How the Human–Artificial Intelligence (AI) Collaboration Affects Cyberloafing: An AI Identity Perspective
Abstract
1. Introduction
2. Theoretical Framework and Hypotheses
2.1. Social Identity Theory
2.2. Human–AI Collaboration and Cyberloafing
2.3. The Mediation of Three Dimensions of AI Identity
2.4. The Moderating Effect of Openness
3. Method
3.1. Participants and Design
3.2. Measures
3.3. Data Analysis Process
3.4. Results
4. Discussion
4.1. Theoretical Implications
4.2. Practical Implications
4.3. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Adam, I., Elizabeth, A., & Dayour, F. (2021). Understanding the social identity, motivations, and sustainable behaviour among backpackers: A clustering approach. Journal of Travel & Tourism Marketing, 38(2), 139–154. [Google Scholar] [CrossRef]
- Andel, S. A., Kessler, S. R., Pindek, S., Kleinman, G., & Spector, P. E. (2019). Is cyberloafing more complex than we originally thought? Cyberloafing as a coping response to workplace aggression exposure. Computers in Human Behavior, 101, 124–130. [Google Scholar] [CrossRef]
- Arslan, A., Cooper, C., Khan, Z., Golgeci, I., & Ali, I. (2022). Artificial intelligence and human workers interaction at team level: A conceptual assessment of the challenges and potential HRM strategies. International Journal of Manpower, 43(1), 75–88. [Google Scholar] [CrossRef]
- Ashforth, B. E., & Mael, F. (1989). Social identity theory and the organization. Academy of Management Review, 14(1), 20–39. [Google Scholar] [CrossRef]
- Askew, K., Buckner, J. E., Taing, M. U., Ilie, A., Bauer, J. A., & Coovert, M. D. (2014). Explaining cyberloafing: The role of the theory of planned behavior. Computers in Human Behavior, 36, 510–519. [Google Scholar] [CrossRef]
- Ayoub, M., Gosling, S. D., Potter, J., Shanahan, M., & Roberts, B. W. (2017). The relations between parental socioeconomic status, personality, and life outcomes. Social Psychological and Personality Science, 9(3), 338–352. [Google Scholar] [CrossRef]
- Bai, S., & Zhang, X. (2025). My coworker is a robot: The impact of collaboration with AI on employees’ impression management concerns and organizational citizenship behavior. International Journal of Hospitality Management, 128, 104179. [Google Scholar] [CrossRef]
- Barford, K. A., & Smillie, L. D. (2016). Openness and other Big Five traits in relation to dispositional mixed emotions. Personality and Individual Differences, 102, 118–122. [Google Scholar] [CrossRef]
- Bezrukova, K., Griffith, T. L., Spell, C., Rice, V., & Yang, H. E. (2023). Artificial intelligence and groups: Effects of attitudes and discretion on collaboration. Group and Organization Management, 48(2), 629–670. [Google Scholar] [CrossRef]
- Blanchard, A. L., & Henle, C. A. (2008). Correlates of different forms of cyberloafing: The role of norms and external locus of control. Computers in Human Behavior, 24(3), 1067–1084. [Google Scholar] [CrossRef]
- Brown, R. (2000). Social identity theory: Past achievements, current problems and future challenges. European Journal of Social Psychology, 30(6), 745–778. [Google Scholar] [CrossRef]
- Budhwar, P., Malik, A., De Silva, M. T. T., & Thevisuthan, P. (2022). Artificial intelligence-challenges and opportunities for international HRM: A review and research agenda. International Journal of Human Resource Management, 33(6), 1065–1097. [Google Scholar] [CrossRef]
- Cao, L., Chen, C., Dong, X., Wang, M., & Qin, X. (2023). The dark side of AI identity: Investigating when and why AI identity entitles unethical behavior. Computers in Human Behavior, 143, 107669. [Google Scholar] [CrossRef]
- Carter, M., & Grover, V. (2015). Me, My Self, and I(T): Conceptualizing Information Technology Identity and its Implications. MIS Quarterly, 39(4), 931–957. [Google Scholar] [CrossRef]
- Carter, M., Petter, S., Grover, V., & Thatcher, J. B. (2020). Information technology identity: A key determinant of it feature and exploratory usage. MIS Quarterly, 44(3), 983–1021. [Google Scholar] [CrossRef]
- Chakraborty, D., Polisetty, A., Khorana, S., & Buhalis, D. (2023). Use of metaverse in socializing: Application of the big five personality traits framework. Psychology & Marketing, 40(10), 2132–2151. [Google Scholar] [CrossRef]
- Chen, Q., Yeming, G., Yaobin, L., & Chau, P. Y. K. (2023). How mindfulness decreases cyberloafing at work: A dual-system theory perspective. European Journal of Information Systems, 32(5), 841–857. [Google Scholar] [CrossRef]
- Chowdhury, S., Budhwar, P., Dey, P. K., Joel-Edgar, S., & Abadie, A. (2022). AI-employee collaboration and business performance: Integrating knowledge-based view, socio-technical systems and organisational socialisation framework. Journal of Business Research, 144, 31–49. [Google Scholar] [CrossRef]
- Cugno, M., Castagnoli, R., & Büchi, G. (2021). Openness to Industry 4.0 and performance: The impact of barriers and incentives. Technological Forecasting and Social Change, 168, 120756. [Google Scholar] [CrossRef]
- Duan, W.-Y., Wu, T.-J., & Liang, Y. (2025). Are resources always beneficial? The three-way interaction between slashies’ role stress, self-efficacy and job autonomy. Asia Pacific Journal of Management, 1–31. [Google Scholar] [CrossRef]
- Duan, W.-Y., Wu, T.-J., Wei, A.-P., & Huang, Y.-T. (2024). Reducing the adverse effects of compulsory citizenship behaviour on employee innovative behaviour via AI usage in China. Asia Pacific Business Review, 1–21. [Google Scholar] [CrossRef]
- Dunleavy, P., & Margetts, H. (2023). Data science, artificial intelligence and the third wave of digital era governance. Public Policy and Administration, 40(2), 185–214. [Google Scholar] [CrossRef]
- Glassman, J., Prosch, M., & Shao, B. B. M. (2015). To monitor or not to monitor: Effectiveness of a cyberloafing countermeasure. Information & Management, 52(2), 170–182. [Google Scholar] [CrossRef]
- Guo, Y., Rammal, H. G., & Pereira, V. (2021). Am I ‘In or Out’? A social identity approach to studying expatriates’ social networks and adjustment in a host country context. Journal of Business Research, 136, 558–566. [Google Scholar] [CrossRef]
- Gupta, M., Mehta, N. K. K., Agarwal, U. A., & Jawahar, I. M. (2025). The mediating role of psychological capital in the relationship between LMX and cyberloafing. Leadership & Organization Development Journal, 46(1), 85–101. [Google Scholar] [CrossRef]
- Haesevoets, T., De Cremer, D., Dierckx, K., & Van Hiel, A. (2021). Human-machine collaboration in managerial decision making. Computers in Human Behavior, 119, 106730. [Google Scholar] [CrossRef]
- Hai, S., Long, T., Honora, A., Japutra, A., & Guo, T. (2025). The dark side of employee-generative AI collaboration in the workplace: An investigation on work alienation and employee expediency. International Journal of Information Management, 83, 102905. [Google Scholar] [CrossRef]
- Hessari, H., Daneshmandi, F., Busch, P., & Smith, S. (2025). Mitigating cyberloafing through employee adaptability: The roles of temporal leadership, teamwork attitudes and competitive work environment. Asia-Pacific Journal of Business Administration, 17(2), 303–336. [Google Scholar] [CrossRef]
- Hornsey, M. J. (2008). Social identity theory and self-categorization theory: A historical review. Social and Personality Psychology Compass, 2(1), 204–222. [Google Scholar] [CrossRef]
- Huang, T.-L. (2019). Psychological mechanisms of brand love and information technology identity in virtual retail environments. Journal of Retailing and Consumer Services, 47, 251–264. [Google Scholar] [CrossRef]
- Huo, W., Li, Q., Liang, B., Wang, Y., & Li, X. (2025). When healthcare professionals use AI: Exploring work well-being through psychological needs satisfaction and job complexity. Behavioral Sciences, 15(1), 88. [Google Scholar] [CrossRef]
- Jia, N., Luo, X., Fang, Z., & Liao, C. (2023). When and how artificial intelligence augments employee creativity. Academy of Management Journal, 67(1), 5–32. [Google Scholar] [CrossRef]
- John, O. P., & Srivastava, S. (1999). The big five trait taxonomy: History, measurement, and theoretical perspectives. In L. A. Pervin, & O. P. John (Eds.), Handbook of personality: Theory and research (pp. 102–138). Guilford Press. [Google Scholar]
- Koay, K. Y., Lim, V. K. G., Soh, P. C.-H., Ong, D. L. T., Ho, J. S. Y., & Lim, P. K. (2022). Abusive supervision and cyberloafing: A moderated moderation model of moral disengagement and negative reciprocity beliefs. Information & Management, 59(2), 103600. [Google Scholar] [CrossRef]
- Kong, H., Yin, Z., Baruch, Y., & Yuan, Y. (2023). The impact of trust in AI on career sustainability: The role of employee–AI collaboration and protean career orientation. Journal of Vocational Behavior, 146, 103928. [Google Scholar] [CrossRef]
- Kopp, T., Baumgartner, M., & Kinkel, S. (2021). Success factors for introducing industrial human-robot interaction in practice: An empirically driven framework. The International Journal of Advanced Manufacturing Technology, 112(3), 685–704. [Google Scholar] [CrossRef]
- Lai, C. H. Y., Koay, K. Y., Fujimoto, Y., Lim, V. K. G., & Ong, D. (2025). Understanding the effects of socially responsible human resource management on cyberloafing: A moderation and mediation model. Management Decision. ahead-of-print. [Google Scholar] [CrossRef]
- Li, W., Qin, X., Yam, K. C., Deng, H., Chen, C., Dong, X., Jiang, L., & Tang, W. (2024). Embracing artificial intelligence (AI) with job crafting: Exploring trickle-down effect and employees’ outcomes. Tourism Management, 104, 104935. [Google Scholar] [CrossRef]
- Liang, Y., Wu, T.-J., & Lin, W. (2024). Exploring the impact of forced teleworking on counterproductive work behavior: The role of event strength and work-family conflict. Internet Research. ahead-of-print. [Google Scholar] [CrossRef]
- Lim, V. K. G., & Teo, T. S. H. (2005). Prevalence, perceived seriousness, justification and regulation of cyberloafing in Singapore: An exploratory study. Information & Management, 42(8), 1081–1093. [Google Scholar] [CrossRef]
- Lv, X., Shi, K., He, Y., Ji, Y., & Lan, T. (2024). My colleague is not “human”: Will working with robots make you act more indifferently? Journal of Business Research, 176, 114585. [Google Scholar] [CrossRef]
- Ma, K., Zhang, Y., & Hui, B. (2024). How does AI affect college? The impact of ai usage in college teaching on students’ innovative behavior and well-being. Behavioral Sciences, 14(12), 1223. [Google Scholar] [CrossRef] [PubMed]
- Mammadov, S. (2022). Big Five personality traits and academic performance: A meta-analysis. Journal of Personality, 90(2), 222–255. [Google Scholar] [CrossRef] [PubMed]
- McPhail, R., Xi Wen (Carys), C., Robyn, M., & Wilkinson, A. (2024). Post-COVID remote working and its impact on people, productivity, and the planet: An exploratory scoping review. International Journal of Human Resource Management, 35(1), 154–182. [Google Scholar] [CrossRef]
- Meng, Q., Wu, T.-J., Duan, W., & Li, S. (2025). Effects of employee–Artificial Intelligence (AI) collaboration on counterproductive work behaviors (CWBs): Leader emotional support as a moderator. Behavioral Science, 15(5), 696. [Google Scholar] [CrossRef]
- Mirbabaie, M., Brünker, F., Möllmann Frick, N. R. J., & Stieglitz, S. (2022). The rise of artificial intelligence—Understanding the AI identity threat at the workplace. Electronic Markets, 32(1), 73–99. [Google Scholar] [CrossRef]
- Nusbaum, E. C., & Silvia, P. J. (2011). Are openness and intellect distinct aspects of openness to experience? A test of the O/I model. Personality and Individual Differences, 51(5), 571–574. [Google Scholar] [CrossRef]
- Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903. [Google Scholar] [CrossRef]
- Przegalinska, A., Triantoro, T., Kovbasiuk, A., Ciechanowski, L., Freeman, R. B., & Sowa, K. (2025). Collaborative AI in the workplace: Enhancing organizational performance through resource-based and task-technology fit perspectives. International Journal of Information Management, 81, 102853. [Google Scholar] [CrossRef]
- Reychav, I., Beeri, R., Balapour, A., Raban, D. R., Sabherwal, R., & Azuri, J. (2019). How reliable are self-assessments using mobile technology in healthcare? The effects of technology identity and self-efficacy. Computers in Human Behavior, 91, 52–61. [Google Scholar] [CrossRef]
- Rubin, M., Chuma, K. O., Russell, S., & Caricati, L. (2023). A social identity model of system attitudes (SIMSA): Multiple explanations of system justification by the disadvantaged that do not depend on a separate system justification motive. European Review of Social Psychology, 34(2), 203–243. [Google Scholar] [CrossRef]
- Saluja, S., Sinha, S., & Goel, S. (2024). Loafing in the era of generative AI. Organizational Dynamics, 101101. [Google Scholar] [CrossRef]
- Samimi Dehkordi, S., Radević, I., Černe, M., Božič, K., & Lamovšek, A. (2024). The three-way interaction of autonomy, openness to experience, and techno-invasion in predicting employee creativity. Journal of Creative Behavior, 59, e679. [Google Scholar] [CrossRef]
- Scheifele, C., Ehrke, F., Viladot, M. A., Van Laar, C., & Steffens, M. C. (2021). Testing the basic socio-structural assumptions of social identity theory in the gender context: Evidence from correlational studies on women’s leadership. European Journal of Social Psychology, 51(7), 1038–1060. [Google Scholar] [CrossRef]
- Seeber, I., Bittner, E., Briggs, R. O., de Vreede, T., de Vreede, G.-J., Elkins, A., Maier, R., Merz, A. B., Oeste-Reiß, S., Randrup, N., Schwabe, G., & Söllner, M. (2020). Machines as teammates: A research agenda on AI in team collaboration. Information & Management, 57(2), 103174. [Google Scholar] [CrossRef]
- Shao, W., Yunen, Z., Anni, C., Sara, Q., & Thaichon, P. (2023). Ethnicity in advertising and millennials: The role of social identity and social distinctiveness. International Journal of Advertising, 42(8), 1377–1418. [Google Scholar] [CrossRef]
- Slobodskaya, H. R., & Kornienko, O. S. (2021). Age and gender differences in personality traits from early childhood through adolescence. Journal of Personality, 89(5), 933–950. [Google Scholar] [CrossRef] [PubMed]
- Sowa, K., Przegalinska, A., & Ciechanowski, L. (2021). Cobots in knowledge work: Human—AI collaboration in managerial professions. Journal of Business Research, 125, 135–142. [Google Scholar] [CrossRef]
- Spring, M., Faulconbridge, J., & Sarwar, A. (2022). How information technology automates and augments processes: Insights from Artificial-Intelligence-based systems in professional service operations. Journal of Operations Management, 68(6–7), 592–618. [Google Scholar] [CrossRef]
- Stets, J. E., & Burke, P. J. (2000). Identity theory and social identity theory. Social Psychology Quarterly, 63(3), 224–237. [Google Scholar] [CrossRef]
- Tajfel, H., & Turner, J. C. (1979). An integrative theory of intergroup confict. In W. G. Austin, & S. Worchel (Eds.), The social psychology of inter-group relations (pp. 33–47). Brooks/Cole. [Google Scholar]
- Tandon, A., Kaur, P., Ruparel, N., Islam, J. U., & Dhir, A. (2022). Cyberloafing and cyberslacking in the workplace: Systematic literature review of past achievements and future promises. Internet Research, 32(1), 55–89. [Google Scholar] [CrossRef]
- Tang, P., Koopman, J., McClean, S. T., Zhang, J. H., Hon Li, C., de Cremer, D., Lu, Y., & Stewart Ng, C. T. (2022). When conscientious employees meet intelligent machines: An integrative approach inspired by complementarity theory and role theory. Academy of Management Journal, 65(3), 1019–1054. [Google Scholar] [CrossRef]
- Tsai, H.-Y. (2023). Do you feel like being proactive day? How daily cyberloafing influences creativity and proactive behavior: The moderating roles of work environment. Computers in Human Behavior, 138, 107470. [Google Scholar] [CrossRef]
- Tussyadiah, I. (2020). A review of research into automation in tourism: Launching the annals of tourism research curated collection on artificial intelligence and robotics in tourism. Annals of Tourism Research, 81, 102883. [Google Scholar] [CrossRef]
- Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. International Journal of Human Resource Management, 33(6), 1237–1266. [Google Scholar] [CrossRef]
- Wagner, D. T., Barnes, C. M., Lim, V. K. G., & Ferris, D. L. (2012). Lost sleep and cyberloafing: Evidence from the laboratory and a daylight saving time quasi-experiment. Journal of Applied Psychology, 97(5), 1068. [Google Scholar] [CrossRef] [PubMed]
- Williams, P. G., Rau, H. K., Cribbet, M. R., & Gunn, H. E. (2009). Openness to experience and stress regulation. Journal of Research in Personality, 43(5), 777–784. [Google Scholar] [CrossRef]
- Wu, T.-J., Li, J.-M., & Wu, Y. J. (2022). Employees’ job insecurity perception and unsafe behaviours in human–machine collaboration. Management Decision, 60(9), 2409–2432. [Google Scholar] [CrossRef]
- Wu, T.-J., Liang, Y., Duan, W.-Y., & Zhang, S.-D. (2024a). Forced shift to teleworking: How after-hours ICTs implicate COVID-19 perceptions when employees experience abusive supervision. Current Psychology, 43(26), 22686–22700. [Google Scholar] [CrossRef]
- Wu, T.-J., Liang, Y., & Wang, Y. (2024b). The buffering role of workplace mindfulness: How job insecurity of human-artificial intelligence collaboration impacts employees’ work–life-related outcomes. Journal of Business and Psychology, 39, 1395–1411. [Google Scholar] [CrossRef]
- Yan, B., & Teng, Y. (2025). The double-edged sword effect of artificial intelligence awareness on organisational citizenship behaviour: A study based on knowledge workers. Behaviour & Information Technology, 1–17. [Google Scholar] [CrossRef]
- Zahmat Doost, E., & Zhang, W. (2024). The effect of social media use on job performance with moderating effects of Cyberloafing and job complexity. Information Technology & People, 37(4), 1775–1801. [Google Scholar] [CrossRef]
- Zhang, J., Akhtar, M. N., Zhang, Y., & Sun, S. (2020). Are overqualified employees bad apples? A dual-pathway model of cyberloafing. Internet Research, 30(1), 289–313. [Google Scholar] [CrossRef]
- Zhang, Q., Liao, G., Ran, X., & Wang, F. (2025). The impact of ai usage on innovation behavior at work: The moderating role of openness and job complexity. Behavioral Sciences, 15(4), 491. [Google Scholar] [CrossRef] [PubMed]
Variables | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 Gender | 1.504 | 0.501 | 1 | |||||||||
2 Age | 33.780 | 9.401 | 0.023 | 1 | ||||||||
3 Education | 4.428 | 1.376 | 0.332 ** | −0.030 | 1 | |||||||
4 Tenure (of years) | 10.135 | 6.651 | −0.030 | 0.418 ** | −0.239 ** | 1 | ||||||
5 H-AIC | 3.815 | 0.857 | 0.219 ** | −0.128 * | 0.493 ** | −0.208 ** | 1 | |||||
6 Dependence | 3.310 | 1.320 | −0.115 * | −0.316 ** | 0.055 | −0.353 ** | 0.176 ** | 1 | ||||
7 Emotional Energy | 3.617 | 0.956 | −0.090 | −0.283 ** | 0.052 | −0.284 ** | 0.179 ** | 0.709 ** | 1 | |||
8 Relatedness | 3.885 | 0.906 | 0.194 ** | −0.110 * | 0.421 ** | −0.185 ** | 0.509 ** | 0.248 ** | 0.216 ** | 1 | ||
9 Openness | 3.892 | 0.945 | 0.271 ** | −0.042 | 0.576 ** | −0.181 ** | 0.427 ** | 0.162 ** | 0.161 ** | 0.478 ** | 1 | |
10 Cyberloafing | 2.642 | 1.069 | 0.071 | 0.195 ** | −0.052 | 0.249 ** | −0.216 ** | −0.614 ** | −0.513 ** | −0.320 ** | −0.131 * | 1 |
AVE | 0.662 | 0.862 | 0.826 | 0.786 | 0.742 | 0.700 | ||||||
CR | 0.907 | 0.949 | 0.935 | 0.917 | 0.920 | 0.962 |
Variables | Dependence | Emotional Energy | Relatedness | Cyberloafing | ||||||
---|---|---|---|---|---|---|---|---|---|---|
B | SE | B | SE | B | SE | B | SE | B | SE | |
Control Variable | ||||||||||
Gender | −0.362 ** | 0.126 | −0.217 * | 0.096 | 0.074 | 0.076 | 0.213 | 0.110 | 0.061 | 0.087 |
Age | −0.026 ** | 0.008 | −0.019 ** | 0.006 | −0.004 | 0.006 | 0.010 | 0.006 | −0.003 | 0.005 |
Education | −0.038 | 0.062 | −0.028 | 0.048 | 0.137 ** | 0.042 | 0.056 | 0.046 | 0.068 | 0.040 |
Tenure (of years) | −0.051 *** | 0.012 | −0.027 ** | 0.009 | −0.005 | 0.008 | 0.030 *** | 0.009 | 0.006 | 0.008 |
Independent Variable | ||||||||||
H-AIC | 0.228 ** | 0.082 | 0.180 ** | 0.064 | 0.406 *** | 0.063 | −0.279 *** | 0.071 | −0.079 | 0.069 |
Mediator | ||||||||||
Dependence | −0.372 *** | 0.047 | ||||||||
Emotional Energy | −0.153 * | 0.067 | ||||||||
Relatedness | −0.216 *** | 0.054 | ||||||||
R2 | 0.190 | 0.142 | 0.302 | 0.115 | 0.425 | |||||
F | 17.595 *** | 12.401 *** | 32.488 *** | 9.781 | 34.304 *** |
Variables | Dependence | Emotional Energy | Relatedness | Cyberloafing | ||||
---|---|---|---|---|---|---|---|---|
B | SE | B | SE | B | SE | B | SE | |
Control Variable | ||||||||
Gender | −0.342 ** | 0.127 | −0.196 * | 0.094 | 0.050 | 0.081 | 0.037 | 0.090 |
Age | −0.028 *** | 0.007 | −0.020 *** | 0.005 | –0.005 | 0.004 | −0.002 | 0.005 |
Education | −0.083 | 0.058 | −0.057 | 0.043 | 0.063 | 0.037 | 0.042 | 0.041 |
Tenure (of years) | −0.048 *** | 0.010 | −0.025 ** | 0.008 | –0.003 | 0.007 | 0.006 | 0.007 |
Independent Variable | ||||||||
H-AIC | 0.240 ** | 0.083 | 0.196 ** | 0.061 | 0.370 *** | 0.053 | −0.124 * | 0.062 |
Mediator | ||||||||
Dependence | −0.362 *** | 0.047 | ||||||
Emotional Energy | −0.125 * | 0.063 | ||||||
Relatedness | −0.216 *** | 0.058 | ||||||
Moderator Variable | ||||||||
Openness | 0.288 *** | 0.080 | 0.216 *** | 0.059 | 0.280 *** | 0.051 | 0.012 | 0.059 |
H-AIC × Openness | 0.352 *** | 0.076 | 0.299 *** | 0.057 | 0.101 * | 0.049 | −0.180 ** | 0.056 |
R2 | 0.250 | 0.218 | 0.358 | 0.442 | ||||
F | 17.759 *** | 14.835 *** | 29.648 *** | 29.249 *** |
Pathway | Openness | Effect | BootSE | Boot 95% CI |
---|---|---|---|---|
Direct Effect | ||||
H-AIC → Cyberloafing | M − 1SD | 0.046 | 0.073 | [−0.098, 0.190] |
M + 1SD | −0.295 | 0.090 | [−0.471, −0.119] | |
Indirect Effect | ||||
H-AIC → Dependence → Cyberloafing | M − 1SD | 0.034 | 0.036 | [−0.032, 0.111] |
M + 1SD | −0.207 | 0.049 | [−0.313, −0.122] | |
H-AIC→ Emotional Energy → Cyberloafing | M − 1SD | 0.011 | 0.013 | [−0.009, 0.042] |
M + 1SD | −0.060 | 0.034 | [−0.134, −0.002] | |
H-AIC→ Relatedness → Cyberloafing | M − 1SD | −0.059 | 0.028 | [−0.126, −0.018] |
M + 1SD | −0.100 | 0.033 | [−0.171, −0.044] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.-Q.; Wu, T.-J.; Duan, W.-Y.; Cui, X.-X. How the Human–Artificial Intelligence (AI) Collaboration Affects Cyberloafing: An AI Identity Perspective. Behav. Sci. 2025, 15, 859. https://doi.org/10.3390/bs15070859
Xu J-Q, Wu T-J, Duan W-Y, Cui X-X. How the Human–Artificial Intelligence (AI) Collaboration Affects Cyberloafing: An AI Identity Perspective. Behavioral Sciences. 2025; 15(7):859. https://doi.org/10.3390/bs15070859
Chicago/Turabian StyleXu, Jin-Qian, Tung-Ju Wu, Wen-Yan Duan, and Xuan-Xuan Cui. 2025. "How the Human–Artificial Intelligence (AI) Collaboration Affects Cyberloafing: An AI Identity Perspective" Behavioral Sciences 15, no. 7: 859. https://doi.org/10.3390/bs15070859
APA StyleXu, J.-Q., Wu, T.-J., Duan, W.-Y., & Cui, X.-X. (2025). How the Human–Artificial Intelligence (AI) Collaboration Affects Cyberloafing: An AI Identity Perspective. Behavioral Sciences, 15(7), 859. https://doi.org/10.3390/bs15070859