Influence of Information Sources and Group Norms on University Students’ Online Rumor Refuting Behavior During Public Health Emergencies
Abstract
:1. Introduction
2. Theoretical Grounding and Hypothesis Development
2.1. SOR Theory
2.2. Information Seeking and Fear
2.2.1. Online Information Seeking and Fear
2.2.2. Offline Information Seeking and Fear
2.3. Fear and Online Rumor Refuting
2.4. Mediating Effects of Fear
2.5. Moderating Effects of Group Norms
3. Methods
3.1. Participants
3.2. Measures
3.3. Dependent Variables and Independent Variables
3.4. Covariates
4. Data Analysis
4.1. Measurement Model
4.2. Structural Model
4.3. Moderated Effect Analysis
4.4. Mediated Effect Analysis
5. Discussion and Implications
5.1. Discussion
5.2. Theoretical Implications
5.3. Practical Implications
6. Conclusions and Limitations
6.1. Conclusions
6.2. Limitations and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agosto, D. E., & Hughes-Hassell, S. (2005). People, places, and questions: An investigation of the everyday life information-seeking behaviors of urban young adults. Library & Information Science Research, 27(2), 141–163. [Google Scholar] [CrossRef]
- Ahsan, M., Kumari, M., & Sharma, T. P. (2019). Rumors detection, verification and controlling mechanisms in online social networks: A survey. Online Social Networks and Media, 14, 100050. [Google Scholar] [CrossRef]
- Baker, R. K., & White, K. M. (2010). Predicting adolescents’ use of social networking sites from an extended theory of planned behaviour perspective. Computers in Human Behavior, 26(6), 1591–1597. [Google Scholar] [CrossRef]
- Boss, S., Galletta, D., Lowry, P. B., Moody, G. D., & Polak, P. (2015). What do systems users have to fear? Using fear appeals to engen der threats and fear that motivate protective security behaviors. MIS Quarterly, 39(4), 837–864. [Google Scholar] [CrossRef]
- Cao, W., Fang, Z., & Hou, G. (2020). The psychological impact of the COVID-19 epidemic on college students in China. Psychiatry Research, 287, 112934. [Google Scholar] [CrossRef]
- Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Jour nal of Marketing Research, 18, 39–50. [Google Scholar] [CrossRef]
- Gajda, A. N., Jaśkiewicz, M., Cupta, A., Nitek, M., Nobis, A., & Besta, T. (2024). Individual differences and anti-vaccine radical collective action intention: The moderating role of group norms. Personality and Individual Differences, 220, 112522. [Google Scholar] [CrossRef]
- Guitton, M. J. (2020). Cyber psychology research and COVID-19. Computers in Human Behavior, 111, 106357. [Google Scholar] [CrossRef]
- Harrigan, M., Feddema, K., Wang, S., Harrigan, P., & Diot, E. (2021). How trust leads to online purchase intention founded in perceived usefulness and peer communication. Journal of Consumer Behaviour, 20(5), 1297–1312. [Google Scholar] [CrossRef]
- Hogg, M. A., & Abrams, D. (1988). Social identification: A social psychology of intergroup relations and group processes (1st ed.). Routledge. [Google Scholar] [CrossRef]
- Hogg, M. A., White, K. M., & Terry, D. J. (2002). Improving attitude-behavior correspondence through exposure to normative support from a salient ingroup. Basic and Applied Social Psychology, 24, 91–103. [Google Scholar] [CrossRef]
- Huang, L., & Lu, W. (2017). Functions and roles of social media in media transformation in China: A case study of “@CCTV NEWS”. Telematics and Informatics, 34(3), 774–785. [Google Scholar] [CrossRef]
- Kim, S. C., & Hawkins, K. H. (2020). The psychology of social media communication in influencing prevention intentions during the 2019 U.S. measles outbreak. Computers in Human Behavior, 111, 106428. [Google Scholar] [CrossRef]
- Li, A., Sun, Y., Guo, X., Guo, F., & Guo, J. (2021). Understanding how and when user inertia matters in fitness app exploration: A moderated mediation model. Information Processing & Management, 58(2), 102458. [Google Scholar] [CrossRef]
- Li, H., & Sakamoto, Y. (2014). Social impacts in social media: An examination of perceived truthfulness and sharing of information. Computers in Human Behavior, 41, 278–287. [Google Scholar] [CrossRef]
- Li, R., Li, Y., Meng, Z., Song, Y., & Jiang, G. (2020). Rumor spreading model considering individual activity and refutation mechanism simultaneously. IEEE Access, 8, 63065–63076. [Google Scholar] [CrossRef]
- Liang, X., Guo, G., Li, S., Zhong, X., & Luo, P. (2022). COVID-19-related information seeking and individual’s rumor refuting: A multi-information-source perspective. Computers in Human Behavior, 134, 107342. [Google Scholar] [CrossRef]
- Liu, J., Liu, X., Lai, K. H., Zhang, X., & Ma, X. (2023). Exploring rumor behavior during the COVID-19 pandemic through an infor mation processing perspective: The moderating role of critical thinking. Computers in Human Behavior, 147, 107842. [Google Scholar] [CrossRef] [PubMed]
- Luo, P., Chen, K., Wu, C., & Li, Y. (2018). Exploring the social influence of multichannel access in an online health community. Journal of the Association for Information Science and Technology, 69(1), 98–109. [Google Scholar] [CrossRef]
- Luo, P., Wang, C., Guo, F., & Luo, L. (2021). Factors affecting individual online rumor sharing behavior in the COVID-19 pandemic. Computers in Human Behavior, 125, 106968. [Google Scholar] [CrossRef]
- Marsh, H. W., Hau, K. T., & Wen, Z. (2004). In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Structural Equation Modeling, 11(3), 320–341. [Google Scholar] [CrossRef]
- Mehrabian, A., & Russell, J. A. (1974). An approach to environmental psychology. MIT Press. ISBN 0262630710. [Google Scholar]
- Oh, H. J., Lauckner, C., Boehmer, J., Fewins-Bliss, R., & Li, K. (2013). Face booking for health: An examination into the solicitation and effects of health-related social support on social networking sites. Computers in Human Behavior, 29(5), 2072–2080. [Google Scholar] [CrossRef]
- Podsakoff, P. M., MacKenzie, S. B., & Podsakoff, N. P. (2012). Sources of method bias in social science research and recommendations on how to control it. Annual Review of Psychology, 63(1), 539–569. [Google Scholar] [CrossRef] [PubMed]
- Robinson, N. G., White, K. M., Hamilton, K., & Starfelt, L. C. (2016). Predicting the sun-protective decisions of young female Australian beachgoers. Journal of Health Psychology, 21(8), 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Sela, Y., Zach, M., Amichay-Hamburger, Y., Mishali, M., & Omer, H. (2020). Family environment and problematic internet use among adolescents: The mediating roles of depression and fear of missing out. Computers in Human Behavior, 106, 106226. [Google Scholar] [CrossRef]
- Soroya, S. H., Farooq, A., Mahmood, K., Isoaho, J., & Zara, S. (2021). From information seeking to information avoidance: Under standing the health information behavior during a global health crisis. Information Processing & Management, 58(2), 102440. [Google Scholar] [CrossRef]
- Suki, N. M., & Suki, N. M. (2019). Examination of peer influence as a moderator and predictor in explaining green purchase behaviour in a developing country. Journal of Cleaner Production, 228, 833–844. [Google Scholar] [CrossRef]
- Superio, D. L., Anderson, K. L., Oducado, R. M. F., Luceño, M. T., Palcullo, V. E. V., & Bendalian, M. V. T. (2021). The information-seeking behavior and levels of knowledge, precaution, and fear of college students in Iloilo, Philippines amidst the COVID-19 pandemic. International Journal of Disaster risk Reduction: IJDRR, 62, 102414. [Google Scholar] [CrossRef]
- Terry, D. J., & Hogg, M. A. (1996). Group norms and the attitude-behavior relationship: A role for group identification. Personality and Social Psychology Bulletin, 22, 776–793. [Google Scholar] [CrossRef]
- Turner, J. C., Hogg, M. A., Oakes, P. J., Reicher, S. D., & Wetherell, M. S. (1989). Rediscovering the social group: A self-categorisation theory. Contemporary Sociology, 18, 645. [Google Scholar] [CrossRef]
- Vranjes, I., Baillien, E., Vandebosch, H., Erreygers, S., & De Witte, H. (2017). The dark side of working online: Towards a definition and an Emotion Reaction model of workplace cyberbullying. Computers in Human Behavior, 69, 324–334. [Google Scholar] [CrossRef]
- Wang, B., & Zhuang, J. (2018). Rumor response, debunking response, and decision makings of misinformed Twitter users during disasters. Natural Hazards, 93(3), 1145–1162. [Google Scholar] [CrossRef]
- Wang, Q., Yang, X., & Xi, W. (2018). Effects of group arguments on rumor belief and transmission in online communities: An infor mation cascade and group polarization perspective. Information & Management, 55(4), 441–449. [Google Scholar] [CrossRef]
- Wang, X., Chao, F., Yu, G., & Zhang, K. (2022). Factors influencing fake news rebuttal acceptance during the COVID-19 pandemic and the moderating effect of cognitive ability. Computers in Human Behavior, 130, 107174. [Google Scholar] [CrossRef]
- Wen, S. (2014). To shut them up or to clarify: Restraining the spread of rumors in online social networks. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3306–3316. [Google Scholar] [CrossRef]
- White, K. M., Robinson, N. G., & Young, R. M. (2008). Testing an extended theory of planned behaviour to predict young people’s sun safety in a high risk area. British Journal of Health Psychology, 13, 435–448. [Google Scholar] [CrossRef]
- Xia, H., Yu, L., & Hou, G. (2024). Factors influencing college students’ online rumor refuting behavior during major public health crises: The moderating effect of group norms. Frontiers in Psychology, 15, 1412034. [Google Scholar] [CrossRef] [PubMed]
- Yang, J., Peng, M. Y., Wong, S., & Chong, W. Y. (2021). How E-Learning environmental stimuli influence determinates of learning engagement in the context of COVID-19? SOR model perspective. Frontiers in Psychology, 12, 584976. [Google Scholar] [CrossRef]
- Zhang, L., Qin, Y., & Li, P. (2020). Media complementarity and health information acquisition: A cross-sectional analysis of the 2017 HINTS-China survey. Journal of Health Communication, 25(4), 291–300. [Google Scholar] [CrossRef]
- Zhang, S. W., Wang, Y., & Wei, Y. J. (2022). Follow or not? Descriptive norms and public health compliance: Mediating role of risk perception and moderating effect of behavioral visibility. Frontiers in Psychology, 13, 1040218. [Google Scholar] [CrossRef]
- Zhang, X., Guo, X., Ho, S. Y., Lai, K., & Vogel, D. (2021). Effects of emotional attachment on mobile health-monitoring service usage: An affect transfer perspective. Information & Management, 58(2), 103312. [Google Scholar] [CrossRef]
- Zheng, H. (2023). Fake news in a time of plague: Exploring individuals’ online information management in the COVID-19 era. Computers in Human Behavior, 146, 107790. [Google Scholar] [CrossRef]
- Zheng, L., Miao, M., Lim, J., Li, M., Nie, S., & Zhang, X. (2020). Is Lockdown bad for social anxiety in COVID-19 Regions?: A national study in the SOR perspective. International Journal of Environmental Research and Public Health, 17(12), 4561. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Levels | Frequency | Percentage (%) |
---|---|---|---|
Gender | Male | 484 | 47.59 |
Female | 533 | 52.41 | |
Age group | <18 | 86 | 8.46 |
18–25 | 910 | 89.48 | |
26–30 | 13 | 1.28 | |
>30 | 8 | 0.79 | |
Educational background | Junior university students | 509 | 50.05 |
Undergraduate | 369 | 36.28 | |
Postgraduate | 139 | 13.67 | |
Living condition | Live alone | 16 | 1.57 |
Live with roommates | 931 | 91.54 | |
Live with relatives | 67 | 6.59 | |
Live with others | 3 | 0.29 |
Items | Factor Loading | Cronbach’s Alpha | CR | AVE | |
---|---|---|---|---|---|
Online information seeking (ONIS) | ONIS1 | 0.865 | 0.852 | 0.875 | 0.702 |
ONIS2 | 0.895 | ||||
ONIS3 | 0.746 | ||||
Offline information seeking (OFFIS) | OFFIS1 | 0.814 | 0.860 | 0.875 | 0.701 |
OFFIS2 | 0.837 | ||||
OFFIS3 | 0.860 | ||||
Fear (FR) | FR1 | 0.871 | 0.886 | 0.921 | 0.795 |
FR2 | 0.921 | ||||
FR3 | 0.882 | ||||
Group norms (GN) | GN1 | 0.873 | 0.892 | 0.900 | 0.751 |
GN2 | 0.906 | ||||
GN3 | 0.819 | ||||
Online rumor refuting (ORR) | ORR1 | 0.884 | 0.894 | 0.902 | 0.755 |
ORR2 | 0.868 | ||||
ORR3 | 0.855 |
ONIS | OFFIS | FR | GN | ORR | |
---|---|---|---|---|---|
ONIS | 0.838 | ||||
OFFIS | 0.601 *** | 0.837 | |||
FR | 0.157 *** | 0.170 *** | 0.871 | ||
GN | 0.208 *** | 0.298 *** | 0.209 *** | 0.867 | |
ORR | 0.184 *** | 0.229 *** | 0.257 *** | 0.537 *** | 0.869 |
Variables | FR | ORR | ORR | ORR | ||||
---|---|---|---|---|---|---|---|---|
Model 1 | Model 2 | Model 3 | Model 4 | |||||
b | SE | b | SE | b | SE | b | SE | |
ONIS | 0.101 * | 0.039 | ||||||
OFFIS | 0.096 ** | 0.037 | ||||||
FR | 0.263 *** | 0.033 | 0.164 *** | 0.030 | 0.168 *** | 0.030 | ||
GN | 0.515 *** | 0.034 | 0.512 *** | 0.034 | ||||
FR×GN | 0.039 * | 0.019 | ||||||
Constant | 4.128 *** | 0.432 | 2.183 *** | 0.444 | 0.668 | 0.413 | 0.609 | 0.414 |
Control variables | controlled | controlled | controlled | controlled | ||||
F | 7.164 | 22.780 | 61.327 | 53.304 | ||||
R2 | 0.041 | 0.101 | 0.267 | 0.270 | ||||
Adjusted R2 | 0.035 | 0.097 | 0.263 | 0.265 |
Variables | ORR | ORR | FR | ORR | ||||
---|---|---|---|---|---|---|---|---|
Model 5 | Model 6 | Model 7 | Model 8 | |||||
b | SE | b | SE | b | SE | b | SE | |
ONIS | 0.112 ** | 0.042 | 0.101 * | 0.039 | 0.089 * | 0.041 | ||
OFFIS | 0.149 *** | 0.039 | 0.096 ** | 0.037 | 0.127 ** | 0.038 | ||
FR | 0.263 *** | 0.033 | 0.231 *** | 0.033 | ||||
Constant | 2.181 *** | 0.460 | 2.183 *** | 0.444 | 4.128 *** | 0.432 | 1.228 ** | 0.469 |
Control variables | controlled | controlled | controlled | controlled | ||||
F | 16.060 | 22.780 | 7.164 | 21.516 | ||||
R2 | 0.087 | 0.101 | 0.041 | 0.130 | ||||
Adjusted R2 | 0.082 | 0.097 | 0.035 | 0.124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, H.; Xing, Z.; Liu, Y. Influence of Information Sources and Group Norms on University Students’ Online Rumor Refuting Behavior During Public Health Emergencies. Behav. Sci. 2025, 15, 635. https://doi.org/10.3390/bs15050635
Xia H, Xing Z, Liu Y. Influence of Information Sources and Group Norms on University Students’ Online Rumor Refuting Behavior During Public Health Emergencies. Behavioral Sciences. 2025; 15(5):635. https://doi.org/10.3390/bs15050635
Chicago/Turabian StyleXia, Hongmei, Zitong Xing, and Yu Liu. 2025. "Influence of Information Sources and Group Norms on University Students’ Online Rumor Refuting Behavior During Public Health Emergencies" Behavioral Sciences 15, no. 5: 635. https://doi.org/10.3390/bs15050635
APA StyleXia, H., Xing, Z., & Liu, Y. (2025). Influence of Information Sources and Group Norms on University Students’ Online Rumor Refuting Behavior During Public Health Emergencies. Behavioral Sciences, 15(5), 635. https://doi.org/10.3390/bs15050635