The Effects of Imagery Practice on Athletes’ Performance: A Multilevel Meta-Analysis with Systematic Review
Abstract
:1. Introduction
2. Method
2.1. Eligibility Criteria
2.2. Information Sources
2.3. Study Selection and Data Collection
2.4. Data Items
2.5. Risk of Bias Assessment
2.6. Certainty in Evidence
2.7. Statistical Analysis
- (1)
- Null model to estimate the overall effect sizes. We fitted models on the full dataset for athletic performance.
- (2)
- Imagery model. We categorized imagery practice according to its distinct characteristics. The first type included imagery practice that was not integrated with other psychological skills training, whereas the second type consisted of psychological skills training packages (PSTPs) that incorporated imagery practice. Secondly, a comparison was made between these two forms of imagery practice and other psychological skills training, or the absence of psychological training (no practice).
- (3)
- Performance model: we categorized the derived athletic performance results according to their characteristics.
- (4)
- Athlete model: athletes were categorized according to the type of sport they participated in.
2.8. Moderation Analysis
3. Results
3.1. Study Selection
3.2. Characteristics of the Included Studies
3.3. Quality Assessment
3.4. Meta Analysis
3.5. Null Model
3.6. Performance Model
3.7. Imagery Model
3.8. Athlete Model
3.9. Moderation Analysis
3.10. Quality Grade in Each Outcome
3.11. Publication Bias
4. Discussion
4.1. Summary of the Findings
4.2. The Effect of Imagery Practice on Athletic Performance
4.3. The Dose–Response Relationship of Imagery Practice and Athletic Performance
4.4. Strengths, Limitations, and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbas, A., Hefnawy, M. T., & Negida, A. (2024). Meta-analysis accelerator: A comprehensive tool for statistical data conversion in systematic reviews with meta-analysis. BMC Medical Research Methodology, 24(1), 243. [Google Scholar] [CrossRef] [PubMed]
- Alenezi, M. M., Hayes, A., Lawrence, G. P., & Kubis, H.-P. (2023). Influence of motor imagery training on hip abductor muscle strength and bilateral transfer effect. Frontiers in Physiology, 14, 1188658. [Google Scholar] [CrossRef]
- Amini Farsani, M., Shahbazi, M., & Tahmasebi Boroujeni, S. (2023). Improvement in soccer goalkeepers’ spatial anticipation during penalty kicks as a result of PETTLEP imagery intervention. Journal of Imagery Research in Sport and Physical Activity, 18(1), 20230022. [Google Scholar] [CrossRef]
- Anuar, N., & Bahar, N. (2023). Imagery training for Malaysian paralympics athletes—An important step towards sports equity. British Journal of Sports Medicine, 57(10), 613–614. [Google Scholar] [CrossRef] [PubMed]
- Araújo, D. (2006). The ecological dynamics of decision making in sport. Psychology of Sport and Exercise, 7, 653–676. [Google Scholar] [CrossRef]
- Avila, B. J., Brown, L. E., Coburn, J. W., & Statler, T. A. (2015). Effects of Imagery on Force Production and Jump Performance. Journal of Exercise Physiology Online, 18, 42–48. [Google Scholar]
- Balshem, H., Helfand, M., Schünemann, H. J., Oxman, A. D., Kunz, R., Brozek, J., Vist, G. E., Falck-Ytter, Y., Meerpohl, J., & Norris, S. (2011). GRADE guidelines: 3. Rating the quality of evidence. Journal of Clinical Epidemiology, 64(4), 401–406. [Google Scholar] [CrossRef]
- Battaglia, C., D’Artibale, E., Fiorilli, G., Piazza, M., Tsopani, D., Giombini, A., Calcagno, G., & Di Cagno, A. (2014). Use of video observation and motor imagery on jumping performance in national rhythmic gymnastics athletes. Human Movement Science, 38, 225–234. [Google Scholar] [CrossRef]
- Bedir, D., & Erhan, S. E. (2021). The effect of virtual reality technology on the imagery skills and performance of target-based sports athletes. Frontiers in Psychology, 11, 2073. [Google Scholar] [CrossRef]
- Bedir, F., Bedir, D., Yılmaz, H. H., Ağduman, F., Şen, İ., Kıyıcı, F., Korkmaz, O. E., Yıldız, M. O., & Çelik, E. (2025). Investigation of the effect of a virtual reality-based imagery training model on muscle activation in athletes. Frontiers in Psychology, 16, 1553327. [Google Scholar] [CrossRef]
- Birrer, D., & Morgan, G. (2010). Psychological skills training as a way to enhance an athlete’s performance in high-intensity sports. Scandinavian Journal of Medicine & Science in Sports, 20(s2), 78–87. [Google Scholar] [CrossRef]
- Björkstrand, S., & Jern, P. (2013). Evaluation of an imagery intervention to improve penalty taking ability in soccer: A study of two junior girls teams. Nordic Psychology, 65(4), 290–305. [Google Scholar] [CrossRef]
- Blakeslee, M. L., & Goff, D. M. (2007). The effects of a mental skills training package on equestrians. The Sport Psychologist, 21(3), 288–301. [Google Scholar] [CrossRef]
- Blumenstein, B., Orbach, I., Gelinski, Y., Shemer, Y., Weinstein, Y., & Moran, D. (2018). The effect of mental relaxation and imagery on free throw shooting accuracy among young basketball players. Journal of Imagery Research in Sport and Physical Activity, 17(1), 20210018. [Google Scholar]
- Boetje, J., & Van De Schoot, R. (2024). The SAFE procedure: A practical stopping heuristic for active learning-based screening in systematic reviews and meta-analyses. Systematic Reviews, 13(1), 81. [Google Scholar] [CrossRef] [PubMed]
- Braginsky, M., Mathur, M., & VanderWeele, T. J. (2019). PublicationBias: Sensitivity analysis for publication bias in meta-analyses (Version 2.4.0) [Dataset]. Github. [Google Scholar] [CrossRef]
- Budnik-Przybylska, D., Makurat, F., Przybylski, J., & Morris, T. (2024). Effect of imagery training on football players. Baltic Journal of Health and Physical Activity, 16(4), 3. [Google Scholar] [CrossRef]
- Bürkner, P.-C. (2018). Advanced bayesian multilevel modeling with the R Package brms. The R Journal, 10(1), 395. [Google Scholar] [CrossRef]
- Callow, N., Roberts, R., & Fawkes, J. Z. (2006). Effects of dynamic and static imagery on vividness of imagery, skiing performance, and confidence. Journal of Imagery Research in Sport and Physical Activity, 1(1). [Google Scholar] [CrossRef]
- Chungath, A. F., Sudhesh, N. T., Gupta, S., & Divekar, S. (2022). Efficacy of a video modeling and imagery-controlled trial intervention in a non-western adolescent population: A case study. Case Studies in Sport and Exercise Psychology, 6(S1), S1-24–S1-37. [Google Scholar] [CrossRef]
- Cuenca-Martínez, F., Suso-Martí, L., Sánchez-Martín, D., Soria-Soria, C., Serrano-Santos, J., Paris-Alemany, A., La Touche, R., & León-Hernández, J. V. (2020). Effects of motor imagery and action observation on lumbo-pelvic motor control, trunk muscles strength and level of perceived fatigue: A randomized controlled trial. Research Quarterly for Exercise and Sport, 91(1), 34–46. [Google Scholar] [CrossRef]
- Cumming, J., Nordin, S. M., Horton, R., & Reynolds, S. (2006). Examining the direction of imagery and self-talk on dart-throwing performance and self efficacy. The Sport Psychologist, 20(3), 257–274. [Google Scholar] [CrossRef]
- Çiftçi, M. C., & Yılmaz, B. (2024). The effect of action observation and motor imagery on jumping and perceived performance. Frontiers in Psychology, 15, 1362976. [Google Scholar] [CrossRef]
- Dana, A., & Gozalzadeh, E. (2017). Internal and external imagery effects on tennis skills among novices. Perceptual and Motor Skills, 124(5), 1022–1043. [Google Scholar] [CrossRef]
- Daneshfar, A., Petersen, C. J., & Gahreman, D. E. (2022). The effect of 4 weeks motor imagery training on simulated BMX race performance. International Journal of Sport and Exercise Psychology, 20(2), 644–660. [Google Scholar] [CrossRef]
- Di Rienzo, F., Blache, Y., Kanthack, T. F. D., Monteil, K., Collet, C., & Guillot, A. (2015). Short-term effects of integrated motor imagery practice on muscle activation and force performance. Neuroscience, 305, 146–156. [Google Scholar] [CrossRef]
- Driskell, J. E., Copper, C., & Moran, A. (1994). Does mental practice enhance performance? Journal of Applied Psychology, 79, 481–492. [Google Scholar] [CrossRef]
- Fazel, F., Morris, T., Watt, A., & Maher, R. (2018). The effects of different types of imagery delivery on basketball free-throw shooting performance and self-efficacy. Psychology of Sport and Exercise, 39, 29–37. [Google Scholar] [CrossRef]
- Fekih, S., Zguira, M. S., Koubaa, A., Ghariani, I., Zguira, H., Bragazzi, N. L., & Jarraya, M. (2020). The impact of a motor imagery-based training program on agility, speed, and reaction time in a sample of young tennis athletes during ramadan fasting: Insights and implications from a randomized, controlled experimental trial. Nutrients, 12(11), 3306. [Google Scholar] [CrossRef] [PubMed]
- Fortes, L. de S., Almeida, S. S., Nascimento-Júnior, J. R. A., Fiorese, L., Lima-Júnior, D., & Ferreira, M. E. C. (2019). Effect of motor imagery training on tennis service performance in young tennis athletes. Revista de Psicologia del Deporte, 28(1), 157–168. [Google Scholar]
- Getdata-Graph-Digitizer. (2020). Available online: http://getdata-graph-digitizer.com/ (accessed on 14 March 2025).
- Glisky, M. L., Williams, J. M., & Kihlstrom, J. F. (1996). Internal and external mental imagery perspectives and performance on two tasks. Journal of Sport Behavior, 19, 3–18. [Google Scholar]
- Gmamdya, H., Souissi, M. A., Bougrine, H., Baaziz, M., Guelmami, N., Majdi, B., Robin, N., & Bali, N. (2023). The positive impact of combining motor imagery, action observation and coach’s feedback on archery accuracy of young athletes. Perceptual and Motor Skills, 130(5), 2226–2248. [Google Scholar] [CrossRef]
- Gray, S. W. (1990). Effect of visuomotor rehearsal with videotaped modeling on racquetball performance of beginning players. Perceptual and Motor Skills, 70(2), 379–385. [Google Scholar] [CrossRef] [PubMed]
- Grosprêtre, S., Jacquet, T., Lebon, F., Papaxanthis, C., & Martin, A. (2018). Neural mechanisms of strength increase after one-week motor imagery training. European Journal of Sport Science, 18(2), 209–218. [Google Scholar] [CrossRef]
- Grosso, F., Balzarini, C., Antonietti, A., & Pagnini, F. (2024). Imagining flying increases jumping performance in volleyball players: A pilot study. Acta Psychologica, 248, 104366. [Google Scholar] [CrossRef] [PubMed]
- Guillot, A., Di Rienzo, F., Pialoux, V., Simon, G., Skinner, S., & Rogowski, I. (2015). Implementation of motor imagery during specific aerobic training session in young tennis players. PLoS ONE, 10(11), e0143331. [Google Scholar] [CrossRef]
- Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2), e1230. [Google Scholar] [CrossRef]
- Hardy, L., & Callow, N. (1999). Efficacy of external and internal visual imagery perspectives for the enhancement of performance on tasks in which form is important. Journal of Sport and Exercise Psychology, 21(2), 95–112. [Google Scholar] [CrossRef]
- Hashmi, S., Akhtar, T., & Hashmi, M. (2020). Effects of PETTLEP imagery technique on precision skills: A study on drag flick in Pakistan hockey. Journal of Imagery Research in Sport and Physical Activity, 15(1), 20200001. [Google Scholar] [CrossRef]
- Hidayat, Y., Yudiana, Y., Hambali, B., Sultoni, K., Ustun, U. D., & Singnoy, C. (2023). The effect of the combined self-talk and mental imagery program on the badminton motor skills and self-confidence of youth beginner student-athletes. BMC Psychology, 11(1), 35. [Google Scholar] [CrossRef]
- Higgins, J. P. T., Altman, D. G., Gotzsche, P. C., Juni, P., Moher, D., Oxman, A. D., Savovic, J., Schulz, K. F., Weeks, L., Sterne, J. A. C., Cochrane Bias Methods Group & Cochrane Statistical Methods Group. (2011). The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ, 343(2), d5928. [Google Scholar] [CrossRef]
- Holzinger, A. (2016). Interactive machine learning for health informatics: When do we need the human-in-the-loop? Brain Informatics, 3(2), 119–131. [Google Scholar] [CrossRef] [PubMed]
- Itoh, S., Morris, T., & Spittle, M. (2023). Examining duration in the imagery dose-response relationship. Journal of Imagery Research in Sport and Physical Activity, 18(1), 20220020. [Google Scholar] [CrossRef]
- Kanthack, T. F. D., Bigliassi, M., Vieira, L. F., & Altimari, L. R. (2013). Efeito agudo da imagética no desempenho de lances livres e percepção de autoeficácia em atletas. Revista Brasileira de Cineantropometria e Desempenho Humano, 16(1), 47–57. [Google Scholar] [CrossRef]
- Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90, 773–795. [Google Scholar] [CrossRef]
- Khalaf, H. H., Hassan, M. M., & Ahmed, M. S. (2024). The effect of seven mental training sessions on developing roundoff and back handspring skills on men’s artistic gymnastics. Asian Journal of Sports Medicine, 15(4). [Google Scholar] [CrossRef]
- Kruschke, J. K., & Liddell, T. M. (2018). The Bayesian new statistics: Hypothesis testing, estimation, meta-analysis, and power analysis from a Bayesian perspective. Psychonomic Bulletin & Review, 25(1), 178–206. [Google Scholar] [CrossRef]
- Lang, P. J. (1979). A bio-informational theory of emotional imagery. Psychophysiology, 16(6), 495–512. [Google Scholar] [CrossRef]
- Laurent, D., Carien, R., & Robin, N. (2024). Influence of motor imagery modality on first-serve performance in tennis players. Motor Control, 28(4), 377–390. [Google Scholar] [CrossRef]
- Lebon, F., Collet, C., & Guillot, A. (2010). Benefits of motor imagery training on muscle strength. Journal of Strength and Conditioning Research, 24(6), 1680–1687. [Google Scholar] [CrossRef]
- Lin, C.-H., Lu, F. J. H., Gill, D. L., Huang, K. S.-K., Wu, S.-C., & Chiu, Y.-H. (2022). Combinations of action observation and motor imagery on golf putting’s performance. PeerJ, 10, e13432. [Google Scholar] [CrossRef]
- Lindsay, R. S., Larkin, P., Kittel, A., & Spittle, M. (2023). Mental imagery training programs for developing sport-specific motor skills: A systematic review and meta-analysis. Physical Education and Sport Pedagogy, 28(4), 444–465. [Google Scholar] [CrossRef]
- Lu, F. J. H., Gill, D. L., Lee, Y.-C., Chiu, Y.-H., Liu, S., & Liu, H.-Y. (2020). Effects of visualized PETTLEP imagery on the basketball 3-point shot: A comparison of internal and external perspectives. Psychology of Sport and Exercise, 51, 101765. [Google Scholar] [CrossRef]
- Majlesi, S. (2021). The effect of video imagery training on soccer skills performance of high school players. Psychology and Education Journal, 58(1), 3184–3194. [Google Scholar] [CrossRef]
- Makowski, D., Ben-Shachar, M., & Lüdecke, D. (2019). bayestestR: Describing effects and their uncertainty, existence and significance within the bayesian framework. Journal of Open Source Software, 4(40), 1541. [Google Scholar] [CrossRef]
- Marshall, E. A., & Gibson, A.-M. (2017). The effect of an imagery training intervention on self-confidence, anxiety and performance in acrobatic gymnastics—A pilot study. Journal of Imagery Research in Sport and Physical Activity, 12(1), 20160009. [Google Scholar] [CrossRef]
- Mathur, M. B., & VanderWeele, T. J. (2020). Sensitivity analysis for publication bias in meta-analyses. Journal of the Royal Statistical Society Series C: Applied Statistics, 69(5), 1091–1119. [Google Scholar] [CrossRef] [PubMed]
- McAleney, P. J., Barabasz, A., & Barabasz, M. (1990). Effects o f flotation restricted environmental stimulation o n intercollegiate tennis performance. Perceptual and Motor Skills, 71(3), 1023–1028. [Google Scholar] [CrossRef]
- McCormick, A., Meijen, C., & Marcora, S. (2015). Psychological determinants of whole-body endurance performance. Sports Medicine, 45(7), 997–1015. [Google Scholar] [CrossRef]
- McGuinness, L. A., & Higgins, J. P. T. (2021). Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Research Synthesis Methods, 12(1), 55–61. [Google Scholar] [CrossRef]
- McNeil, D. G., Spittle, M., & Mesagno, C. (2021). Imagery training for reactive agility: Performance improvements for decision time but not overall reactive agility. International Journal of Sport and Exercise Psychology, 19(3), 429–445. [Google Scholar] [CrossRef]
- McNeill, E., Ramsbottom, N., Toth, A. J., & Campbell, M. J. (2020). Kinaesthetic imagery ability moderates the effect of an AO+MI intervention on golf putt performance: A pilot study. Psychology of Sport and Exercise, 46, 101610. [Google Scholar] [CrossRef]
- Morone, G., Ghanbari Ghooshchy, S., Pulcini, C., Spangu, E., Zoccolotti, P., Martelli, M., Spitoni, G. F., Russo, V., Ciancarelli, I., Paolucci, S., & Iosa, M. (2022). Motor Imagery and Sport Performance: A Systematic Review on the PETTLEP Model. Applied Sciences, 12(19), 9753. [Google Scholar] [CrossRef]
- Munroe-Chandler, K. J., Hall, C. R., Fishburne, G. J., Murphy, L., & Hall, N. D. (2012). Effects of a cognitive specific imagery intervention on the soccer skill performance of young athletes: Age group comparisons. Psychology of Sport and Exercise, 13(3), 324–331. [Google Scholar] [CrossRef]
- Munzert, J., Lorey, B., & Zentgraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain Research Reviews, 60(2), 306–326. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S. M., & Jowdy, D. P. (1992). Advances in sport psychology: Vol. Imagery and mental practice. Human Kinetics Publishers. [Google Scholar]
- Nicolas, R., Carien, R., Ouarti, Y., & Laurent, D. (2025). Beneficial effects of imagination of successful action after an actual error on baseline performances in non-expert young tennis players. Psychological Research, 89(1), 23. [Google Scholar] [CrossRef]
- Olsson, C.-J., Jonsson, B., & Nyberg, L. (2008). Internal imagery training in active high jumpers. Scandinavian Journal of Psychology, 49(2), 133–140. [Google Scholar] [CrossRef]
- Paravlic, A. H., Slimani, M., Tod, D., Marusic, U., Milanovic, Z., & Pisot, R. (2018). Effects and dose–response relationships of motor imagery practice on strength development in healthy adult populations: A systematic review and meta-analysis. Sports Medicine, 48(5), 1165–1187. [Google Scholar] [CrossRef]
- Plakoutsis, G., Tsepis, E., Fousekis, K., Christakou, A., & Papandreou, M. (2025). The complementary role of motor imagery on VO2max and lactate in professional football players with grade II ankle Sprains During the return-to-play period. Applied Sciences, 15(2), 820. [Google Scholar] [CrossRef]
- Prasomsri, J., Thueman, B., Yuenyong, P., Thongnoon, C., Khophongphaibun, N., & Ariyawatcharin, S. (2024). Effectiveness of motor imagery on sports performance in football players: A randomised control trial. Hong Kong Physiotherapy Journal, 44(01), 29–37. [Google Scholar] [CrossRef]
- Predebon, J., & Docker, S. B. (1992). Free-throw shooting performance as a function of preshot routines. Perceptual and Motor Skills, 75(1), 167–171. [Google Scholar] [CrossRef]
- Quinton, M. L., Cumming, J., Gray, R., Geeson, J. R., Cooper, A., Crowley, H., & Williams, S. E. (2014). A PETTLEP imagery intervention with young athletes. Journal of Imagery Research in Sport and Physical Activity, 9(1), 47–59. [Google Scholar] [CrossRef]
- Reinebo, G., Alfonsson, S., Jansson-Fröjmark, M., Rozental, A., & Lundgren, T. (2024). Effects of psychological interventions to enhance athletic performance: A systematic review and meta-analysis. Sports Medicine, 54(2), 347–373. [Google Scholar] [CrossRef]
- Rhodes, J., May, J., Andrade, J., & Kavanagh, D. (2018). Enhancing Grit through functional imagery training in professional soccer. The Sport Psychologist, 32(3), 220–225. [Google Scholar] [CrossRef]
- Rhodes, J., May, J., & Booth, A. (2020). Penalty success in professional soccer: A randomised comparison between imagery methodologies. Journal of Imagery Research in Sport and Physical Activity, 15(1), 20200014. [Google Scholar] [CrossRef]
- Robin, N., Carien, R., & Dominique, L. (2022a). Tennis service performance in beginners: The effect of instructional self-talk combined with motor imagery. Journal of Motor Learning and Development, 10(1), 200–211. [Google Scholar] [CrossRef]
- Robin, N., Carien, R., Taktek, K., Hatchi, V., & Dominique, L. (2024). Effects of motor imagery training on service performance in novice tennis players: The role of imagery ability. International Journal of Sport and Exercise Psychology, 22(5), 1070–1082. [Google Scholar] [CrossRef]
- Robin, N., & Dominique, L. (2022). Mental imagery and tennis: A review, applied recommendations and new research directions. Movement & Sport Sciences-Science & Motricité, 127, 57–75. [Google Scholar] [CrossRef]
- Robin, N., Dominique, L., Guillet-Descas, E., & Hue, O. (2022b). Beneficial effects of motor imagery and self-talk on service performance in skilled tennis players. Frontiers in Psychology, 13, 778468. [Google Scholar] [CrossRef]
- Robin, N., Toussaint, L., Charles-Charlery, C., & Coudevylle, G. R. (2019). Free throw performance in non-expert basketball players: The effect of dynamic motor imagery combined with action observation. Learning and Motivation, 68, 101595. [Google Scholar] [CrossRef]
- Robin, N., Toussaint, L., Joblet, E., Roublot, E., & Coudevylle, G. R. (2020). The beneficial influence of combining motor imagery and coach’s feedback on soccer pass accuracy in intermediate players. Journal of Motor Learning and Development, 8(2), 262–279. [Google Scholar] [CrossRef]
- Rodgers, W., Hall, C., & Buckolz, E. (1991). The effect of an imagery training program on imagery ability, imagery use, and figure skating performance. Journal of Applied Sport Psychology, 3(2), 109–125. [Google Scholar] [CrossRef]
- Rozi, M. F., Resmana, R., Selviani, I., Okilanda, A., Sumantri, R. J., Suganda, M. A., & Suryadi, D. (2023). Imagery and agility training: How do they affect the reaction ability of futsal goalkeepers? Physical Education Theory and Methodology, 23(3), 325–332. [Google Scholar] [CrossRef]
- Rumeau, V., Grospretre, S., & Babault, N. (2023). Post-activation performance enhancement and motor imagery are efficient to emphasize the effects of a standardized warm-up on sprint-running performances. Sports, 11(5), 108. [Google Scholar] [CrossRef] [PubMed]
- Rumeau, V., Grospretre, S., & Babault, N. (2024). The combination of motor imagery and post-activation performance enhancement is efficient to emphasize the effects of warm-up on sport-specific performance. Journal of Sports Science and Medicine, 23, 834–842. [Google Scholar] [CrossRef]
- Shimada, K., Onishi, T., Ogawa, Y., Yamauchi, J., & Kawada, S. (2019). Effects of motor imagery combined with action observation training on the lateral specificity of muscle strength in healthy subjects. Biomedical Research, 40(3), 107–113. [Google Scholar] [CrossRef]
- Simonsmeier, B. A., Andronie, M., Buecker, S., & Frank, C. (2021). The effects of imagery interventions in sports: A meta-analysis. International Review of Sport and Exercise Psychology, 14(1), 186–207. [Google Scholar] [CrossRef]
- Simonsmeier, B. A., Frank, C., Gubelmann, H., & Schneider, M. (2018). The effects of motor imagery training on performance and mental representation of 7- to 15-year-old gymnasts of different levels of expertise. Sport, Exercise, and Performance Psychology, 7(2), 155–168. [Google Scholar] [CrossRef]
- Slimani, M., Taylor, L., Baker, J. S., Elleuch, A., Ayedi, F. M., Chamari, K., & Chéour, F. (2017). Effects of mental training on muscular force, hormonal and physiological changes in kickboxers. The Journal of Sports Medicine and Physical Fitness, 57(7–8), 1069–1079. [Google Scholar] [CrossRef]
- Smith, D., Wright, C. J., & Cantwell, C. (2008). Beating the bunker: The effect of PETTLEP imagery on golf bunker shot performance. Research Quarterly for Exercise and Sport, 79(3), 385–391. [Google Scholar] [CrossRef]
- Suedfeld, P., Collier, D. E., & Hartnett, B. D. G. (1993). Enhancing perceptual-motor accuracy through flotation REST. The Sport Psychologist, 7(2), 151–159. [Google Scholar] [CrossRef]
- Taylor, J. A., & Shaw, D. F. (2002). The effects of outcome imagery on golf-putting performance. Journal of Sports Sciences, 20(8), 607–613. [Google Scholar] [CrossRef] [PubMed]
- Toth, A. J., McNeill, E., Hayes, K., Moran, A. P., & Campbell, M. (2020). Does mental practice still enhance performance? A 24 Year follow-up and meta-analytic replication and extension. Psychology of Sport and Exercise, 48, 101672. [Google Scholar] [CrossRef]
- van de Schoot, R., de Bruin, J., Schram, R., Zahedi, P., de Boer, J., Weijdema, F., Kramer, B., Huijts, M., Hoogerwerf, M., Ferdinands, G., Harkema, A., Willemsen, J., Ma, Y., Fang, Q., Hindriks, S., Tummers, L., & Oberski, D. L. (2021). An open source machine learning framework for efficient and transparent systematic reviews. Nature Machine Intelligence, 3, 125–133. [Google Scholar] [CrossRef]
- Veritas Health Innovation. (2023). Covidence systematic review software [Computer software]. Available online: www.covidence.org (accessed on 15 March 2025).
- Vickers, J. N. (2007). Perception, cognition, and decision training: The quiet eye in action. Human Kinetics. [Google Scholar]
- Wagaman, J. D., Barabasz, A. F., & Barabasz, M. (1991). Flotation rest and imagery in the improvement of collegiate basketball performance. Perceptual and Motor Skills, 72(1), 119–122. [Google Scholar] [CrossRef]
- Wang, Z., Nayfeh, T., Tetzlaff, J., O’Blenis, P., & Murad, M. H. (2020). Error rates of human reviewers during abstract screening in systematic reviews. PLoS ONE, 15(1), e0227742. [Google Scholar] [CrossRef]
- Winter, S., & Collins, D. (2013). Does priming really put the gloss on performance? Journal of Sport and Exercise Psychology, 35(3), 299–307. [Google Scholar] [CrossRef]
- Zakrajsek, R. A., & Blanton, J. E. (2017). Evaluation of psychological interventions in sport and exercise settings. In R. A. Zakrajsek, & J. E. Blanton (Eds.), Oxford research encyclopedia of psychology. Oxford University Press. [Google Scholar] [CrossRef]
Moderator | Estimate | l-95% CI | u-95% CI | R2 | l-95% CI | u-95% CI | |
---|---|---|---|---|---|---|---|
1 | Gender | −0.01 | −0.01 | −0.001 | 0.59 | 0.5 | 0.69 |
2 | Age | 0.01 | −0.02 | 0.02 | 0.65 | 0.56 | 0.73 |
3 | Training years | −0.02 | −0.08 | 0.03 | 0.69 | 0.52 | 0.82 |
4 | Disease (TRUE) | 0.86 | −0.62 | 2.37 | 0.66 | 0.58 | 0.73 |
5 | Disease (FALSE) | 0.42 | 0.33 | 0.52 | 0.66 | 0.58 | 0.73 |
6 | Competitive level (amateur) | 0.54 | 0.35 | 0.74 | 0.67 | 0.59 | 0.74 |
7 | Competitive level (elite) | −0.14 | −0.37 | 0.09 | 0.67 | 0.59 | 0.74 |
8 | Competitive level (mix) | −0.49 | −1.03 | 0.05 | 0.67 | 0.59 | 0.74 |
9 | TI (individual sports) | 0.51 | 0.38 | 0.65 | 0.66 | 0.58 | 0.73 |
10 | TI (team sports) | −0.15 | −0.36 | 0.04 | 0.66 | 0.58 | 0.73 |
11 | TI (mix) | −0.32 | 0.7 | 0.05 | 0.66 | 0.58 | 0.73 |
12 | PST experience (TRUE) | −0.12 | −1.09 | 0.86 | 0.76 | 0.62 | 0.87 |
13 | PST experience (FALSE) | 0.45 | 0.22 | 0.69 | 0.76 | 0.62 | 0.87 |
14 | Base | 0.43 | 0.33 | 0.52 | 0.66 | 0.58 | 0.73 |
Moderator | Type | Estimate | l-95% CI | u-95% CI | R2 | l-95% CI | u-95% CI | |
---|---|---|---|---|---|---|---|---|
1 | Duration | 20 days | 0.38 | 0.23 | 0.54 | 0.61 | 0.48 | 0.72 |
2 | Duration | 50 days | 0.47 | 0.32 | 0.61 | 0.61 | 0.48 | 0.72 |
3 | Duration | 100 days | 0.62 | 0.28 | 0.93 | 0.61 | 0.48 | 0.72 |
4 | Weekly frequency | Once a week | 0.09 | −0.24 | 0.42 | 0.62 | 0.47 | 0.75 |
5 | Weekly frequency | Three times a week | 0.59 | 0.42 | 0.75 | 0.62 | 0.47 | 0.75 |
6 | Weekly frequency | Seven times a week | −0.13 | −0.85 | 0.55 | 0.62 | 0.47 | 0.75 |
7 | Intensity | 10 min | 0.51 | 0.34 | 0.7 | 0.59 | 0.45 | 0.72 |
8 | Intensity | 20 min | 0.22 | −0.02 | 0.45 | 0.59 | 0.45 | 0.72 |
9 | Intensity | 30 min | 0.26 | −0.02 | 0.53 | 0.59 | 0.45 | 0.72 |
10 | Intensity | 45 min | 0.93 | −0.1 | 2.11 | 0.59 | 0.45 | 0.72 |
11 | PSTP types | 2 PSTs | 0.55 | 0.31 | 0.79 | 0.79 | 0.67 | 0.88 |
12 | PSTP types | 3 PSTs | 0.82 | 0.37 | 1.37 | 0.79 | 0.67 | 0.88 |
13 | PSTP types | 4 PSTs | 0.73 | 0.11 | 1.37 | 0.79 | 0.67 | 0.88 |
14 | Base | NA | 0.36 | 0.27 | 0.46 | 0.55 | 0.43 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhao, S.; Zhang, X.; Zhang, X.; Liang, T.; Ning, Z. The Effects of Imagery Practice on Athletes’ Performance: A Multilevel Meta-Analysis with Systematic Review. Behav. Sci. 2025, 15, 685. https://doi.org/10.3390/bs15050685
Liu Y, Zhao S, Zhang X, Zhang X, Liang T, Ning Z. The Effects of Imagery Practice on Athletes’ Performance: A Multilevel Meta-Analysis with Systematic Review. Behavioral Sciences. 2025; 15(5):685. https://doi.org/10.3390/bs15050685
Chicago/Turabian StyleLiu, Yiran, Shiao Zhao, Xuda Zhang, Xiaoyu Zhang, Taihe Liang, and Ziheng Ning. 2025. "The Effects of Imagery Practice on Athletes’ Performance: A Multilevel Meta-Analysis with Systematic Review" Behavioral Sciences 15, no. 5: 685. https://doi.org/10.3390/bs15050685
APA StyleLiu, Y., Zhao, S., Zhang, X., Zhang, X., Liang, T., & Ning, Z. (2025). The Effects of Imagery Practice on Athletes’ Performance: A Multilevel Meta-Analysis with Systematic Review. Behavioral Sciences, 15(5), 685. https://doi.org/10.3390/bs15050685