hillier, A., Alexander, J. K., & Beversdorf, D. Q. (2006). The effect of auditory stressors on cognitive flexibility. Neurocase, 12, 228–231. [Google Scholar] [CrossRef]
- Hoogman, M., Stolte, M., Baas, M., & Kroesbergen, E. (2020). Creativity and ADHD: A review of behavioral studies, the effect of psychostimulants and neural underpinnings. Neuroscience & Biobehavioral Reviews, 119, 66–85. [Google Scholar] [CrossRef]
- Hutten, N. R. P. W., Steenbergen, L., Colzato, L. S., Hommel, B., Theunissen, E. L., Ramaekers, J. G., & Kuypers, K. P. C. (2019). Cocaine enhances figural, but impairs verbal ‘flexible’ divergent thinking. European Neuropsychopharmacology, 29(7), 813–824. [Google Scholar] [CrossRef] [PubMed]
- Ishizuka, K., Hillier, A., & Beversdorf, D. Q. (2007). Effect of the cold pressor test on memory and cognitive flexibility. Neurocase, 13, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Ivancovsky, T., Baror, S., & Bar, M. (2024). A shared novelty-seeking basis for creativity and curiosity. Behavioral and Brain Sciences, 47, e89. [Google Scholar] [CrossRef]
- Jauk, E., Neubauer, A. C., Dunst, B., Fink, A., & Benedek, M. (2015). Gray matter correlates of creative potential: A latent variable voxel-based morphometry study. Neuroimage, 111, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Käckenmester, W., Bott, A., & Wacker, J. (2019). Openness to experience predicts dopamine effects on divergent thinking. Personality Neuroscience, 2, e3. [Google Scholar] [CrossRef]
- Kelley, B. J., Yeager, K. R., Pepper, T. H., Bornstein, R. A., & Beversdorf, D. Q. (2007). The effect of propranolol on cognitive flexibility and memory in acute cocaine withdrawal. Neurocase, 13, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Lipnicki, D. M., & Byrne, D. G. (2005). Thinking on your back: Solving anagrams faster when supine than when standing. Cognitive Brain Research, 24, 719–722. [Google Scholar] [CrossRef]
- Londei, F., Arena, G., Ferrucci, L., Russo, E., Ceccarelli, F., & Genovesio, A. (2024). Connecting the dots in the zona incerta: A study of neural assemblies and motifs of inter-area coordination in mice. iScience, 27(1), 108761. [Google Scholar] [CrossRef]
- Martindale, C., & Greenough, J. (1975). The differential effect of increased arousal on creative and intellectual performance. The Journal of Genetic Psychology, 123, 329–335. [Google Scholar] [CrossRef]
- Mayseless, N., Uzefovsky, F., Shalev, I., Ebstein, R. P., & Shamay-Tsoory, S. G. (2013). The association between creativity and 7R polymorphism in the dopamine receptor D4 gene (DRD4). Frontiers in Human Neuroscience, 7, 502. [Google Scholar] [CrossRef] [PubMed]
- McBride, M., Appling, C., Ferguson, B., Gonzalez, A., Schaeffer, A., Zand, A., Wang, D., Sam, A., Hart, E., Tosh, A., Fontcha, I., Parmacek, S., & Beversdorf, D. (2021). Effects of stimulant medication on divergent and convergent thinking tasks related to creativity in adults with attention-deficit hyperactivity disorder. Psychopharmacology, 238(12), 3533–3541. [Google Scholar] [CrossRef] [PubMed]
- Nair, N., Hegarty, J. P., II, Ferguson, B. J., Hecht, P. M., Tilley, M., Christ, S. E., & Beversdorf, D. Q. (2020). Effects of stress on functional connectivity during problem solving. NeuroImage, 208, 116407. [Google Scholar] [CrossRef]
- Nougaret, S., Ferrucci, L., Ceccarelli, F., Sacchetti, S., Benozzo, D., Fascianelli, V., Saunders, R. C., Renaud, L., & Genovesio, A. (2024). Neurons in the monkey frontopolar cortex encode learning stage and goal during a fast learning task. PLoS Biology, 22(2), e3002500. [Google Scholar] [CrossRef]
- Power, R. A., Steinberg, S., Bjornsdottir, G., Rietveld, C. A., Abdellaoui, A., Nivard, M. M., Johannesson, M., Galesloot, T. E., Hottenga, J. J., Willemsen, G., Cesarini, D., Benjamin, D. J., Magnusson, P. K., Ullén, F., Tiemeier, H., Hofman, A., van Rooij, F. J., Walters, G. B., Sigurdsson, E., … Stefansson, K. (2015). Polygenic risk scores for schizophrenia and bipolar disorder predict creativity. Nature Neuroscience, 18, 953–955. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, F., Sanjari Moghaddam, H., & Aarabi, M. H. (2020). Intact microstructure of the right corticostriatal pathway predicts creative ability in healthy adults. Brain and Behavior, 10(12), e01895. [Google Scholar] [CrossRef]
- Renner, K., & Beversdorf, D. Q. (2010). Effects of naturalistic stressors on cognitive flexibility and working memory performance. Neurocase, 16, 293–300. [Google Scholar] [CrossRef]
- Reuter, M., Roth, S., Holve, K., & Hennig, J. (2006). Identification of first candidate gene for creativity: A pilot study. Brain Research, 1069, 190–197. [Google Scholar] [CrossRef]
- Salamone, J. D., & Correa, M. (2012). The mysterious motivational functions of mesolimbic dopamine. Neuron, 76(3), 470–485. [Google Scholar] [CrossRef] [PubMed]
- Salvi, C., Leiker, E. K., Baricca, B., Molinari, M. A., Eleopra, R., Nichelli, P. F., Grafman, J., & Dunsmoor, J. E. (2021). The effect of dopaminergic replacement therapy on creative thinking and insight problem-solving in Parkinson’s disease patients. Frontiers in Psychology, 12, 646448. [Google Scholar] [CrossRef]
- Sayalı, C., van den Bosch, R., Määttä, J. I., Hofmans, L., Papadopetraki, D., Booij, J., Verkes, R. J., Baas, M., & Cools, R. (2023). Methylphenidate undermines or enhances divergent creativity depending on baseline dopamine synthesis capacity. Neuropsychopharmacology, 48(13), 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Si, S., Su, Y., Zhang, S., & Zhang, J. (2020). Genetic susceptibility to parenting style: DRD2 and COMT influence creativity. Neuroimage, 213, 116681. [Google Scholar] [CrossRef] [PubMed]
- Silver, J. A., Hughes, J. D., Bornstein, R. A., & Beversdorf, D. Q. (2004). Effect of anxiolytics on cognitive flexibility in problem solving. Cognitive and Behavioral Neurology, 17(2), 93–97. [Google Scholar] [CrossRef]
- Smith, A., & Nutt, D. (1996). Noradrenaline and attention lapses. Nature, 380, 291. [Google Scholar] [CrossRef]
- Smyth, S. F., & Beversdorf, D. Q. (2007). Lack of dopaminergic modulation of cognitive flexibility. Cognitive and Behavioral Neurology, 20(4), 225–229. [Google Scholar] [CrossRef]
- Solanto, M. V., & Wender, E. H. (1989). Does methylphenidate constrict cognitive functioning? Journal of the American Academy of Child & Adolescent Psychiatry, 28(6), 897–902. [Google Scholar] [CrossRef]
- Swartwood, M. O., Swartwood, J. N., & Farrell, J. (2003). Stimulant treatment of ADHD: Effects on creativity and flexibility in problem solving. Creativity Research Journal, 15(4), 417–419. [Google Scholar] [CrossRef]
- Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2010). Regional gray matter volume of dopaminergic system associate with creativity: Evidence from voxel-based morphometry. Neuroimage, 51(2), 578–585. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H., Tomita, H., Taki, Y., Kikuchi, Y., Ono, C., Yu, Z., Sekiguchi, A., Nouchi, R., Kotozaki, Y., Nakagawa, S., Miyauchi, C. M., Iizuka, K., Yokoyama, R., Shinada, T., Yamamoto, Y., Hanawa, S., Araki, T., Hashizume, H., Kunitoki, K., … Kawashima, R. (2015a). Cognitive and neural correlates of the 5-repeat allele of the dopamine D4 receptor gene in a population lacking the 7-repeat allele. Neuroimage, 110, 124–135. [Google Scholar] [CrossRef]
- Takeuchi, H., Tomita, H., Taki, Y., Kikuchi, Y., Ono, C., Yu, Z., Sekiguchi, A., Nouchi, R., Kotozaki, Y., Nakagawa, S., Miyauchi, C. M., Iizuka, K., Yokoyama, R., Shinada, T., Yamamoto, Y., Hanawa, S., Araki, T., Hashizume, H., Kunitoki, K., … Kawashima, R. (2015b). The associations among the dopamine D2 receptor Taq1, emotional intelligence, creative potential measured by divergent thinking, and motivational state and these associations’ sex differences. Frontiers in Psychology, 6, 912. [Google Scholar] [CrossRef] [PubMed]
- Varrone, A., Svenningsson, P., Marklund, P., Fatouros-Bergman, H., Forsberg, A., Halldin, C., Nilsson, L. G., & Farde, L. (2015). 5-HT1B receptor imaging and cognition: A positron emission tomography study in control subjects and Parkinson’s disease patients. Synapse, 69(7), 365–374. [Google Scholar] [CrossRef]
- Walker, M. P., Liston, C., Hobson, J. A., & Stickgold, R. (2002). Cognitive flexibility across the sleep-wake cycle- REM-sleep enhancement of anagram problem solving. Cognitive Brain Research, 14, 317–324. [Google Scholar] [CrossRef]
- Walton, M. E., & Bouret, S. (2019). What is the relationship between dopamine and effort? Trends in Neurosciences, 42(2), 79–91. [Google Scholar] [CrossRef] [PubMed]
- Wu, X., Yang, W., Tong, D., Sun, J., Chen, Q., Wei, D., Zhang, Q., Zhang, M., & Qiu, J. (2015). A meta-analysis of neuroimaging studies on divergent thinking using activation likelihood estimation. Human Brain Mapping, 36(7), 2703–2718. [Google Scholar] [CrossRef]
- Zabelina, D. L., Colzato, L., Beeman, M., & Hommel, B. (2016). Dopamine and the Creative Mind: Individual differences in creativity are predicted by interactions between dopamine genes DAT and COMT. PLoS ONE, 11(1), e0146768. [Google Scholar] [CrossRef]
- Zamzow, R. M., Ferguson, B. J., Ragsdale, A. S., Lewis, M. L., & Beversdorf, D. Q. (2017). Effects of acute beta-adrenergic antagonism on verbal problem solving in autism spectrum disorder and exploration of treatment response markers. Journal of Clinical and Experimental Neuropsychology, 39, 596–606. [Google Scholar] [CrossRef]
- Zanaboni Dina, C., Porta, M., Saleh, C., & Servello, D. (2017). Creativity assessment in subjects with Tourette syndrome vs. patients with Parkinson’s disease: A preliminary study. Brain Sciences, 7(7), 80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S., & Zhang, J. (2016). The Association of DRD2 with Insight Problem Solving. Frontiers in Psychology, 7, 1865. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S., Zhang, M., & Zhang, J. (2014). Association of COMT and COMT-DRD2 interaction with creative potential. Frontiers in Human Neuroscience, 8, 216. [Google Scholar] [CrossRef] [PubMed]
Studies with DA Targeted | Conv | Div |
---|---|---|
Studies with DA DRUGS | ||
DA agonist healthy anagrams Smyth and Beversdorf (2007) | ↓ | x |
DA blocker healthy BIST—possible uses, specific traits, symbol completion, object design subtasks Käckenmester et al. (2019) | x | Effect a |
DA drug cocaine RAT, PCT, TOL, AUT, PLMT Hutten et al. (2019) | ↓ b | ↑↓ b |
DA agonist healthy and PD option generation task Ang et al. (2018) | x | ↑ |
Studies with DA DISEASES | ||
Task performance Parkinson’s Guilford AUT, RAT Heldmann et al. (2024) | No eff | ↑ |
Task perf. Tourette’s and healthy RAT, lines test from TTCT, FCIT, AUT, verbal puzzles (IPS task) Colautti et al. (2023) | ↑ c | No eff |
Task perf. Tourette’s and Parkinson’s ASK test Zanaboni Dina et al. (2017) | x | ↑ d |
Task perf. Parkinson’s ATTA Canesi et al. (2016) | x | No eff |
Task perf. Parkinson’s AUT Varrone et al. (2015) | x | ↓ |
Studies with DA DISEASES PLUS DRUGS | ||
DA replacement tx Parkinson’s AUT, RAT, Rebus puzzles Salvi et al. (2021) | No eff | No eff |
DA tx Parkinson’s RAT, Tel Aviv Creativity Test, Novel Metaphors Faust-Socher et al. (2014) | x | ↑ e |
Studies with DA related tasks | ||
Eyeblink rate and performance AUT Agnoli et al. (2023) | x | ↑ |
Expect reward and performance CRA Cristofori et al. (2018) | ↑ | x |
Eyeblink rate and performance AUT Chermahini and Hommel (2012) | x | Effect f |
Eyeblink rate and performance AUT, RAT Chermahini and Hommel (2010) | ↓ | ↑ |
Studies with DA genes | ||
Perform with DA (DRD2 and COMT) genes AUT Chong et al. (2021) | x | Effect g |
Perform with DA (DRD2 and COMT) genes rCAB-figural divergent thinking Si et al. (2020) | x | Effect h |
Perform with DA gene DRD2 verbal puzzles, matchstick-style problems Zhang and Zhang (2016) | Effect | x |
Perform with DA (DAT and COMT) genes ATTA Zabelina et al. (2016) | Effect i | x |
Perform with DA DRD2 Taq1 TTCT Takeuchi et al. (2015b) | x | Effect j |
Perform with DRD4 genes S-A creativity test Takeuchi et al. (2015a) | x | Effect |
Perform with DA (DRD2 and COMT) genes verbal and figural divergent thinking tests from rCAB Zhang et al. (2014) | x | Effect i |
Perform with DRD4 genes AUT, TTCT (circles sub-scale) Mayseless et al. (2013) | x | Effect |
Perform with DA gene DRD2 “inventiveness” battery of the BIST Reuter et al. (2006) | x | Effect |
Studies with DA imaging correlates | ||
FC DA reg (pallid thal putamen) TTCT-figural Gao et al. (2021) | x | Effect |
Microstructure R cortocistr path AUT, RAT, TCIA Rahmani et al. (2020) | Effect | Effect |
fMRI active DA reg during DA task AUT, RAT Aberg et al. (2017) | Effect | Effect |
fMRI activ DA assoc reg meta-Anal Various divergent tasks Wu et al. (2015) | x | Effect |
Volume of DA assoc regions AUT, instances task Jauk et al. (2015) | x | Effect |
Diffusivity in DA assoc regions S-A creativity test Takeuchi et al. (2015a) | x | Effect |
DA D2 density thal PET inventiveness battery from the BIST de Manzano et al. (2010) | x | Effect |
Volume of DA assoc ROIs S-A creativity test Takeuchi et al. (2010) | x | Effect |
Studies with NE targeted via electrical stimulation | ||
Deep brain stim Parkinson’s ATTA Drago et al. (2009) | x | Effect |
Studies with NE Targeted | Conv | Div |
---|---|---|
Studies with NE DRUGS | ||
Propranolol (NE antag) in rodent Rodent Remote Problem Solving Maze Hecht et al. (2014) | ↑ | x |
Propranolol (NE antag) healthy anagrams Silver et al. (2004) | ↑ | x |
Propranolol (NE antag) healthy anagrams Beversdorf et al. (2002) | ↑ a | x |
Propranolol (NE antag) healthy anagrams, Matchstick test Beversdorf et al. (1999) | ↑ b | x |
Propranolol (NE antag) healthy anagrams, CRA Campbell et al. (2008) | ↑ c | x |
Clonidine (α-2 agonist) healthy anagrams, CRA Choi et al. (2006) | No eff | x |
Propranolol (NE antag) cocaine withdrawal anagrams Kelley et al. (2007) | ↑ | x |
Propranolol (NE antag) autism anagrams Zamzow et al. (2017) | ↑ | x |
Propranolol (NE antag) autism anagrams Beversdorf et al. (2008) | ↑ | x |
Studies with NE targeted via stress | ||
Stress monitoring Sympathetic Syst AUT, RAT Guo et al. (2024) | No eff | ↑ |
Stress impairs RAT perform Martindale and Greenough (1975) | ↑ | x |
Stress impairs anagrams Beversdorf et al. (2018) | ↑ d | x |
Auditory stress impairs CRA Hillier et al. (2006) | ↑ | x |
Stress impairs CRA Renner and Beversdorf (2010) | ↑ | x |
Cold pressor and anagram & CRA Ishizuka et al. (2007) | No eff | x |
Stress effect on CRA Nair et al. (2020) | ↑ e | x |
Stress with NE targeted via stress plus NE DRUGS | ||
Propranolol (NE antag) healthy, stress anagrams, CRA Alexander et al. (2007) | ↑ | x |
Studies with NE targeted via sleep phase | ||
Low NE assoc with REM sleep RAT Cai et al. (2009) | ↑ | x |
Low NE assoc with sleep phase anagrams Walker et al. (2002) | ↑ | x |
Studies with NE targeted task | ||
Body position impacts anagrams Lipnicki and Byrne (2005) | ↑ | x |
Studies with NE targeted via electrical stimulation | ||
Vagal nerve stim anagrams, Abbreviated Torrance Test for Adults Ghacibeh et al. (2006) | Effect | Effect |
Studies with NE and DA Targeted | Conv | Div |
---|---|---|
Studies with NE and DA DRUGS | ||
Stimulants ADHD CRA, TTCT-verbal McBride et al. (2021) | No eff | ↑ |
Stimulants healthy AUT, RAT, ANT Baas et al. (2020) | No eff | No eff |
Stimulants healthy AUT, RAT, ANT Sayalı et al. (2023) | x | ↑↓ a |
Precursor (tyrosine) healthy RAT, AUT Colzato et al. (2015) | ↑ | No eff |
Stimulants ADHD AUT, Instances Test Solanto and Wender (1989) | x | ↑ |
Stimulants ADHD TTCT-Figural Funk et al. (1993) | x | No eff |
Stimulants ADHD AUT, Instances Test Douglas et al. (1995) | x | ↑ |
Stimulants ADHD Test of Divergent Thinking Swartwood et al. (2003) | x | ↓ d |
Stimulants healthy RAT, GEFT, AUT, Drawing task from ATTA Farah et al. (2009) | ↑ f | No eff |
Stimulants ADHD TTCT-Figural González-Carpio Hernández and Serrano Selva (2016) | x | ↓ |
Stimulants ADHD (between subject) RAT, AUT, Pasta task Boot et al. (2017) | No eff | No eff |
Stimulants healthy AUT, TTCT-Figural Gvirts et al. (2017) | x | ↑↓ e |
Studies with NE and DA GENES | ||
COMT genes rCAB-figural divergent thinking Si et al. (2020) | x | Effect b |
COMT genes ATTA Zabelina et al. (2016) | Effect | x |
COMT genes verbal and figural divergent thinking tests from rCAB Zhang et al. (2014) | x | Effect c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beversdorf, D.Q. Dopaminergic and Noradrenergic Contributions to Divergent and Convergent Creativity Task Performance, a Systematic Review. Behav. Sci. 2025, 15, 1185. https://doi.org/10.3390/bs15091185
Beversdorf DQ. Dopaminergic and Noradrenergic Contributions to Divergent and Convergent Creativity Task Performance, a Systematic Review. Behavioral Sciences. 2025; 15(9):1185. https://doi.org/10.3390/bs15091185
Chicago/Turabian StyleBeversdorf, David Q. 2025. "Dopaminergic and Noradrenergic Contributions to Divergent and Convergent Creativity Task Performance, a Systematic Review" Behavioral Sciences 15, no. 9: 1185. https://doi.org/10.3390/bs15091185
APA StyleBeversdorf, D. Q. (2025). Dopaminergic and Noradrenergic Contributions to Divergent and Convergent Creativity Task Performance, a Systematic Review. Behavioral Sciences, 15(9), 1185. https://doi.org/10.3390/bs15091185