AI Meets the Shopper: Psychosocial Factors in Ease of Use and Their Effect on E-Commerce Purchase Intention
Abstract
:1. Introduction
2. Literature Review
2.1. Technology Acceptance Model and the Theory of Planned Behavior
2.2. Artificial Intelligence in E-Retailing and Consumption
2.3. Artificial Intelligence-Enabled Ease of Use
2.4. Psychosocial Factors
2.4.1. Subjective Norms
2.4.2. Faith
2.4.3. Consciousness
2.4.4. Perceived Control
2.4.5. Purchase Intention
2.5. The Mediating Effect of AI-Enabled Ease of Use
3. Method
3.1. Participants
3.2. Instruments
3.3. Procedures
3.4. Statistical Analysis
4. Results
5. Discussion of Results and Implications
5.1. Discussion of Results
5.2. Theoretical Implications
5.3. Practical Implications
5.4. Limitations and Future Lines of Research
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Oosthuizen, K.; Botha, E.; Robertson, J.; Montecchi, M. Artificial intelligence in retail: The AI-enabled value chain. Australas. Mark. J. 2021, 29, 264–273. [Google Scholar] [CrossRef]
- Kumar, V.; Rajan, B.; Venkatesan, R.; Lecinski, J. Understanding the role of artificial intelligence in personalized engagement marketing. Calif. Manag. Rev. 2019, 61, 135–155. [Google Scholar] [CrossRef]
- Davenport, T.; Guha, A.; Grewal, D.; Bressgott, T. How artificial intelligence will change the future of marketing. J. Acad. Mark. Sci. 2020, 48, 24–42. [Google Scholar] [CrossRef]
- Hallikainen, H.; Luongo, M.; Dhir, A.; Laukkanen, T. Consequences of personalized product recommendations and price promotions in online grocery shopping. J. Retail. Consum. Serv. 2022, 69, 103088. [Google Scholar] [CrossRef]
- Canhoto, A.I.; Keegan, B.J.; Ryzhikh, M. Snakes and Ladders: Unpacking the Personalisation-Privacy Paradox in the Context of AI-Enabled Personalisation in the Physical Retail Environment. Inf. Syst. Front. 2024, 26, 1005–1024. [Google Scholar] [CrossRef] [PubMed]
- Tyrväinen, O.; Karjaluoto, H.; Saarijärvi, H. Personalization and hedonic motivation in creating customer experiences and loyalty in omnichannel retail. J. Retail. Consum. Serv. 2020, 57, 102233. [Google Scholar] [CrossRef]
- Li, C.; Pan, R.; Xin, H.; Deng, Z. Research on artificial intelligence customer service on consumer attitude and its impact during online shopping. J. Phys. Conf. Ser. 2020, 1575, 012192. [Google Scholar] [CrossRef]
- Ruan, Y.; Mezei, J. When do AI chatbots lead to higher customer satisfaction than human frontline employees in online shopping assistance? Considering product attribute type. J. Retail. Consum. Serv. 2022, 68, 103059. [Google Scholar] [CrossRef]
- Ameen, N.; Tarhini, A.; Reppel, A.; Anand, A. Customer experiences in the age of artificial intelligence. Comput. Hum. Behav. 2021, 114, 106548. [Google Scholar] [CrossRef]
- Subbaiah, P.V.; M, J.; P, M.; Kondamudi, S.G. Exploring the influence of artificial intelligence (AI) on online purchase decisions: In case of consumer’s prospective. Int. J. Intell. Syst. Appl. Eng. 2024, 12, 13–20. [Google Scholar]
- Onorato, A. Consumers Open to AI in Marketing, but Privacy Concerns Remain. Available online: https://cdp.com/articles/report-consumers-open-to-ai-in-marketing-but-privacy-concerns-remain/ (accessed on 11 June 2024).
- Schmidt, P.; Biessmann, F.; Teubner, T. Transparency and trust in artificial intelligence systems. J. Decis. Syst. 2020, 29, 260–278. [Google Scholar] [CrossRef]
- Chen, Y.; Prentice, C.; Weaven, S.; Hisao, A. The influence of customer trust and artificial intelligence on customer engagement and loyalty—The case of the home-sharing industry. Front. Psychol. 2022, 13, 912339. [Google Scholar] [CrossRef] [PubMed]
- Alzaidi, M.S.; Agag, G. The role of trust and privacy concerns in using social media for e-retail services: The moderating role of COVID-19. J. Retail. Consum. Serv. 2022, 68, 103042. [Google Scholar] [CrossRef]
- Ye, T.; Xue, J.; He, M.; Gu, J.; Lin, H.; Xu, B.; Cheng, Y. Psychosocial factors affecting artificial intelligence adoption in health care in China: Cross-sectional study. J. Med. Internet Res. 2019, 21, e14316. [Google Scholar] [CrossRef] [PubMed]
- Kelly, S.; Kaye, S.-A.; Oviedo-Trespalacios, O. What factors contribute to the acceptance of artificial intelligence? A systematic review. Telemat. Inform. 2023, 77, 101925. [Google Scholar] [CrossRef]
- Esmaeilzadeh, H.; Vaezi, R. Conscious empathic AI in service. J. Serv. Res. 2022, 25, 549–564. [Google Scholar] [CrossRef]
- Kashive, N.; Powale, L.; Kashive, K. Understanding user perception toward artificial intelligence (AI) enabled e-learning. Int. J. Inf. Learn. Technol. 2021, 38, 1–19. [Google Scholar] [CrossRef]
- Mariani, M.M.; Perez-Vega, R.; Wirtz, J. AI in marketing, consumer research and psychology: A systematic literature review and research agenda. Psychol. Mark. 2022, 39, 755–776. [Google Scholar] [CrossRef]
- Rupali; Sharma, N.; Arora, P.; Mishra, P. Does AI chatbot service quality impact customer loyalty?: Examining satisfaction and attitudes. In Transforming the Financial Landscape with ICTs; Singh, D., Malik, G., Aggarwal, S., Eds.; IGI Global: Hershey, PA, USA, 2024; pp. 28–54. [Google Scholar]
- Dwivedi, Y.K.; Ismagilova, E.; Hughes, D.L.; Carlson, J.; Filieri, R.; Jacobson, J.; Jain, V.; Karjaluoto, H.; Kefi, H.; Krishen, A.S.; et al. Setting the future of digital and social media marketing research: Perspectives and research propositions. Int. J. Inf. Manag. 2021, 59, 102168. [Google Scholar] [CrossRef]
- Goncalves, M.; Hu, Y.; Aliagas, I.; Cerdá, L.M. Neuromarketing algorithms’ consumer privacy and ethical considerations: Challenges and opportunities. Cogent Bus. Manag. 2024, 11, 2333063. [Google Scholar] [CrossRef]
- Malodia, S.; Islam, N.; Kaur, P.; Dhir, A. Why do people use artificial intelligence (AI)-enabled voice assistants? IEEE Trans. Eng. Manag. 2024, 71, 491–505. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. Manag. Inf. Syst. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Cheng, E.W.L. Choosing between the theory of planned behavior (TPB) and the technology acceptance model (TAM). Educ. Technol. Res. Dev. 2019, 67, 21–37. [Google Scholar] [CrossRef]
- Sohn, K.; Kwon, O. Technology acceptance theories and factors influencing artificial Intelligence-based intelligent products. Telemat. Inform. 2020, 47, 101324. [Google Scholar] [CrossRef]
- Habes, M.; Tahat, K.; Tahat, D.; Attar, R.W.; Mansoori, A.; Ketbi, N. The Theory of Planned Behavior Regarding Artificial Intelligence in Recommendations and Selection of YouTube News Content. In Proceedings of the 2023 International Conference on Multimedia Computing, Networking and Applications (MCNA), Valencia, Spain, 19–22 June 2023; pp. 42–47. [Google Scholar]
- Aggarwal, D.; Sharma, D.; Saxena, A.B. Enhancing the Online Shopping Experience of Consumers through Artificial Intelligence. Int. J. Inf. Technol. Comput. Eng. 2024, 4, 1–5. [Google Scholar] [CrossRef]
- Pillarisetty, R.; Mishra, P. A review of AI (artificial intelligence) tools and customer experience in online fashion retail. Int. J. E-Bus. Res. 2022, 18, 1–12. [Google Scholar] [CrossRef]
- Singh, P.; Singh, V. The power of AI: Enhancing customer loyalty through satisfaction and efficiency. Cogent Bus. Manag. 2024, 11, 2326107. [Google Scholar] [CrossRef]
- Prentice, C.; Nguyen, M. Engaging and retaining customers with AI and employee service. J. Retail. Consum. Serv. 2020, 56, 102186. [Google Scholar] [CrossRef]
- Nousi, P.; Tsantekidis, A.; Passalis, N.; Ntakaris, A.; Kanniainen, J.; Tefas, A.; Gabbouj, M.; Iosifidis, A. Machine learning for forecasting mid-price movements using limit order book data. IEEE Access 2019, 7, 64722–64736. [Google Scholar] [CrossRef]
- Martínez, A.; Schmuck, C.; Pereverzyev, S.; Pirker, C.; Haltmeier, M. A machine learning framework for customer purchase prediction in the non-contractual setting. Eur. J. Oper. Res. 2020, 281, 588–596. [Google Scholar] [CrossRef]
- Rahmani, A.M.; Azhir, E.; Ali, S.; Mohammadi, M.; Ahmed, O.H.; Yassin Ghafour, M.; Hasan Ahmed, S.; Hosseinzadeh, M. Artificial intelligence approaches and mechanisms for big data analytics: A systematic study. PeerJ Comput. Sci. 2021, 7, e488. [Google Scholar] [CrossRef] [PubMed]
- Bawack, R.E.; Wamba, S.F.; Carillo, K.D.A.; Akter, S. Artificial intelligence in E-Commerce: A bibliometric study and literature review. Electron. Mark. 2022, 32, 297–338. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Ji, G.; Tan, K.H. Impact of artificial intelligence adoption on online returns policies. Ann. Oper. Res. 2022, 308, 703–726. [Google Scholar] [CrossRef]
- He, A.-Z.; Zhang, Y. AI-powered touch points in the customer journey: A systematic literature review and research agenda. J. Res. Interact. Mark. 2023, 17, 620–639. [Google Scholar] [CrossRef]
- Oh, J.; Yoon, S.-J. Validation of haptic enabling technology acceptance model (HE-TAM): Integration of IDT and TAM. Telemat. Inform. 2014, 31, 585–596. [Google Scholar] [CrossRef]
- Sangwan, S.; Sharma, S.K.; Sharma, J. Disclosing customers’ intentions to use social media for purchase-related decisions. Asia-Pac. J. Bus. Adm. 2022, 14, 145–160. [Google Scholar] [CrossRef]
- Bhagat, R.; Chauhan, V.; Bhagat, P. Investigating the impact of artificial intelligence on consumer’s purchase intention in e-retailing. Foresight 2023, 25, 249–263. [Google Scholar] [CrossRef]
- Saeed, W.; Omlin, C. Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowl. -Based Syst. 2023, 263, 110273. [Google Scholar] [CrossRef]
- Zhang, Z.; Ning, H.; Shi, F.; Farha, F.; Xu, Y.; Xu, J.; Zhang, F.; Choo, K.-K.R. Artificial intelligence in cyber security: Research advances, challenges, and opportunities. Artif. Intell. Rev. 2022, 55, 1029–1053. [Google Scholar] [CrossRef]
- Duan, Y.; Edwards, J.S.; Dwivedi, Y.K. Artificial intelligence for decision making in the era of big data—Evolution, challenges and research agenda. Int. J. Inf. Manag. 2019, 48, 63–71. [Google Scholar] [CrossRef]
- Bashir, T.; Zhongfu, T.; Sadiq, B.; Niaz, U.; Anjum, F.; Mahmood, H. An assessment of influential factors developing the intention to use social media sites: A technology acceptance model based approach. Front. Psychol. 2022, 13, 983930. [Google Scholar] [CrossRef] [PubMed]
- Almogren, A.S.; Al-Rahmi, W.M.; Dahri, N.A. Exploring factors influencing the acceptance of ChatGPT in higher education: A smart education perspective. Heliyon 2024, 10, e31887. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, M.A. Factors affecting performance expectancy and intentions to use ChatGPT: Using SmartPLS to advance an information technology acceptance framework. Technol. Forecast. Soc. Chang. 2024, 201, 123247. [Google Scholar] [CrossRef]
- Calahorra-Candao, G.; Martín-de Hoyos, M.J. From Typing to Talking: Unveiling AI’s Role in the Evolution of Voice Assistant Integration in Online Shopping. Information 2024, 15, 202. [Google Scholar] [CrossRef]
- LaMothe, R.W. Types of faith and emotional intelligence. Pastor. Psychol. 2010, 59, 331–344. [Google Scholar] [CrossRef]
- Cook, J. Young adults’ hopes for the long-term future: From re-enchantment with technology to faith in humanity. J. Youth Stud. 2016, 19, 517–532. [Google Scholar] [CrossRef]
- Choung, H.; David, P.; Ross, A. Trust in AI and Its Role in the Acceptance of AI Technologies. Int. J. Hum.–Comput. Interact. 2023, 39, 1727–1739. [Google Scholar] [CrossRef]
- Jain, R.; Garg, N.; Khera, S.N. Adoption of AI-Enabled tools in social development organizations in India: An extension of UTAUT model. Front. Psychol. 2022, 13, 893691. [Google Scholar] [CrossRef]
- Du, H.; Sun, Y.; Jiang, H.; Islam, A.Y.M.A.; Gu, X. Exploring the effects of AI literacy in teacher learning: An empirical study. Humanit. Soc. Sci. Commun. 2024, 11, 559. [Google Scholar] [CrossRef]
- Rodway, P.; Schepman, A. The impact of adopting AI educational technologies on projected course satisfaction in university students. Comput. Educ. Artif. Intell. 2023, 5, 100150. [Google Scholar] [CrossRef]
- Alkhouri, K.I. The Role of Artificial Intelligence in the Study of the Psychology of Religion. Religions 2024, 15, 290. [Google Scholar] [CrossRef]
- Li, D.; He, W.; Guo, Y. Why AI still doesn’t have consciousness? CAAI Trans. Intell. Technol. 2021, 6, 175–179. [Google Scholar] [CrossRef]
- Mogi, K. Artificial intelligence, human cognition, and conscious supremacy. Front. Psychol. 2024, 15, 1364714. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Im, I. Anthropomorphic response: Understanding interactions between humans and artificial intelligence agents. Comput. Hum. Behav. 2023, 139, 107512. [Google Scholar] [CrossRef]
- Song, C.S.; Kim, Y.-K. The role of the human-robot interaction in consumers’ acceptance of humanoid retail service robots. J. Bus. Res. 2022, 146, 489–503. [Google Scholar] [CrossRef]
- Guingrich, R.E.; Graziano, M.S.A. Ascribing consciousness to artificial intelligence: Human-AI interaction and its carry-over effects on human-human interaction. Front. Psychol. 2024, 15, 1322781. [Google Scholar] [CrossRef] [PubMed]
- Esmaeilzadeh, P. Use of AI-based tools for healthcare purposes: A survey study from consumers’ perspectives. BMC Med. Inform. Decis. Mak. 2020, 20, 170. [Google Scholar] [CrossRef]
- Wang, C.; Ahmad, S.F.; Bani Ahmad Ayassrah, A.Y.A.; Awwad, E.M.; Irshad, M.; Ali, Y.A.; Al-Razgan, M.; Khan, Y.; Han, H. An empirical evaluation of technology acceptance model for Artificial Intelligence in E-commerce. Heliyon 2023, 9, e18349. [Google Scholar] [CrossRef]
- Zhou, C.; Liu, X.; Yu, C.; Tao, Y.; Shao, Y. Trust in AI-augmented design: Applying structural equation modeling to AI-augmented design acceptance. Heliyon 2024, 10, e23305. [Google Scholar] [CrossRef]
- Bilal, M.; Zhang, Y.; Cai, S.; Akram, U.; Halibas, A. Artificial intelligence is the magic wand making customer-centric a reality! An investigation into the relationship between consumer purchase intention and consumer engagement through affective attachment. J. Retail. Consum. Serv. 2024, 77, 103674. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, H. Artificial intelligence-enabled personalization in interactive marketing: A customer journey perspective. J. Res. Interact. Mark. 2023, 17, 663–680. [Google Scholar] [CrossRef]
- Constantinides, E. Influencing the online consumer’s behavior: The Web experience. Internet Res. 2004, 14, 111–126. [Google Scholar] [CrossRef]
- Nazir, S.; Khadim, S.; Ali Asadullah, M.; Syed, N. Exploring the influence of artificial intelligence technology on consumer repurchase intention: The mediation and moderation approach. Technol. Soc. 2023, 72, 102190. [Google Scholar] [CrossRef]
- Arachchi, H.A.D.M.; Samarasinghe, G.D. Impact of embedded AI mobile smart speech recognition on consumer attitudes towards AI and purchase intention across Generations X and Y. Eur. J. Manag. Stud. 2023. ahead-of-print. [Google Scholar] [CrossRef]
- Arachchi, H.A.D.M.; Samarasinghe, G.D. Impulse Purchase Intention in an AI-mediated Retail Environment: Extending the TAM with Attitudes Towards Technology and Innovativeness. Glob. Bus. Rev. 2023, 1–24. [Google Scholar] [CrossRef]
- Acikgoz, F.; Perez-Vega, R.; Okumus, F.; Stylos, N. Consumer engagement with AI-powered voice assistants: A behavioral reasoning perspective. Psychol. Mark. 2023, 40, 2226–2243. [Google Scholar] [CrossRef]
- Uzir, M.U.H.; Bukari, Z.; Al Halbusi, H.; Lim, R.; Wahab, S.N.; Rasul, T.; Thurasamy, R.; Jerin, I.; Chowdhury, M.R.K.; Tarofder, A.K.; et al. Applied artificial intelligence: Acceptance-intention-purchase and satisfaction on smartwatch usage in a Ghanaian context. Heliyon 2023, 9, e18666. [Google Scholar] [CrossRef]
- Jan, I.U.; Ji, S.; Kim, C. What (de) motivates customers to use AI-powered conversational agents for shopping? The extended behavioral reasoning perspective. J. Retail. Consum. Serv. 2023, 75, 103440. [Google Scholar] [CrossRef]
- Pillai, R.; Sivathanu, B.; Dwivedi, Y.K. Shopping intention at AI-powered automated retail stores (AIPARS). J. Retail. Consum. Serv. 2020, 57, 102207. [Google Scholar] [CrossRef]
- Uzir, M.U.H.; Al Halbusi, H.; Lim, R.; Jerin, I.; Abdul Hamid, A.B.; Ramayah, T.; Haque, A. Applied Artificial Intelligence and user satisfaction: Smartwatch usage for healthcare in Bangladesh during COVID-19. Technol. Soc. 2021, 67, 101780. [Google Scholar] [CrossRef]
- Chan, T.y.; Wong, C.W.Y. The consumption side of sustainable fashion supply chain. J. Fash. Mark. Manag. Int. J. 2012, 16, 193–215. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319. [Google Scholar] [CrossRef]
- Gefen, D.; Karahanna, E.; Straub, D.W. Inexperience and experience with online stores: The importance of TAM and trust. IEEE Trans. Eng. Manag. 2003, 50, 307–321. [Google Scholar] [CrossRef]
- Park, S.Y. An analysis of the technology acceptance model in understanding university students’ behavioral intention to use e-learning. J. Educ. Technol. Soc. 2009, 12, 150–162. [Google Scholar]
- Kautish, P.; Khare, A. Investigating the moderating role of AI-enabled services on flow and awe experience. Int. J. Inf. Manag. 2022, 66, 102519. [Google Scholar] [CrossRef]
- Lam, S.Y.; Chiang, J.; Parasuraman, A. The effects of the dimensions of technology readiness on technology acceptance: An empirical analysis. J. Interact. Mark. 2008, 22, 19–39. [Google Scholar] [CrossRef]
- Parasuraman, A.; Colby, C.L. An updated and streamlined technology readiness index:TRI 2.0. J. Serv. Res. 2015, 18, 59–74. [Google Scholar] [CrossRef]
- Vermeir, I.; Verbeke, W. Sustainable food consumption: Exploring the consumer “attitude—Behavioral intention” gap. J. Agric. Environ. Ethics 2006, 19, 169–194. [Google Scholar] [CrossRef]
- Konuk, F.A. The effects of price consciousness and sale proneness on purchase intention towards expiration date-based priced perishable foods. Br. Food J. 2015, 117, 793–804. [Google Scholar] [CrossRef]
- Yadav, R.; Pathak, G.S. Young consumers’ intention towards buying green products in a developing nation: Extending the theory of planned behavior. J. Clean. Prod. 2016, 135, 732–739. [Google Scholar] [CrossRef]
- Erkut, S. Developing multiple language versions of instruments for intercultural research. Child Dev. Perspect. 2010, 4, 19–24. [Google Scholar] [CrossRef]
- Hu, L.t.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Marôco, J. Análise de Equações Estruturais: Fundamentos Teóricos, Software & Aplicações; ReportNumber, Lda: Pêro Pinheiro, Portugal, 2014. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Hair, J.F.; Babin, B.J.; Black, W.C.; Anderson, R.E. Multivariate Data Analysis; Cengage: Boston, MA, USA, 2019. [Google Scholar]
- Sawilowsky, S.S. New Effect Size Rules of Thumb. J. Mod. Appl. Stat. Methods 2009, 8, 597–599. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics, 7th ed.; Pearson: Boston, MA, USA, 2013; Volume 6, p. 848. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming; Taylor & Francis Group: Abingdon, UK, 2010; Volume 396, p. 7384. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling; Guilford Publications: New York, NY, USA, 2023. [Google Scholar]
Instruments | Definition | Previous Studies |
---|---|---|
Subjective norms (SN) | Perceived social pressures to perform or not perform a particular behavior. | Ajzen [25], Chan and Wong [75] |
Faith (F) | Form of basic knowledge that is intertwined with a certainty that leaves no room for doubt. | Davis [76], Gefen et al. [77], and Park [78] |
Consciousness (C) | Refers to the state or quality of being aware of an external object or something within oneself. It involves the ability to perceive, experience, and have subjective experiences, such as thoughts, feelings, and sensations. Consciousness is a complex and multifaceted phenomenon that plays a crucial role in human cognition, perception, and self-awareness. | Bhagat, Chauhan, and Bhagat [41], Davis [76], Gefen, Karahanna, and Straub [77], and Park [78] |
Perceived control (PC) | Refers to an individual’s belief or perception regarding their ability to influence or control environmental cues, stimuli, or outcomes in a given situation. | Ajzen [25] and Kautish and Khare [79] |
AI-enabled ease of use | Refers to the integration of artificial intelligence technologies and capabilities into products, services, or systems to enhance user experience, simplify interactions, and streamline processes. | Lam et al. [80] and Parasuraman and Colby [81] |
Purchase intention (PI) | Refers to a consumer’s willingness, inclination, or plan to buy a particular product or service in the future. It reflects the individual’s mindset and readiness to make a purchase decision, indicating the likelihood of converting interest or desire into an actual buying action. | Vermeir and Verbeke [82], Konuk [83], and Yadav and Pathak [84] |
Items | M | SD | Standardized Factor Loadings | α | CR | AVE |
---|---|---|---|---|---|---|
SN_1 | 3.66 | 1.69 | 0.84 | 0.82 | 0.83 | 0.54 |
SN_2 | 3.70 | 1.63 | 0.78 | |||
SN_3 | 3.90 | 1.75 | 0.74 | |||
SN_4 | 4.04 | 1.70 | 0.57 | |||
F_1 | 4.08 | 1.62 | 0.80 | 0.82 | 0.82 | 0.60 |
F_2 | 4.32 | 1.59 | 0.77 | |||
F_3 | 4.05 | 1.59 | 0.76 | |||
C_1 | 4.26 | 1.71 | 0.78 | 0.69 | 0.70 | 0.64 |
C_2 | 4.53 | 1.62 | 0.63 | |||
C_3 | 4.44 | 1.53 | 0.58 | |||
PC_1 | 4.34 | 1.52 | 0.63 | 0.57 | 0.76 | 0.39 |
PC_2 | 4.24 | 1.58 | 0.82 | |||
PC_3 | 3.75 | 1.57 | 0.70 | |||
AI_1 | 4.55 | 1.60 | 0.70 | 0.84 | 0.80 | 0.64 |
AI_2 | 4.55 | 1.56 | 0.82 | |||
AI_3 | 4.47 | 1.55 | 0.74 | |||
PI_1 | 3.89 | 1.69 | 0.82 | 0.81 | 0.81 | 0.59 |
PI_2 | 3.99 | 1.63 | 0.76 | |||
PI_3 | 3.59 | 1.75 | 0.71 |
SN | F | C | PC | PI | AI | VIF | |
---|---|---|---|---|---|---|---|
SN | 1.88 | ||||||
F | 0.651 ** | 2.26 | |||||
C | 0.515 ** | 0.629 ** | 1.82 | ||||
PC | 0.513 ** | 0.541 ** | 0.525 ** | 1.61 | |||
PI | 0.641 ** | 0.669 ** | 0.551 ** | 0.564 ** | . | ||
AI | 0.514 ** | 0.671 ** | 0.687 ** | 0.527 ** | 0.609 ** |
Predictors | r | R2 Adjusted | F | p | ß | t | p | d | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||||
Model | 0.76 | 0.58 | 489.44 | <0.001 | ||||||
SN | 0.02 | 1.10 | 0.271 | 0.000 | −0.015 | 0.054 | ||||
F | 0.34 | 13.12 | <0.001 | 0.128 | 0.286 | 0.387 | ||||
C | 0.40 | 17.08 | <0.001 | 0.184 | 0.373 | 0.470 | ||||
PC | 0.12 | 5.61 | <0.001 | 0.014 | 0.094 | 0.196 |
Predictors | r | R2 Adjusted | F | p | ß | t | p | d | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||||
Model | 0.61 | 0.37 | 845.65 | <0.001 | ||||||
AI | 0.61 | 29.08 | <0.001 | 0.59 | 0.601 | 0.687 |
Indirect Effects on Endogenous Variables | Path (β) | t Value (Bootstrap) | p-Value | 95% Confidence Interval | Hypothesis Support | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
SN→AI→PI | 0.195 | 20.840 | <0.001 | 0.165 | 0.227 | Yes |
F→AI→PI | 0.195 | 18.679 | <0.001 | 0.153 | 0.237 | Yes |
C→AI→PI | 0.299 | 8.995 | <0.001 | 0.250 | 0.348 | Yes |
PC→AI→PI | 0.227 | 14.622 | <0.001 | 0.194 | 0.260 | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, J.M.; Silva, L.F.; Massano-Cardoso, I. AI Meets the Shopper: Psychosocial Factors in Ease of Use and Their Effect on E-Commerce Purchase Intention. Behav. Sci. 2024, 14, 616. https://doi.org/10.3390/bs14070616
Lopes JM, Silva LF, Massano-Cardoso I. AI Meets the Shopper: Psychosocial Factors in Ease of Use and Their Effect on E-Commerce Purchase Intention. Behavioral Sciences. 2024; 14(7):616. https://doi.org/10.3390/bs14070616
Chicago/Turabian StyleLopes, João M., L. Filipe Silva, and Ilda Massano-Cardoso. 2024. "AI Meets the Shopper: Psychosocial Factors in Ease of Use and Their Effect on E-Commerce Purchase Intention" Behavioral Sciences 14, no. 7: 616. https://doi.org/10.3390/bs14070616
APA StyleLopes, J. M., Silva, L. F., & Massano-Cardoso, I. (2024). AI Meets the Shopper: Psychosocial Factors in Ease of Use and Their Effect on E-Commerce Purchase Intention. Behavioral Sciences, 14(7), 616. https://doi.org/10.3390/bs14070616