Music Listening as Exploratory Behavior: From Dispositional Reactions to Epistemic Interactions with the Sonic World
Abstract
:1. Introduction
- Listening may span a continuum from passive consumption to active exploration.
- Active exploration is a way of coping with the sounds.
- Coping relies on behavioral strategies of curiosity and active sampling of unexplored phenomena in the environment.
- Coping as a broad category blurs the distinction between music and non-music and, in certain circumstances, values music as a sound environment.
- Exploratory listening implies a high cognitive load by heightening focal attention and perceptual readiness.
- Exploration is not equated simply with coping behavior; it also relies on prediction, expectation, and valuation.
- The aesthetic experience implies an exploratory attitude and enjoyment of active exploration.
2. The Objective Description as a Starting Point: Naturalizing Musical Epistemology
3. From Sound to Experience: The Mediating Role of Exploration, Active Sampling, and Curiosity
3.1. The Pragmatic Legacy: Experience and Enaction
3.2. Experience as Exploratory Behavior
3.3. Active Sampling and Curiosity
4. Exploration as a Cognitive–Affective Category
4.1. The Principal Dimensions of Core Affect: Valence and Arousal
4.2. Aesthetic Emotions and Defamiliarization
5. Music as an Affordance-Laden Sonic Structure
6. Exploratory Listening as a Learnable Skill
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berridge, K.; Kringelbach, M. Affective neuroscience of pleasure: Reward in humans and animals. Psychophysiolgy 2008, 199, 457–480. [Google Scholar] [CrossRef] [PubMed]
- Kringelbach, M. The Pleasure Center. Trust Your Animal Instincts; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Alcaro, A.; Huber, R.; Panksepp, J. Behavioral functions of the mesolimbic dopaminergic system: An affective neuroethological perspective. Brain Res. Rev. 2007, 56, 283–321. [Google Scholar] [CrossRef]
- Salimpoor, V.; Benovoy, M.; Larcher, K.; Dagher, A.; Zatorre, R. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat. Neurosci. 2011, 14, 257–262. [Google Scholar] [CrossRef]
- Schultz, W. Updating dopamine reward signals. Curr. Opin. Neurobiol. 2013, 23, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Ferreri, L.; Mas-Herrero, E.; Zatorre, R.; Ripollés, P.; Gomez-Andres, A.; Alicart, H.; Olivé, G.; Marco-Pallarés, J.; Antonijoan, R.; Valle, M.; et al. Dopamine modulates the reward experiences elicited by music. Proc. Natl. Acad. Sci. USA 2019, 116, 3793–3798. [Google Scholar] [CrossRef] [PubMed]
- Baskerville, T.; Douglas, A. Dopamine and oxytocin interactions underlying behaviors: Potential contributions to behavioral disorders. CNS Neurosci. Ther. 2010, 16, e92–e123. [Google Scholar] [CrossRef]
- Carter, C. Oxytocin pathways and the evolution of human behavior. Annu. Rev. Psychol. 2014, 65, 17–39. [Google Scholar] [CrossRef]
- Reybrouck, M.; Podlipniak, P.; Welch, D. Music Listening as Coping Behavior: From Reactive Response to Sense-Making. Behav. Sci. 2020, 10, 119. [Google Scholar] [CrossRef]
- Reybrouck, M. Musical Sense-Making. Enaction, Experience, and Computation; Routledge: Abingdon, UK; New York, NY, USA, 2021. [Google Scholar]
- Reybrouck, M.; Eerola, T. Musical Enjoyment and Reward: From Hedonic Pleasure to Eudaimonic Listening. Behav. Sci. 2022, 12, 154. [Google Scholar] [CrossRef]
- Lartillot, O.; Toiviainen, P. MIR in Matlab (II): A Toolbox for Musical Feature Extraction from Audio. In Proceedings of the 8th International Conference on Music Information Retrieval, Vienna, Austria, 23–27 September 2007; Available online: http://ismir2007.ismir.net/proceedings/ISMIR2007_p127_lartillot.pdf (accessed on 19 October 2021).
- Alluri, V.; Toiviainen, P.; Jääskeläinen, I.P.; Glerean, E.; Sams, M.; Brattico, E. Large-scale brain networks emerge from dynamic processing of musical timbre, key and rhythm. NeuroImage 2012, 59, 3677–3689. [Google Scholar] [CrossRef]
- Schneck, D.; Berger, D. The Music Effect. Music Physiology and Clinical Applications; Kingsley Publishers: London, UK; Philadelphia, PA, USA, 2010. [Google Scholar]
- Reybrouck, M.; Vuust, P.; Brattico, E. Neural Correlates of Music Listening: Does the Music Matter? Brain Sci. 2021, 11, 1553. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.; Gao, X.; Tisdelle, L.; Eichoff, S.; Liotti, M. Naturalizing aesthetics: Brain areas for aesthetic appraisal across sensory modalities. NeuroImage 2011, 58, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Huron, D. The New Empiricism: Systematic Musicology in a Postmodern Age. The 1999 Ernest Bloch Lectures. Lecture 3: Methodology. 1999. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=77c14e69171bd0d14b45b3fe3f0bb565a330616d (accessed on 25 May 2022).
- Garratt, P. Introduction: The Cognitive Humanities: Whence and Whither? In The Cognitive Humanities. Embodied Mind in Literature and Culture; Garratt, P., Ed.; Palgrave Macmillan: London, UK, 2016; pp. 1–15. [Google Scholar]
- Reybrouck, M.; Maeder, C. Music semiotics on the crossroad of disciplines: Towards a future epistemology of music. In Open Semiotics. Volume 3. Text, Images, Art; Biglari, A., Ed.; L’Harmattan: Paris, France, 2023; pp. 469–484. [Google Scholar]
- Reybrouck, M. Musical Sense-Making and the Concept of Affordance: An Ecosemiotic and Experiential Approach. Biosemiotics 2012, 5, 391–409. [Google Scholar] [CrossRef]
- Berlyne, D. Aesthetics and Psychobiology; Appleton-Century-Crofts: New York, NY, USA, 1971. [Google Scholar]
- Armstrong, T.; Detweiler-Bedell, B. Beauty as an emotion: The exhilarating prospect of mastering a challenging world. Rev. Gen. Psychol. 2008, 12, 305–329. [Google Scholar] [CrossRef]
- Leder, H.; Belke, B.; Oeberst, A.; Augustin, D. A model of aesthetic appreciation and aesthetic judgments. Br. J. Psychol 2004, 95, 489–508. [Google Scholar] [CrossRef]
- Silvia, P. Emotional responses to art: From collation and arousal to cognition and emotion. Rev. Gen Psychol. 2005, 9, 342–357. [Google Scholar] [CrossRef]
- Silvia, P. Looking past pleasure: Anger, confusion, disgust, pride, surprise, and other unusual aesthetic emotions. Psychol. Aesthet. Creat. Arts 2009, 3, 48–51. [Google Scholar] [CrossRef]
- Gabrielsson, A. Strong Experiences with Music; Oxford University Press: Oxford, UK; New York, NY, USA, 2011. [Google Scholar]
- Gabrielsson, A.; Wik, S. Strong experiences related to music: A descriptive system. Music Sci. 2003, 7, 157–217. [Google Scholar] [CrossRef]
- Silvia, P.; Nusbaum, E. On Personality and Piloerection: Individual Differences in Aesthetic Chills and Other Unusual Aesthetic Experiences. Psychol. Aesthet. Creat. Arts 2011, 5, 208–214. [Google Scholar] [CrossRef]
- Brattico, E. From pleasure to liking and back: Bottom-up and top-down neural routes to the aesthetic enjoyment. In Art, Aesthetics, and the Brain; Huston, J., Nadal, M., Mora, F., Agnati, L., Cela Conde, C.J., Eds.; Oxford University Press: Oxford, UK, 2015; pp. 303–318. [Google Scholar]
- Lindquist, K.; Wager, T.; Kober, H.; Bliss-Moreau, E.; Feldman Barrett, L. The brain basis of emotion: A meta-analytic review. Behav. Brain Sci. 2012, 35, 121–143. [Google Scholar] [CrossRef]
- Reybrouck, M. Musical sense-making between experience and conceptualisation: The legacy of Peirce, Dewey and James. Interdisc. Stud. Musicol. 2014, 14, 176–205. [Google Scholar]
- Dewey, J. Art as Experience; Capricorn Books: New York, USA, 1958. [Google Scholar]
- Buckner, R.; Andrews-Hanna, J.; Schacter, D. The Brain’s Default Network.Anatomy, Function, and Relevance to Disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef] [PubMed]
- Gusnard, D.; Raichle, M. Searching for a baseline: Functional imaging and the resting human brain. Nat. Rev. Neurosci. 2001, 2, 685–694. [Google Scholar] [CrossRef]
- Hahn, B.; Ross, T.; Stein, E. Cingulate activation increases dynamically with response speed under stimulus unpredictability. Cereb. Cortex 2007, 17, 1664–1671. [Google Scholar] [CrossRef]
- Shulman, G.; Fiez, J.; Corbetta, M.; Buckner, R.; Miezin, F.; Raichle, M.; Petersen, S. Common blood flow changes across visual tasks: II.: Decreases in cerebral cortex. J. Cogn. Neurosci. 1997, 9, 648–663. [Google Scholar] [CrossRef]
- Gilbert, S.; Dumontheil, I.; Simons, J.; Frith, C.; Burgess, P. Comment on “Wandering minds: The default network and stimulus-independent thought”. Science 2007, 317, 43. [Google Scholar] [CrossRef]
- Gibson, E. Principles of Perceptual Learning and Development; Appleton-Century-Crofts: New York, NY, USA, 1969. [Google Scholar]
- Werner, H.; Kaplan, B. Symbol Formation. An Organismic-Developmental Approach to Language and the Expression of Thought; John Wiley: New York, NY, USA; London, UK; Sydney, Australia, 1963. [Google Scholar]
- Kawato, M.; Lu, Z.-L.; Sagi, D.; Sasaki, Y.; Yu, C.; Watanabe, T. Perceptual learning—The past, present and future. Vision Res. 2014, 99, 1–4. [Google Scholar] [CrossRef] [PubMed]
- James, W. The Writings of William James. A Comprehensive Edition; McDermott, J., Ed.; Random House: New York, NY, USA, 1968. [Google Scholar]
- James, W. Essays in Radical Empiricism; Harvard University Press: Cambridge, MA, USA; London, UK, 1976. [Google Scholar]
- Stemmer, B. Neuropragmatics in the 21st century. Brain Lang. 2000, 71, 233–236. [Google Scholar] [CrossRef] [PubMed]
- Bischetti, L.; Frau, F.; Bambini, V. Neuropragmatics. In The Handbook of Clinical Linguistics; Ball, M., Müller, N., Spencer, E., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2024; pp. 41–54. [Google Scholar]
- Dewey, J. The Quest for Certainty: A Study of the Relation of Knowledge and Action; Putnam: New York, NY, USA, 1929. [Google Scholar]
- Dewey, J. Logic: The Theory of Inquiry; Henry Holt & Company: New York, NY, USA, 1938. [Google Scholar]
- Bulle, N. What Is Wrong with Dewey’s Theory of Knowing? Ergo 2018, 5. [Google Scholar] [CrossRef]
- Bruner, J. The art of discovery. Harv. Educ. Rev. 1961, 31, 21–32. [Google Scholar]
- Papert, S. Mindstorms: Children, Computers, and Powerful Ideas; Basic Books: New York, NY, USA, 1980. [Google Scholar]
- Steffe, L.; Gale, J. (Eds.) Constructivism in Education; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1995. [Google Scholar]
- Handelsman, J.; Egert-May, D.; Beichner, R.; Bruns, P.; Change, A.; DeHaan, R.; Gentile, J.; Lauffer, S.; Stewart, J.; Tilghman, S.; et al. Scientic teaching. Science 2004, 304, 521–522. [Google Scholar] [CrossRef] [PubMed]
- Kirschner, P.; Sweller, J.; Clark, R. Why Minimal Guidance During Instruction Does Not Work: An Ananysis of the Failure of Constructivist, Discovery, Problem-Based, Experiential, and Inquiry-Based Teaching. Educ. Psychol. 2006, 41, 75–86. [Google Scholar] [CrossRef]
- Cawthron, E.; Rowell, J. Epistemology and science education. Stud. Sci. Educ. 1978, 5, 51–59. [Google Scholar] [CrossRef]
- Sweller, J.; van Merriënboer, J.J.G.; Paas, F. Cognitive architecture and instructional design. Educ. Psychol. Rev. 1998, 10, 251–296. [Google Scholar] [CrossRef]
- Sweller, J. Cognitive load during problem solving: Effects on learning. Cogn. Sci. 1988, 12, 257–285. [Google Scholar] [CrossRef]
- Sweller, J. Instructional Design in Technical Areas; ACER Press: Camberwell, Australia, 1999. [Google Scholar]
- Plass, J.; Moreno, R.; Brünken, R. (Eds.) Cognitive Load Theory; Cambridge University Press: New York, NY, USA, 2010. [Google Scholar]
- Paas, F.; Renkl, A.; Sweller, J. Cognitive load theory and instructional design: Recent developments. Educ. Psychol. 2003, 38, 1–4. [Google Scholar] [CrossRef]
- Paas, F.; Renkl, A.; Sweller, J. Cognitive load theory: Instructional implications of the interaction between information structures and cognitive architecture. Instr. Sci. 2004, 32, 1–8. [Google Scholar] [CrossRef]
- Reybrouck, M. Music shaped in time: Musical sense-making between perceptual immediacy and symbolic representation. RS-SI 2016, 36, 99–120. [Google Scholar] [CrossRef]
- Kalyuga, S. Cognitive Load Theory: How Many Types of Load Does It Really Need? Educ. Psychol. Rev. 2011, 23, 1–19. [Google Scholar] [CrossRef]
- Sweller, J.; Chandler, P. Why some material is difficult to learn? Cogn. Instruct. 1994, 12, 185–233. [Google Scholar] [CrossRef]
- Sweller, J.; Chandler, P.; Tierney, P.; Cooper, M. Cognitive load and selective attention as factors in the structuring of technical material. J. Exp. Psychol. Gen. 1990, 119, 176–192. [Google Scholar] [CrossRef]
- Varela, F.; Thompson, E.; Rosch, E. The Embodied Mind: Cognitive Science and Human Experience. MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Torrance, S. In search of the enactive: Introduction to special issue on enactive experience. Phenomenol. Cogn. Sci. 2006, 4, 357–368. [Google Scholar] [CrossRef]
- Orians, G.; Heerwagen, J. Evolved responses to landscape. In The Adapted Mind; Barkow, J., Cosmides, L., Tooby, J., Eds.; Oxford University Press: Oxford, UK, 1992; pp. 555–579. [Google Scholar]
- van der Schyff, D.; Schiavio, A.; Elliott, D. Musical Bodies, Musical Minds. Enactive Cognitive Science and the Meaning of Human Musicality; The MIT Press: Cambridge, MA, USA; London, UK, 2022. [Google Scholar]
- Reybrouck, M. Music as environment: Biological and ecological constraints on coping with the sounds. RS-SI 2019, 38–39, 19–35. [Google Scholar] [CrossRef]
- Cheung, V.; Harrison, P.; Meyer, L.; Pearce, M.; Haynes, J.; Koelsch, S. Uncertainty and surprise jointly predict musical pleasure and amygdala, hippocampus, and auditory cortex activity. Curr. Biol. 2019, 29, 4084–4092. [Google Scholar] [CrossRef]
- Baltazar, M.; Saarikallio, S. Strategies and mechanisms in musical affect self-regulation: A new model. Music. Sci. 2017, 23, 177–195. [Google Scholar] [CrossRef]
- Lonsdale, A.; North, A. Why do we listen to music? A uses and gratifications analysis. Br. J. Psychol. 2011, 102, 108–134. [Google Scholar] [CrossRef]
- Wundt, W. Grundriss der Psychologie; Engelmann: Leipzig, Germany, 1896. [Google Scholar]
- Yerkes, R.; Dodson, J. The relation of strength of stimulus to rapidity of habit-formation. J. Comp. Neurol. Psychol. 1908, 18, 459–482. [Google Scholar] [CrossRef]
- Broadhurst, P. Emotionality and the Yerkes-Dodson law. J. Exp. Psychol. 1957, 54, 345–352. [Google Scholar] [CrossRef]
- Diamond, D. Cognitive, Endocrine and Mechanistic Perspectives on Non-Linear Relationships between Arousal and Brain Function. Nonlinear. Biol. Toxicol. Medic. 2005, 3, 1–7. [Google Scholar] [CrossRef]
- Moles, A. Art et Ordinateur; Casterman: Tournai, Belgium, 1971. [Google Scholar]
- North, A.; Hargreaves, D. Liking, arousal potential, and the emotions expressed by music. Scand. J. Psychol. 1997, 38, 45–53. [Google Scholar] [CrossRef]
- Daikoku, T. Neurophysiological markers of statistical learning in music and language: Hierarchy, entropy and uncertainty. Brain Sci. 2018, 8, 114. [Google Scholar] [CrossRef] [PubMed]
- Mencke, I.; Omidie, D.; Quiroga-Martinez; Brattico, E. Atonal Music as a Model for Investigating Exploratory Behavior. Front. Neurosci. 2022, 16, 793163. [Google Scholar] [CrossRef] [PubMed]
- Meyer, L. Emotion And Meaning In Music; University of Chicago Press: Chicago, IL, USA, 1956. [Google Scholar]
- Blood, A.; Zatorre, R. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc. Natl. Acad. Sci. USA 2001, 98, 11818–11823. [Google Scholar] [CrossRef]
- Huron, D. Sweet Anticipation: Music and the Psychology of Expectation; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Deutsch, D. Grouping mechanisms in music. In The Psychology of Music; Deutsch, D., Ed.; Elsevier Academic Press: Cambridge, MA, USA, 2013; pp. 183–248. [Google Scholar]
- Koelsch, S. Brain and Music; Wiley-Blackwell: West Sussex, UK, 2012. [Google Scholar]
- Bregman, A. Auditory Scene Analysis: The Perceptual Organization of Sound; MIT Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Deutsch, D. (Ed.) The Psychology of Music; Elsevier Academic Press: San Diego, CA, USA; YSA: London, UK, 1999. [Google Scholar]
- Friston, K. The free-energy principle: A rough guide to the brain? Trends Cogn. Sci. 2009, 13, 293–301. [Google Scholar] [CrossRef]
- Friston, K. The free-energy principle: A unified brain theory? Nat. Rev. Neurosci. 2010, 11, 127–138. [Google Scholar] [CrossRef]
- Clark, A. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 2013, 36, 181–253. [Google Scholar] [CrossRef] [PubMed]
- Loui, P.; Wessel, D. Acquiring new musical grammars: A statistical learning approach. In Proceedings of the 9th International Conference on Music Perception and Cognition, Bologna, Italy, 22–26 August 2006; Baroni, M., Addessi, A., Caterina, R., Costa, M., Eds.; ICMPC-ESCO: Bologna, Italy, 2006; pp. 1009–1017. [Google Scholar]
- Vuust, P.; Heggli, O.; Friston, K.; Kringelbach, M. Music in the brain. Nat. Rev. Neurosci. 2022, 23, 287–305. [Google Scholar] [CrossRef] [PubMed]
- Koelsch, S.; Vuust, P.; Friston, K. Predictive processes and the peculiar case of music. Trends Cogn. Sci. 2019, 23, 63–77. [Google Scholar] [CrossRef]
- Clark, A. Radical predictive processing. Southern J. Phil. 2015, 53, 3–27. [Google Scholar] [CrossRef]
- Friston, K. A theory of cortical responses. Phil.Trans. R. Soc. B 2005, 360, 815–836. [Google Scholar] [CrossRef]
- Omigie, D.; Mencke, I. A model of time-varying music engagement. Phil. Trans. R. Soc. B. 2023, 379, 20220421. [Google Scholar] [CrossRef] [PubMed]
- Friston, K.; Kiebel, S. Cortical circuits for perceptual inference. Neural Netw. 2009, 22, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Näätänen, R.; Paavilainen, P.; Rinne, T.; Alho, K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clin. Neurophysiol. 2007, 118, 2544–2590. [Google Scholar] [CrossRef] [PubMed]
- Denham, S.; Winkler, I. The role of predictive models in the formation of auditory streams. J. Physiol. Paris 2006, 100, 154–170. [Google Scholar] [CrossRef]
- Vuust, P.; Frith, C. Anticipation is the key to understanding music and the effects of music on emotion. Behav. Brain Sci. 2008, 31, 599–600. [Google Scholar] [CrossRef]
- Ross, S.; Hansen, N. Dissociating prediction failure: Considerations from music perception. J. Neurosci. 2016, 36, 3103–3105. [Google Scholar] [CrossRef]
- Garrido, M.; Sahani, M.; Dolan, R. Outlier responses reflect sensitivity to statistical structure in the human brain. PLoS Comput. Biol. 2013, 9, e1002999. [Google Scholar] [CrossRef]
- Sohoglu, E.; Chait, M. Detecting and representing predictable structure during auditory scene analysis. Elife 2016, 5, e19113. [Google Scholar] [CrossRef]
- Heilbron, M.; Chait, M. Great expectations: Is there evidence for predictive coding in auditory cortex? Neuroscience 2018, 389, 54–73. [Google Scholar] [CrossRef]
- Kumar, S.; Sedley, W.; Barnes, G.; Teki, S.; Friston, K.; Griffiths, T. A brain basis for musical hallucinations. Cortex 2014, 52, 86–97. [Google Scholar] [CrossRef]
- Vuust, P.; Kringelbach, M. The pleasure of making sense of music. Interdiscip. Sci. Rev. 2010, 35, 166–182. [Google Scholar] [CrossRef]
- Brattico, E. The empirical aesthetics of music. In The Oxford Handbook of Empirical Aesthetics; Nadal, M., Vartanian, O., Eds.; Oxford University Press: Oxford, UK, 2021; pp. 1–38. [Google Scholar]
- Schwartenbeck, P.; FitzGerald, T.; Dolan, R.J.; Friston, K. Exploration, novelty, surprise, and free energy minimization. Front. Psychol. 2013, 4, 710. [Google Scholar] [CrossRef]
- Quiroga-Martinez, D.; Hansen, N.; Højlund, A.; Pearce, M.; Brattico, E.; Vuust, P. Reduced prediction error responses in high-as compared to low-uncertainty musical contexts. Cortex 2019, 120, 181–200. [Google Scholar] [CrossRef]
- Quiroga-Martinez, D.; Hansen, N.; Højlund, A.; Pearce, M.; Brattico, E.; Vuust, P. Musical prediction error responses similarly reduced by predictive uncertainty in musicians and non-musicians. Eur. J. Neurosci. 2020, 51, 2250–2269. [Google Scholar] [CrossRef] [PubMed]
- Quiroga-Martinez, D.; Hansen, N.; Højlund, A.; Pearce, M.; Brattico, E.; Vuust, P. Decomposing neural responses to meodic surprise in musicians and non-musicians: Evidence for a hierarchy of predictions in the auditory system. Neuroimage 2020, 215, 116816. [Google Scholar] [CrossRef]
- Mencke, I.; Seibert, C.; Brattico, E.; Wald-Fuhrmann, M. Comparing the aesthetic experience of classic-romantic and contemporary classical music: An interview study. Psychol. Music. 2023, 51, 274–294. [Google Scholar] [CrossRef]
- Omigie, D.; Ricci, J. Curiosity emerging from the perception of change in music. Empir. Stud. Arts 2021, 40, 296–316. [Google Scholar] [CrossRef]
- Omigie, D.; Ricci, J. Accounting for expressions of curiosity and enjoyment during music listening. Psychol. Aesthet. Creat. Arts 2023, 17, 225–241. Available online: https://research.gold.ac.uk/id/eprint/30884/ (accessed on 28 April 2024). [CrossRef]
- Mencke, I.; Quiroga-Martinez, D.; Omigie, D.; Michalareas, G.; Schwarzacher, F.; Haumann, N.; Vuust, P.; Brattico, E. Prediction under uncertainty: Dissociating sensory from cognitive expectations in highly uncertain musical contexts. Brain Res. 2021, 1773, 147664. [Google Scholar] [CrossRef]
- van Lieshout, L.; de Lange, F.; Cools, R. Why so curious? Quantifying mechanisms of information seeking. Curr. Opin. Behav. Sci. 2020, 35, 112–117. [Google Scholar] [CrossRef]
- Perlovsky, L. Musical emotions: Functions, origins, evolution. Phys. Life Rev. 2010, 7, 2–27. [Google Scholar] [CrossRef] [PubMed]
- Jepma, M.; Verdonschot, R.; van Steenbergen, H.; Rombouts, S.; Nieuwenhuis, S. Neural mechanisms underlying the induction and relief of perceptual curiosity. Front. Behav. Neurosci. 2012, 6, 5. [Google Scholar] [CrossRef] [PubMed]
- Kidd, C.; Hayden, B.Y. The psychology and neuroscience of curiosity. Neuron 2015, 88, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Gazzaniga, M.; Ivry, R.; Mangun, G. Cognitive Neuroscience; The Biology of the Mind; W.W. Norton: New York, NY, USA, 2010. [Google Scholar]
- Gottlieb, J.; Oudeyer, P.; Lopes, M.; Baranes, A. Information seeking, curiosity and attention: Computational and empirical mechanisms. Trends Cogn. Sci. 2013, 17, 585–593. [Google Scholar] [CrossRef]
- Gottlieb, J.; Oudeyer, P.-Y. Towards a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 2018, 19, 759–770. [Google Scholar] [CrossRef]
- Nelson, J. Finding useful questions: On Bayesian diagnosticity, probability, impact and information gain. Psychol. Rev. 2005, 112, 979–999. [Google Scholar] [CrossRef]
- Coenen, A.; Nelson, J.; Gureckis, T. Asking the right questions about the psychology of human inquiry: Nine open challenges. Psychon Bull. Rev 2019, 26, 1548–1587. [Google Scholar] [CrossRef]
- Cohen, J.; McClure, S.; Yu, A. Should I stay or should I go? How the human brain manages the trade-off between exploitation and exploration. Phil. Trans. R. Soc. B 2007, 362, 933–942. [Google Scholar] [CrossRef]
- Manohar, S.; Husain, M. Attention as foraging for information and value. Front. Hum. Neurosci. 2013, 7, 711. [Google Scholar] [CrossRef]
- Somerville, L.; Sasse, S.; Garrad, M.; Drysdale, A.; Akar, N.; Insel, C.; Wilson, R. Charting the expansion of strategic exploratory behavior during adolescence. J. Exp. Psychol. Gen. 2017, 146, 155–164. [Google Scholar] [CrossRef]
- Bossaerts, P.; Murawski, C. Computational complexity and human decision-making. Trends Cogn. Sci. 2017, 21, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Loewenstein, G.; Molnar, A. The renaissance of belief-based utility in economics. Nat. Hum. Behav. 2018, 2, 166–167. [Google Scholar] [CrossRef]
- van Lieshout, L.; Vandenbroucke, A.; Müller, N.; Cools, R.; de Lange, F. Induction and relief of curiosity elicit parietal and frontal activity. J. Neurosci. 2018, 38, 2579–2588. [Google Scholar] [CrossRef] [PubMed]
- Berlyne, D. A theory of human curiosity. Br. J. Psychol. 1954, 45, 180–191. [Google Scholar] [CrossRef]
- Kaplan, F.; Oudeyer, P.-Y. In search of the neural circuits of intrinsic motivation. Front. Neurosci. 2007, 1, 225. [Google Scholar] [CrossRef]
- Baldassare, G.; Mirolli, M. (Eds.) Intrinsically Motivated Learning in Natural and Artificial Systems; Springer: Berlin, Germany, 2013. [Google Scholar]
- Gruber, M.; Gelman, B.; Ranganath, C. States of curiosity modulate hippocampus-dependent learning via the dopaminergic circuit. Neuron 2014, 84, 486–496. [Google Scholar] [CrossRef]
- Kang, M.; Hsu, M.; Krajbich, I.; Loewenstein, G.; McClure, S.; Wang, J.; Camerer, C. The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhances memory. Psychol. Sci. 2009, 20, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Salimpoor, V.; Benovoy, M.; Longo, G.; Cooperstock, J.; Zatorre, R. The rewarding aspects of music listening are related to degree of emotional arousal. PLoS ONE 2009, 4, e7487. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience; Harper and Row: New York, NY, USA, 1990. [Google Scholar]
- Madsen, C.; Geringer, J. Reflections on Puccini’s La Bohème: Investigating a model for listening. J. Res. Music Educ. 2008, 56, 33–42. [Google Scholar] [CrossRef]
- Venkatraman, A.; Edlow, B.; Immordino-Yang, M. The Brainstem in Emotion: A Review. Front. Neuroanat. 2017, 11, 15. [Google Scholar] [CrossRef]
- Song, M.; Fellous, J. Value learning and arousal in the extinction of probabilistic rewards: The role of dopamine in a modified temporal difference model. PLoS ONE 2014, 9, e89494. [Google Scholar] [CrossRef] [PubMed]
- Bunzeck, N.; Duzel, E. Absolute coding of stimulus novelty in the human substantia nigra/VTA. Neuron 2006, 51, 369–379. [Google Scholar] [CrossRef]
- Schultz, W. Multiple functions of dopamine neurons. F1000 Biol. Rep. 2010, 2, 2. [Google Scholar] [CrossRef] [PubMed]
- Maschke, C.; Rupp, T.; Hecht, K. The influence of stressors on biochemical reactions—A review of present scientific findings with noise. Int. J. Hyg. Environ. Health 2000, 203, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A. The orienting response and direction of stimulus change. Psychon. Sci. 1968, 12, 127–128. [Google Scholar] [CrossRef]
- Bernstein, A. The orienting response as novelty and significance detector: Reply to O’Gorman. Psychophysiolgy 1979, 16, 263–273. [Google Scholar] [CrossRef]
- Błaszczyk, J. Startle resonse to short acoustic stimuli in rats. Acta Neurobiol. Exp. 2003, 63, 25–30. [Google Scholar] [CrossRef]
- Salloum, R.; Yurosko, C.; Santiago, L.; Sandridge, S.; Kaltenbach, J. Induction of Enhanced Acoustic Startle Response by Noise Exposure: Dependence on Exposure Conditions and Testing Parameters and Possible Relevance to Hyperacusis. PLoS ONE 2014, 9, e111747. [Google Scholar] [CrossRef]
- Todd, N.; Cody, F.W. Vestibular responses to loud dance music: A physiological basis of the “rock and roll threshold”? J. Acoust. Soc. Am. 2000, 107, 496–500. [Google Scholar] [CrossRef]
- Parker, K.; Hyde, S.; Buckmaster, C.; Tanaka, S.; Brewster, K.; Schatzberg, A.; Lyons, D.; Woodward, S. Somatic and neuroendocrine responses to standard and biologically salient acoustic startle stimuli in monkeys. Psychoneuroendocrinology 2011, 36, 547–556. [Google Scholar] [CrossRef]
- Welch, D.; Fremaux, G. Understanding Why People Enjoy Loud Sound. Semin. Hearing 2017, 38, 348–358. [Google Scholar] [CrossRef]
- Welch, D.; Fremaux, G. Why do People Like Loud Sound? A Qualitative Study. IJERPH 2017, 14, 908. [Google Scholar] [CrossRef] [PubMed]
- Chanda, M.; Levitin, D. The neurochemistry of music. TiCS 2013, 17, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Sapolsky, R. Stress in the wild. Sci. Am. 1990, 262, 116–123. [Google Scholar] [CrossRef]
- Russell, J. Core Affect and the Psychological Construction of Emotion. Psychol. Rev. 2003, 110, 145–172. [Google Scholar] [CrossRef]
- Russell, J.; Barrett, L. Core affect, prototypical emotional episodes, and other things called emotion: Dissecting the elephant. J. Pers. Soc. Psychol. 1999, 76, 805–819. [Google Scholar] [CrossRef]
- Reybrouck, M.; Eerola, T. Music and its inductive power: A psychobiological and evolutionary approach to musical emotions. Front. Psychol. 2017, 8, 494. [Google Scholar] [CrossRef]
- Juslin, P.; Sloboda, J. (Eds.) Music and Emotion: Theory and Research; Oxford University Press: Oxford, UK, 2001. [Google Scholar]
- Juslin, P.; Västfjäll, D. Emotional responses to music. The need to consider underlying mechanisms. Behav. Brain Sci. 2008, 31, 559–575. [Google Scholar] [CrossRef]
- Krueger, J. Doing things with music. Phenomenol Cogn Sci 2011, 10, 1–22. [Google Scholar] [CrossRef]
- Liu, C.; Brattico, E.; Abu-Jamous, B.; Pereira, C.; Jacobsen, T.; Nandi, A. Effect of Explicit Evaluation on Neural Connectivity Related to Listening to Unfamiliar Music. Front. Hum. Neurosci. 2017, 11, 611. [Google Scholar] [CrossRef]
- Brattico, E.; Bogert, B.; Jacobsen, T. Toward a neural chronometry for the aesthetic experience of music. Front. Psychol. 2013, 4, 206. [Google Scholar] [CrossRef] [PubMed]
- Zentner, M.; Grandjean, D.; Scherer, K. Emotions Evoked by the Sound of Music: Characterization, Classification, and Measurement. Emotion 2008, 8, 494–521. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.; Martinez, M.; Parsons, L. Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport 2004, 15, 2033–2037. [Google Scholar] [CrossRef]
- Torrance, S.; Froese, T. An Inter-Enactive Approach to Agency: Participatory Sense-Making, Dynamics, and Sociality. Humana Mente 2011, 15, 21–53. [Google Scholar]
- Shklovsky, V. Art as Technique. In Russian Formalist Criticism: Four Essays; Lemon, L.; Reis, M., Translators; University of Nebraska Press: Lincoln, UK, 1965; pp. 3–24. [Google Scholar]
- Shklovsky, V., Translator; Art, as Device. Poetics Today 2015, 36, 151–174. [Google Scholar] [CrossRef]
- Kennedy, G., Translator; On Rhetoric: A Theory of Civic Discourse; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Westin, M. Aristotle’s rhetorical Energeia: An extended note. Adv. Hist. Rhet. 2017, 20, 252–261. [Google Scholar] [CrossRef]
- Iglesias-Crespo, C. Energeia as Defamiliarization: Reading Aristotle with Shklovsky’s Eyes. J. Hist. Rhet. 2021, 24, 274–289. [Google Scholar] [CrossRef]
- Bulatova, A. Estranging objects and complicating form: Viktor Shklovsky and the labour of perception. Transcult. Stud. 2017, 13, 160–176. [Google Scholar] [CrossRef]
- Shklovsky, V. Viktor Shklovsky: A Reader; Edited and translated by Alexandra Berlina. Bloomsbury: New York, NY, USA, 2017. [Google Scholar]
- Krueger, J. Affordances and the Musically Extended Mind. Front. Psychol. 2014, 4, 1003. [Google Scholar] [CrossRef] [PubMed]
- Reybrouck, M. Biological roots of musical epistemology: Functional Cycles, Umwelt, and enactive listening. Semiotica 2001, 134, 599–633. [Google Scholar] [CrossRef]
- Kull, K. On semiosis, Umwelt, and semiosphere. Semiotica 1998, 120, 299–310. [Google Scholar]
- Sebeok, T.; Umiker-Sebeok, J. (Eds.) Biosemiotics; Mouton de Gruyter: Berlin, Germany, 1992. [Google Scholar]
- Hoffmeyer, J. Biosemiotics: Towards a new Synthesis in Biology. Eur. J. Sem. Stud. 1997, 9, 2355–2376. [Google Scholar]
- Hoffmeyer, J. Signs of Meaning in the Universe; Indiana University Press: Bloomington, IL, USA, 1997. [Google Scholar]
- Shepard, R. Ecological Constraints on Internal Representation: Resonant Kinematics of Perceiving, Imagining, Thinking, and Dreaming. Pychol. Rev. 1984, 91, 417–447. [Google Scholar] [CrossRef]
- Welch, D.; Reybrouck, M.; Podlipniak, P. Meaning in Music Is Intentional, but in Soundscape It Is Not-A Naturalistic Approach to the Qualia of Sounds. IJERPH 2023, 20, 269. [Google Scholar] [CrossRef]
- Honing, H. Without it no music: Beat induction as a fundamental musical trait. Ann. N. Y. Acad. Sci. 2012, 1252, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Mithen, S. The music instinct: The evolutionary basis of musicality. Ann. N. Y. Acad. Sci. 2009, 1169, 3–12. [Google Scholar] [CrossRef]
- Rylander, R. Physiological aspects of noise-induced stress and annoyance. J. Sound Vib. 2004, 277, 471–478. [Google Scholar] [CrossRef]
- Andringa, T.; Van Den Bosch, K.; Wijermans, N. Cognition from Life: The Two Modes of Cognition That Underlie Moral Behavior. Front. Psychol. 2015, 6, 362. [Google Scholar] [CrossRef]
- Ryan, R.; Deci, E. On Happiness and Human Potentials: A Review of Research on Hedonic and Eudaimonic Well-Being. Annu. Rev. Psychol. 2001, 52, 141–166. [Google Scholar] [CrossRef]
- Filippi, P.; Congdon, J.; Hoang, J.; Bowling, D.; Reber, S.; Pašukonis, A.; Hoeschele, M.; Ocklenburg, S.; de Boer, B.; Sturdy, C.; et al. Humans recognize emotional arousal in vocalizations across all classes of terrestrial vertebrates: Evidence for acoustic universals. Proc. R. Soc. B 2017, 284, 20170990. [Google Scholar] [CrossRef]
- Kringelbach, M.; Berridge, K. Towards a functional neuroanatomy of pleasure and happiness. Trends Cogn. Sci. 2009, 13, 479–487. [Google Scholar] [CrossRef] [PubMed]
- Mencke, I.; Omigie, D.; Wald-Fuhrmann, M.; Brattico, E. Atonal Music: Can Uncertainty Lead to Pleasure? Front. Neurosci. 2019, 12, 979. [Google Scholar] [CrossRef]
- Flores-Gutiérrez, E.; Díaz, J.; Barrios, F.; Favila-Humara, R.; Guevara, M.; del Río-Portilla, Y.; Corsi-Cabrera, M. Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. Int. J. Psychophysiol. 2007, 65, 69–84. [Google Scholar] [CrossRef] [PubMed]
- Trost, W.; Ethofer, T.; Zentner, M. Vuilleumier, PMapping aesthetic musical emotions in the brain. Cereb. Cortex. 2012, 22, 2769–2783. [Google Scholar] [CrossRef]
- Hansen, N.; Pearce, M. Predictive uncertainty in auditory sequence processing. Front. Psychol. 2014, 5, 1052. [Google Scholar] [CrossRef]
- Nusbaum, E.; Silvia, P. Shivers and timbres: Personality and the experience of chills from music. Soc. Psychol. Pers. Sci. 2011, 2, 199–204. [Google Scholar] [CrossRef]
- Rentfrow, P.; Goldberg, L.; Levitin, D. The structure of musical preferences: A five-factor model. J. Pers. Soc. Psychol. 2011, 100, 1139–1157. [Google Scholar] [CrossRef] [PubMed]
- Cacioppo, J.; Petty, R.; Feinstein, J.; Blair, W.; Jarvis, G. Dispositional differences in cognitive motivation: The life and times of individuals varying in need for cognition. Psychol. Bull. 1996, 119, 197–253. [Google Scholar] [CrossRef]
- Mussel, P. Need for Cognition. In Dorsch–Lexikon der Psychologie; Markus Antonius: Wirtz, VA, USA, 2014; p. 1084. [Google Scholar]
- Levine, D. I think therefore I feel: Possible neural mechanisms for knowledge-based pleasure. In Proceedings of the International Joint Conference on Neural Networks, Brisbane, Australia, 10–15 June 2012. [Google Scholar] [CrossRef]
- Feist, G.; Brady, T. Openness to experience, non-conformity, and the preference for abstract art. Empir. Stud. Arts 2004, 22, 77–89. [Google Scholar] [CrossRef]
- Pelowski, M.; Markey, P.; Forster, M.; Gerger, G.; Leder, H. Move me, astonish me: Delight my eyes and brain: The Vienna Integrated Model of top-down and bottom-up processes in Art Perception (VIMAP) and corresponding affective, evaluative, and neurophysiological correlates. Phys. Life Rev. 2017, 21, 80–125. [Google Scholar] [CrossRef]
- Juslin, P. From everyday emotions to aesthetic emotions: Towards a unified theory of musical emotions. Phys. Life Rev. 2013, 10, 235–266. [Google Scholar] [CrossRef] [PubMed]
- Goffman, E. Frame Analysis: An Essay on the Organization of Experience; Northeastern University Press: New York, NY, USA, 1974. [Google Scholar]
- Menninghaus, W.; Wagner, V.; Hanich, J.; Wassiliwizky, E.; Jacobsen, T.; Koelsch, S. The DISTANCING–EMBRACING model of the enjoyment of negative emotions in art reception. Behav. Brain Sci. 2017, 40, e347. [Google Scholar] [CrossRef] [PubMed]
- Reybrouck, M.; Brattico, E. Neuroplasticity beyond sounds: Neural adaptations following long-term musical aesthetic experiences. Brain Sci. 2015, 5, 69–91. [Google Scholar] [CrossRef]
- Silvia, P.J. Interest—The curious emotion. Curr. Dir. Psychol. Sci. 2008, 17, 57–60. [Google Scholar] [CrossRef]
- Fitch, W. Four principles of bio-musicology. Phil. Trans. R. Soc. B 2015, 370, 20140091. [Google Scholar] [CrossRef]
- Honing, H. On the biological basis of musicality. Ann. N. Y. Acad. Sci. 2018, 1423, 51–56. [Google Scholar] [CrossRef]
- Hauser, M.; Chomsky, N.; Fitch, W. The faculty of language: What is it, who has it, and how did it evolve? Science 2002, 298, 1569–1579. [Google Scholar] [CrossRef]
- Darwin, C. The Descent of Man, and Selection in Relation to Sex, 1st ed.; John Murray: London, UK, 1871. [Google Scholar]
- Miller, G. Evolution of Human Music Through Sexual Selection. In The Origins of Music; Wallin, N., Merker, B., Brown, S., Eds.; The MIT Press: New York, NY, USA, 2000; pp. 329–360. [Google Scholar]
- Ravignani, A. Darwin, Sexual Selection, and the Origins of Music. TREE 2018, 33, 716–719. [Google Scholar] [CrossRef]
- Hagen, E.; Bryant, G.A. Music and Dance As a Coalition Signaling System. Hum. Nat. 2003, 14, 21–51. [Google Scholar] [CrossRef]
- Mehr, S.; Krasnow, M.; Bryant, G.; Hagen, E. Origins of music in credible signaling. Behav. Brain Sci. 2021, 44, e60. [Google Scholar] [CrossRef]
- Dunbar, R. On the Evolutionary Function of Song and Dance. In Music, Language, and Human Evolution; Bannan, N., Ed.; Oxford University Press: Oxford, UK, 2012; pp. 201–214. [Google Scholar]
- Roederer, J. The Search for a Survival Value of Music. Music Percept. 1984, 1, 350–356. [Google Scholar] [CrossRef]
- Savage, P.; Loui, P.; Tarr, B.; Schachner, A.; Glowacki, L.; Mithen, S.; Fitch, W.T. Music as a coevolved system for social bonding. Behav. Brain Sci. 2021, 44, e59. [Google Scholar] [CrossRef] [PubMed]
- Leongómez, J.D.; Havlíček, J.; Roberts, S. C Musicality in human vocal communication: An evolutionary perspective. Phil. Trans. R. Soc. B 2021, 377, 20200391. [Google Scholar] [CrossRef]
- Hagen, E. The Biological Roots of Music and Dance. Hum. Nat. 2022, 33, 261–279. [Google Scholar] [CrossRef]
- Jordania, J. Why Do People Sing? Music in Human Evolution; Logos: Tbilisi, Georgia, 2011. [Google Scholar]
- Podlipniak, P. Free rider recognition—A missing link in the Baldwinian model of music evolution. Psychol. Music 2023, 51, 1397–1413. [Google Scholar] [CrossRef]
- Reybrouck, M. The Musical Code between Nature and Nurture. In The Codes of Life: The Rules of Macroevolution; Barbieri, M., Ed.; Springer: Dordrecht, Germany, 2008; pp. 395–434. [Google Scholar]
- Clayton, M.; Sager, R.; Wil, U. In time with the music: The concept of entrainment and its significance for ethnomusicology. Eur. Meet. Ethnomusicol. 2005, 11, 1–82. [Google Scholar]
- Large, E.; Jones, M.R. The dynamics of attending: How people track time-varying events. Psychol. Rev. 1999, 106, 119–159. [Google Scholar] [CrossRef]
- Seemann, A. The Other Person in Joint Attention. A Relational Approach. J. Conscious Stud. 2010, 17, 161–182. [Google Scholar] [CrossRef]
- Reybrouck, M. A Dynamic Interactive Approach to Music Listening: The Role of Entrainment, Attunement and Resonance. Multimodal Technol. Interact. 2023, 7, 66. [Google Scholar] [CrossRef]
- Lazarus, R.; Folkman, S. Stress, Appraisal, and Coping; Springer: New York, NY, USA, 1984. [Google Scholar]
- Jayawickreme, E.; Forgeard, M.; Seligman, M. The Engine of Well-Being. Rev. Gen. Psychol. 2012, 16, 327–342. [Google Scholar] [CrossRef]
- Fredrickson, B.; Cohn, M.; Coffey, K.; Pek, J.; Finkel, S. Open hearts build lives: Positive emotions, induced through loving-kindness meditation, build consequential personal resources. J. Pers. Soc. Psychol. 2008, 95, 1045–1062. [Google Scholar] [CrossRef] [PubMed]
- Fredrickson, B. The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. Am. Psychol. 2001, 56, 218–226. [Google Scholar] [CrossRef] [PubMed]
- Fontolan, L.; Morillon, B.; Liegeois-Chauvel, C.; Giraud, A.-L. The contribution of frequency-specific activity to hierarchical information processing in the human auditory cortex. Nat. Commun. 2014, 5, 4694. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reybrouck, M.; Podlipniak, P.; Welch, D. Music Listening as Exploratory Behavior: From Dispositional Reactions to Epistemic Interactions with the Sonic World. Behav. Sci. 2024, 14, 825. https://doi.org/10.3390/bs14090825
Reybrouck M, Podlipniak P, Welch D. Music Listening as Exploratory Behavior: From Dispositional Reactions to Epistemic Interactions with the Sonic World. Behavioral Sciences. 2024; 14(9):825. https://doi.org/10.3390/bs14090825
Chicago/Turabian StyleReybrouck, Mark, Piotr Podlipniak, and David Welch. 2024. "Music Listening as Exploratory Behavior: From Dispositional Reactions to Epistemic Interactions with the Sonic World" Behavioral Sciences 14, no. 9: 825. https://doi.org/10.3390/bs14090825
APA StyleReybrouck, M., Podlipniak, P., & Welch, D. (2024). Music Listening as Exploratory Behavior: From Dispositional Reactions to Epistemic Interactions with the Sonic World. Behavioral Sciences, 14(9), 825. https://doi.org/10.3390/bs14090825