Long-Term Bridge Training Induces Functional Plasticity Changes in the Brain of Early-Adult Individuals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Questionnaire
2.3. Experimental Design
2.4. Stimulus
2.5. Experimental Procedure
2.6. fMRI Acquisition
2.7. Data Analysis
3. Results
3.1. Behavioral Results
3.2. fMRI Results
3.2.1. Whole-Brain Analysis
3.2.2. ROI Analysis
3.2.3. Correlation Analysis
4. Discussion
4.1. Expert Advantage in Bridge
4.2. The Reason of Expert Advantage
5. Limitations and Deficiencies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Punch, S.; Snellgrove, M. Playing your life: Developing strategies and managing impressions in the game of bridge. Sociol. Res. Online 2021, 26, 601–619. [Google Scholar] [CrossRef]
- Smith, L.C.; Hartley, A.A. The Game of Bridge as an Exercise in Working Memory and Reasoning. J. Gerontol. 1990, 45, 233–238. [Google Scholar] [CrossRef] [PubMed]
- Voskoglou, M.G. Assessing the players’ performance in the game of bridge: A fuzzy logic approach. Am. J. Appl. Math. Stat. 2014, 2, 115–120. [Google Scholar] [CrossRef]
- Engle, R.W.; Bukstel, L. Memory Processes among Bridge Players of Differing Expertise. Am. J. Psychol. 1978, 91, 673–689. [Google Scholar] [CrossRef]
- Charness. Components of Skill in Bridge. Can. J. Psychol. Rev. Can. Psychol. 1979, 33, 1–16. [Google Scholar]
- Chase, W.G.; Simon, H.A. Perception in chess. Cogn. Psychol. 1973, 4, 55–81. [Google Scholar] [CrossRef]
- Gobet, F.; Simon, H.A. Recall of rapidly presented random chess positions is a function of skill. Psychon. Bull. Rev. 1996, 3, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Bilalic, M.; Kiesel, A.; Pohl, C.; Erb, M.; Grodd, W. It Takes Two-Skilled Recognition of Objects Engages Lateral Areas in Both Hemispheres. PLoS ONE 2011, 6, e16202. [Google Scholar] [CrossRef] [PubMed]
- Bilalic, M.; Langner, R.; Erb, M.; Grodd, W. Mechanisms and Neural Basis of Object and Pattern Recognition A Study with Chess Experts. J. Exp. Psychol.-Gen. 2010, 139, 728–742. [Google Scholar] [CrossRef]
- Calderwood, R.; Klein, G.A.; Crandall, B.W. Time Pressure, Skill, and Move Quality in Chess. Am. J. Psychol. 1988, 101, 481–493. [Google Scholar] [CrossRef]
- Campitelli, G.; Gobet, F. Adaptive expert decision making: Skilled chess players search more and deeper. ICGA J. 2004, 27, 209–216. [Google Scholar] [CrossRef]
- Moxley, J.H.; Ericsson, K.A.; Charness, N.; Krampe, R.T. The role of intuition and deliberative thinking in experts’ superior tactical decision-making. Cognition 2012, 124, 72–78. [Google Scholar] [CrossRef]
- Reingold, E.M.; Charness, N. Perception in chess Evidence from eye movements. In Cognitive Processes in Eye Guidance; Underwood, G., Ed.; Oxford University Press: Oxford, UK, 2005; pp. 325–354. [Google Scholar]
- Sheridan, H.; Reingold, E.M. Expert vs. novice differences in the detection of relevant information during a chess game: Evidence from eye movements. Front. Psychol. 2014, 5, 941. [Google Scholar] [CrossRef]
- Wang, F.X.; Hou, X.J.; Duan, Z.H.; Liu, H.S.; Li, H. The perceptual differences between experienced Chinese chess players and novices: Evidence from eye movement. Acta Psychol. Sin. 2016, 48, 457–471. [Google Scholar] [CrossRef]
- Boggan, A.L.; Bartlett, J.C.; Krawczyk, D.C. Chess Masters Show a Hallmark of Face Processing with Chess. J. Exp. Psychol.-Gen. 2012, 141, 37–42. [Google Scholar] [CrossRef]
- Reingold, E.M.; Charness, N.; Schultetus, R.S.; Stampe, D.M. Perceptual automaticity in expert chess players: Parallel encoding of chess relations. Psychon. Bull. Rev. 2001, 8, 504–510. [Google Scholar] [CrossRef]
- Reingold, E.M.; Charness, N.; Pomplun, M.; Stampe, D.M. Visual span in expert chess players: Evidence from eye movements. Psychol. Sci. 2001, 12, 48–55. [Google Scholar] [CrossRef]
- Mann, D.T.; Williams, A.M.; Ward, P.; Janelle, C.M. Perceptual-Cognitive Expertise in Sport: A Meta-Analysis. J. Sport Exerc. Psychol. 2007, 29, 457–478. [Google Scholar] [CrossRef]
- Kanwisher, N.; Yovel, G. The fusiform face area: A cortical region specialized for the perception of faces. Philos. Trans. R. Soc. B Biol. Sci. 2006, 361, 2109–2128. [Google Scholar] [CrossRef]
- Grill-Spector, K.; Knouf, N.; Kanwisher, N.G. The fusiform face area subserves face perception, not generic within-category identification. Nat. Neurosci. 2004, 7, 555–562. [Google Scholar] [CrossRef]
- Gauthier, I.; Tarr, M.J.; Anderson, A.W.; Skudlarski, P.; Gore, J.C. Activation of the middle fusiform’ face area’ increases with expertise in recognizing novel objects. Nat. Neurosci. 1999, 2, 568–573. [Google Scholar] [CrossRef]
- Bilalic, M.; Langner, R.; Ulrich, R.; Grodd, W. Many Faces of Expertise: Fusiform Face Area in Chess Experts and Novices. J. Neurosci. 2011, 31, 10206–10214. [Google Scholar] [CrossRef]
- Bilalic, M. Revisiting the Role of the Fusiform Face Area in Expertise. J. Cogn. Neurosci. 2016, 28, 1345–1357. [Google Scholar] [CrossRef]
- McGugin, R.W.; Gatenby, J.C.; Gore, J.C.; Gauthier, I. High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance. Proc. Natl. Acad. Sci. USA 2012, 109, 17063–17068. [Google Scholar] [CrossRef]
- Ross, D.A.; Tamber-Rosenau, B.J.; Palmeri, T.J.; Zhang, J.; Xu, Y.; Gauthier, I. High-resolution Functional Magnetic Resonance Imaging Reveals Configural Processing of Cars in Right Anterior Fusiform Face Area of Car Experts. J. Cogn. Neurosci. 2018, 30, 973–984. [Google Scholar] [CrossRef]
- Gauthier, I.; Skudlarski, P.; Gore, J.C.; Anderson, A.W. Expertise for cars and birds recruits brain areas involved in face recognition. Nat. Neurosci. 2000, 3, 191–197. [Google Scholar] [CrossRef]
- Xu, Y. Revisiting the role of the fusiform face area in visual expertise. Cereb. Cortex 2005, 15, 1234–1242. [Google Scholar] [CrossRef]
- Burns, B.D. The effects of speed on skilled chess performance. Psychol. Sci. 2004, 15, 442–447. [Google Scholar] [CrossRef]
- Bilalic, M.; Turella, L.; Campitelli, G.; Erb, M.; Grodd, W. Expertise modulates the neural basis of context dependent recognition of objects and their relations. Hum. Brain Mapp. 2012, 33, 2728–2740. [Google Scholar] [CrossRef]
- Wan, X.; Nakatani, H.; Ueno, K.; Asamizuya, T.; Cheng, K.; Tanaka, K. The neural basis of intuitive best next-move generation in board game experts. Science 2011, 331, 341–346. [Google Scholar] [CrossRef]
- Wan, X.; Takano, D.; Asamizuya, T.; Suzuki, C.; Ueno, K.; Cheng, K.; Ito, T.; Tanaka, K. Developing Intuition: Neural Correlates of Cognitive-Skill Learning in Caudate Nucleus. J. Neurosci. 2012, 32, 17492–17501. [Google Scholar] [CrossRef]
- Dehaene, S.; Cohen, L. Cerebral Pathways for Calculation: Double Dissociation between Rote Verbal and Quantitative Knowledge of Arithmetic. Cortex 1997, 33, 219–250. [Google Scholar] [CrossRef] [PubMed]
- Gruber, O.; Indefrey, P.; Steinmetz, H.; Kleinschmidt, A. Dissociating neural correlates of cognitive components in mental calculation. Cereb. Cortex 2001, 11, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Pesenti, M.; Thioux, M.; Seron, X.; Volder, A.D. Neuroanatomical substrates of Arabic number processing, numerical comparison, and simple addition: A PET study. J. Cogn. Neurosci. 2000, 12, 461–479. [Google Scholar] [CrossRef] [PubMed]
- Dehaene, S.; Cohen, L. Towards an anatomical and functional model of number processing. Math. Cogn. 1995, 1, 83–120. [Google Scholar]
- Cheng, D.; Li, M.; Cui, J.; Wang, L.; Wang, N.; Ouyang, L.; Wang, X.; Bai, X.; Zhou, X. Algebra dissociates from arithmetic in the brain semantic network. Behav. Brain Funct. 2022, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Abd Hamid, A.I.; Yusoff, A.N.; Mukari, S.Z.M.S.; Mohamad, M. Brain activation during addition and subtraction tasks in-noise and in-quiet. Malays. J. Med. Sci. MJMS 2011, 18, 3–15. [Google Scholar] [PubMed]
- Andres, M.; Pelgrims, B.; Michaux, N.; Olivier, E.; Pesenti, M. Role of distinct parietal areas in arithmetic: An fMRI-guided TMS study. Neuroimage 2011, 54, 3048–3056. [Google Scholar] [CrossRef] [PubMed]
- Sandrini, M.; Rossini, P.M.; Miniussi, C. The differential involvement of inferior parietal lobule in number comparison: A rTMS study. Neuropsychologia 2004, 42, 1902–1909. [Google Scholar] [CrossRef]
- Soltanlou, M.; Dresler, T.; Artemenko, C.; Rosenbaum, D.; Ehlis, A.C.; Nuerk, H.C. Training causes activation increase in temporo-parietal and parietal regions in children with mathematical disabilities. Brain Struct. Funct. 2022, 227, 1757–1771. [Google Scholar] [CrossRef]
- Wang, C.; Xu, T.; Geng, F.; Hu, Y.; Wang, Y.; Liu, H.; Chen, F. Training on abacus-based mental calculation enhances visuospatial working memory in children. J. Neurosci. 2019, 39, 6439–6448. [Google Scholar] [CrossRef]
- Bartlett, J.C.; Boggan, A.L.; Krawczyk, D.C. Expertise and processing distorted structure in chess. Front. Hum. Neurosci. 2013, 7, 825. [Google Scholar] [CrossRef]
- Rennig, J.; Bilalic, M.; Huberle, E.; Karnath, H.O.; Himmelbach, M. The temporo-parietal junction contributes to global gestalt perception-evidence from studies in chess experts. Front. Hum. Neurosci. 2013, 7, 513. [Google Scholar] [CrossRef]
- Krawczyk, D.C.; Boggan, A.L.; McClelland, M.M.; Bartlett, J.C. The neural organization of perception in chess experts. Neurosci. Lett. 2011, 499, 64–69. [Google Scholar] [CrossRef]
- Olesen, P.J.; Westerberg, H.; Klingberg, T. Increased prefrontal and parietal activity after training of working memory. Nat. Neurosci. 2003, 7, 75–79. [Google Scholar] [CrossRef]
- Schneiders, J.A.; Opitz, B.; Krick, C.M.; Mecklinger, A. Separating Intra-Modal and Across-Modal Training Effects in Visual Working Memory: An fMRI Investigation. Cereb. Cortex 2011, 21, 2555–2564. [Google Scholar] [CrossRef]
- Jolles, D.D.; van Buchem, M.A.; Crone, E.A.; Rombouts, S.A. Functional brain connectivity at rest changes after working memory training. Hum. Brain Mapp. 2013, 34, 396–406. [Google Scholar] [CrossRef]
- Langer, N.; von Bastian, C.C.; Wirz, H.; Oberauer, K.; Jäncke, L. The effects of working memory training on functional brain network efficiency. Cortex 2013, 49, 2424–2438. [Google Scholar] [CrossRef]
- Thompson, T.W.; Waskom, M.L.; Gabrieli, J.D.E. Intensive Working Memory Training Produces Functional Changes in Large-scale Frontoparietal Networks. J. Cogn. Neurosci. 2016, 28, 575–588. [Google Scholar] [CrossRef]
- Nikolaidis, A.; Voss, M.W.; Lee, H.; Vo, L.K.; Kramer, A.F. Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task. Front. Hum. Neurosci. 2014, 8, 169. [Google Scholar] [CrossRef]
- Voss, M.W.; Prakash, R.S.; Erickson, K.I.; Boot, W.R.; Basak, C.; Neider, M.B.; Simons, D.J.; Fabiani, M.; Gratton, G.; Kramer, A.F. Effects of training strategies implemented in a complex videogame on functional connectivity of attentional networks. Neuroimage 2012, 59, 138–148. [Google Scholar] [CrossRef]
- Draganski, B.; Gaser, C.; Busch, V.; Schuierer, G.; Bogdahn, U.; May, A. Changes in grey matter induced by training. Nature 2004, 427, 311–312. [Google Scholar] [CrossRef]
- Draganski, B.; Gaser, C.; Kempermann, G.; Kuhn, H.G.; Winkler, J.; Buchel, C.; May, A. Temporal and Spatial Dynamics of Brain Structure Changes during Extensive Learning. J. Neurosci. 2006, 26, 6314–6317. [Google Scholar] [CrossRef]
- Driemeyer, J.; Boyke, J.; Gaser, C.; Büchel, C.; May, A. Changes in Gray Matter Induced by Learning—Revisited. PLoS ONE 2008, 3, e2669. [Google Scholar] [CrossRef]
- Lee, D.J.; Chen, Y.; Schlaug, G. Corpus callosum: Musician and gender effects. Neuroreport 2003, 14, 205–209. [Google Scholar] [CrossRef]
- Abraham, A.; Thybusch, K.; Pieritz, K.; Hermann, C. Gender differences in creative thinking: Behavioral and fMRI findings. Brain Imaging Behav. 2014, 8, 39–51. [Google Scholar] [CrossRef]
- Shaywitz, B.A.; Shaywltz, S.E.; Pugh, K.R.; Constable, R.T.; Skudlarski, P.; Fulbright, R.K.; Bronen, R.A.; Fletcher, J.M.; Shankweiler, D.P.; Katz, L.; et al. Sex differences in the functional organization of the brain for language. Nature 1995, 373, 607–609. [Google Scholar] [CrossRef]
- Stevens, J.S.; Hamann, S. Sex differences in brain activation to emotional stimuli: A meta-analysis of neuroimaging studies. Neuropsychologia 2012, 50, 1578–1593. [Google Scholar] [CrossRef]
- Chao, A.M.; Loughead, J.; Bakizada, Z.M.; Hopkins, C.M.; Geliebter, A.; Gur, R.C.; Wadden, T.A. Sex/gender differences in neural correlates of food stimuli: A systematic review of functional neuroimaging studies. Obes. Rev. 2017, 18, 687–699. [Google Scholar] [CrossRef]
- Laube, C.; van den Bos, W.; Fandakova, Y. The relationship between pubertal hormones and brain plasticity: Implications for cognitive training in adolescence. Dev. Cogn. Neurosci. 2020, 42, 100753. [Google Scholar] [CrossRef]
- Tymofiyeva, O.; Gaschler, R. Training-induced neural plasticity in youth: A systematic review of structural and functional MRI studies. Front. Hum. Neurosci. 2021, 14, 579. [Google Scholar] [CrossRef]
- Bilalić, M.; Grottenthaler, T.; Nägele, T.; Lindig, T. The Faces in Radiological Images: Fusiform Face Area Supports Radiological Expertise. Cereb. Cortex 2016, 26, 1004–1014. [Google Scholar] [CrossRef]
- Harley, E.M.; Pope, W.B.; Villablanca, J.P.; Mumford, J.; Suh, R.; Mazziotta, J.C.; Enzmann, D.; Engel, S.A. Engagement of Fusiform Cortex and Disengagement of Lateral Occipital Cortex in the Acquisition of Radiological Expertise. Cereb. Cortex 2009, 19, 2746–2754. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Y.; Zhao, M.; Wang, Y.; Huang, J.; Chen, F. The neural pathway underlying a numerical working memory task in abacus-trained children and associated functional connectivity in the resting brain. Brain Res. 2013, 1539, 24–33. [Google Scholar] [CrossRef]
- Wang, D.; Qian, M. Revision on the Combined Raven’s Test for the Rural in China. J. Psychol. Sci. 1989, 5, 25–29. [Google Scholar]
- Wechsler, D. WMS–III Administration and Scoring Manual; The Psychological Corporation: San Antonio, TX, USA, 1997. [Google Scholar]
- Woods, D.L.; Kishiyama, M.M.; Yund, E.W.; Herron, T.J.; Edwards, B.; Poliva, O.; Hink, R.F.; Reed, B. Improving digit span assessment of short-term verbal memory. J. Clin. Exp. Neuropsychol. 2011, 33, 101–111. [Google Scholar] [CrossRef]
- Conklin, H.M.; Curtis, C.E.; Katsanis, J.; Iacono, W.G. Verbal working memory impairment in schizophrenia patients and their first-degree relatives: Evidence from the digit span task. Am. J. Psychiatry 2000, 157, 275–277. [Google Scholar] [CrossRef]
- Gilaie-Dotan, S.; Harel, A.; Bentin, S.; Kanai, R.; Rees, G. Neuroanatomical correlates of visual car expertise. Neuroimage 2012, 62, 147–153. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Yu, T.; Ni, D.; Ren, L.; Yang, Q.; Xue, G. Stable maintenance of multiple representational formats in human visual short-term memory. Proc. Natl. Acad. Sci. USA 2020, 117, 32329–32339. [Google Scholar] [CrossRef]
- Wright, M.J.; Gobet, F.; Chassy, P.; Ramchandani, P.N. ERP to chess stimuli reveal expert-novice differences in the amplitudes of N2 and P3 components. Psychophysiology 2013, 50, 1023–1033. [Google Scholar] [CrossRef]
- Package ‘Lmperm’; R Package version. Available online: https://cran.r-project.org/web/packages/lmPerm/lmPerm.pdf (accessed on 10 April 2024).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S-PLUS; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Bertin, A.; Beraud, A.; Lansade, L.; Blache, M.C.; Diot, A.; Mulot, B.; Arnould, C. Facial display and blushing: Means of visual communication in blue-and-yellow macaws (Ara ararauna)? PLoS ONE 2018, 13, e0201762. [Google Scholar] [CrossRef]
- Yan, C.G.; Wang, X.D.; Zuo, X.N.; Zang, Y.F. DPABI: Data processing & analysis for (resting-state) brain imaging. Neuroinformatics 2016, 14, 339–351. [Google Scholar]
- Spisák, T.; Spisák, Z.; Zunhammer, M.; Bingel, U.; Smith, S.; Nichols, T.; Kincses, T. Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power. Neuroimage 2019, 185, 12–26. [Google Scholar] [CrossRef]
- Setiadi, T.M.; Opmeer, E.M.; Martens, S.; Marsman, J.B.C.; Tumati, S.; Reesink, F.E.; Deyn, P.P.D.; Aleman, A.; Ćurčić-Blake, B. Apathy and white matter integrity in amnestic mild cognitive impairment: A whole brain analysis with tract-based spatial statistics: Neuroimaging/Optimal neuroimaging measures for early detection. Alzheimer’s Dement. 2020, 16, e040838. [Google Scholar] [CrossRef]
- Saariluoma, P. Chess players’ intake of task-relevant cues. Mem. Cogn. 1985, 13, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Keskin, M.; Ooms, K.; Dogru, A.O.; De Maeyer, P. Exploring the cognitive load of expert and novice map users using EEG and eye tracking. ISPRS Int. J. Geo-Inf. 2020, 9, 429. [Google Scholar] [CrossRef]
- Armougum, A.; Gaston-Bellegarde, A.; Marle, C.J.-L.; Piolino, P. Expertise reversal effect: Cost of generating new schemas. Comput. Hum. Behav. 2020, 111, 106406. [Google Scholar] [CrossRef]
- Sweller, J.; Ayres, P.L.; Kalyuga, S.; Chandler, P. The expertise reversal effect. Educ. Psychol. 2003, 38, 23–31. [Google Scholar]
- Sala, G.; Gobet, F. Does Far Transfer Exist? Negative Evidence from Chess, Music, and Working Memory Training. Curr. Dir. Psychol. Sci. 2017, 26, 515–520. [Google Scholar] [CrossRef]
- Bilalic, M.; Graf, M.; Vaci, N.; Danek, A.H. When the Solution Is on the Doorstep: Better Solving Performance, but Diminished Aha! Experience for Chess Experts on the Mutilated Checkerboard Problem. Cogn. Sci. 2019, 43, e12771. [Google Scholar] [CrossRef]
- Guo, Z.; Li, A.; Yu, L. “Neural Efficiency” of Athletes’ Brain during Visuo-Spatial Task: An fMRI Study on Table Tennis Players. Front. Behav. Neurosci. 2017, 11, 72. [Google Scholar] [CrossRef] [PubMed]
- Voyer, D.; Jansen, P. Motor expertise and performance in spatial tasks: A meta-analysis. Hum. Mov. Sci. 2017, 54, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Kobiela, F. Should chess and other mind sports be regarded as sports. J. Philos. Sport 2018, 45, 279–295. [Google Scholar] [CrossRef]
- James, C.E.; Michel, C.M.; Britz, J.; Vuilleumier, P.; Hauert, C.-A. Rhythm evokes action: Early processing of metric deviances in expressive music by experts and laymen revealed by ERP source imaging. Hum. Brain Mapp. 2011, 33, 2751–2767. [Google Scholar] [CrossRef]
- Lee, J.S.; Chen, C.L.; Wu, T.H.; Hsieh, J.C.; Wui, Y.T.; Cheng, M.C.; Huang, Y.H. Brain activation during abacus-based mental calculation with fMRI: A comparison between abacus experts and normal subjects. In Proceedings of the First International IEEE EMBS Conference on Neural Engineering, Capri, Italy, 20–22 March 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 553–556. [Google Scholar]
- Bengtsson, S.L.; Ullén, F.; Henrik Ehrsson, H.; Hashimoto, T.; Kito, T.; Naito, E.; Forssberg, H.; Sadato, N. Listening to rhythms activates motor and premotor cortices. Cortex 2009, 45, 62–71. [Google Scholar] [CrossRef]
- Luo, J.; Yang, R.; Yang, W.; Duan, C.; Deng, Y.; Zhang, J.; Chen, J.; Liu, J. Increased Amplitude of Low-Frequency Fluctuation in Right Angular Gyrus and Left Superior Occipital Gyrus Negatively Correlated with Heroin Use. Front. Psychiatry 2020, 11, 492. [Google Scholar] [CrossRef]
- Uddén, J.; Snijders, T.M.; Fisher, S.E.; Hagoort, P. A common variant of the CNTNAP2 gene is associated with structural variation in the left superior occipital gyrus. Brain Lang. 2017, 172, 16–21. [Google Scholar] [CrossRef]
- Malach, R.; Reppas, J.B.; Benson, R.R.; Kwong, K.K.; Jiang, H.; Kennedy, W.A.; Ledden, P.J.; Brady, T.J.; Rosen, B.R.; Tootell, R.B. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc. Natl. Acad. Sci. USA 1995, 92, 8135–8139. [Google Scholar] [CrossRef]
- Luo, J.; Niki, K.; Knoblich, G. Perceptual contributions to problem solving: Chunk decomposition of Chinese characters. Brain Res. Bull. 2006, 70, 430–443. [Google Scholar] [CrossRef]
- Cabeza, R.; Nyberg, L. Imaging Cognition II: An Empirical Review of 275 PET and fMRI Studies. J. Cogn. Neurosci. 2000, 12, 1–47. [Google Scholar] [CrossRef]
- Blackwood, N.; Simmons, A.; Bentall, R.; Murray, R.; Howard, R.J. The cerebellum and decision making under uncertainty. Cogn. Brain Res. 2004, 20, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Shulman, G.L.; Astafiev, S.V.; Franke, D.; Pope, D.L.; Snyder, A.Z.; McAvoy, M.P.; Corbetta, M. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks. J. Neurosci. 2009, 29, 4392–4407. [Google Scholar] [CrossRef] [PubMed]
- Shang, C.Y.; Lin, H.Y.; Tseng, W.Y.; Gau, S.S. A haplotype of the dopamine transporter gene modulates regional homogeneity, gray matter volume, and visual memory in children with attention-deficit/hyperactivity disorder. Psychol. Med. 2018, 48, 2530–2540. [Google Scholar] [CrossRef]
- Tomasi, D.; Chang, L.; Caparelli, E.C.; Ernst, T. Different activation patterns for working memory load and visual attention load. Brain Res. 2007, 1132, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Poldrack, R.A. Is “efficiency” a useful concept in cognitive neuroscience? Dev. Cogn. Neurosci. 2015, 11, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Logan, G.D. Toward an instance theory of automatization. Psychol. Rev. 1988, 95, 492. [Google Scholar] [CrossRef]
- Calmels, C. Neural correlates of motor expertise: Extensive motor training and cortical changes. Brain Res. 2020, 1739, 146323. [Google Scholar] [CrossRef] [PubMed]
- Beilock, S.L.; Lyons, I.M.; Mattarella-Micke, A.; Nusbaum, H.C.; Small, S.L. Sports experience changes the neural processing of action language. Proc. Natl. Acad. Sci. USA 2008, 105, 13269–13273. [Google Scholar] [CrossRef]
- Banker, L.; Tadi, P. Neuroanatomy, Precentral Gyrus; Europe PMC: London, UK, 2019. [Google Scholar]
- Zago, L.; Pesenti, M.; Mellet, E.; Crivello, F.; Mazoyer, B.; Tzourio-Mazoyer, N. Neural correlates of simple and complex mental calculation. Neuroimage 2001, 13, 314–327. [Google Scholar] [CrossRef]
- Dehaene, S.; Piazza, M.; Pinel, P.; Cohen, L. Three parietal circuits for number processing. Cogn. Neuropsychol. 2003, 20, 487–506. [Google Scholar] [CrossRef]
- Arsalidou, M.; Pawliw-Levac, M.; Sadeghi, M.; Pascual-Leone, J. Brain areas associated with numbers and calculations in children: Meta-analyses of fMRI studies. Dev. Cogn. Neurosci. 2018, 30, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Grabner, R.H.; Ansari, D.; Reishofer, G.; Stern, E.; Ebner, F.; Neuper, C. Individual differences in mathematical competence predict parietal brain activation during mental calculation. Neuroimage 2007, 38, 346–356. [Google Scholar] [CrossRef] [PubMed]
- Pinel, P.; Dehaene, S.; Riviere, D.; LeBihan, D. Modulation of parietal activation by semantic distance in a number comparison task. Neuroimage 2001, 14, 1013–1026. [Google Scholar] [CrossRef]
- Arsalidou, M.; Taylor, M.J. Is 2 + 2 = 4? Meta-analyses of brain areas needed for numbers and calculations. Neuroimage 2011, 54, 2382–2393. [Google Scholar] [CrossRef] [PubMed]
- Chochon, F.; Cohen, L.; Moortele, P.F.V.D.; Dehaene, S. Differential Contributions of the Left and Right Inferior Parietal Lobules to Number Processing. J. Cogn. Neurosci. 1999, 11, 617–630. [Google Scholar] [CrossRef]
- Gobet, F. Expert memory: A comparison of four theories. Cognition 1998, 66, 115–152. [Google Scholar] [CrossRef] [PubMed]
- Guida, A.; Gobet, F.; Tardieu, H.; Nicolas, S. How chunks, long-term working memory and templates offer a cognitive explanation for neuroimaging data on expertise acquisition: A two-stage framework. Brain Cogn. 2012, 79, 221–244. [Google Scholar] [CrossRef] [PubMed]
- Barton, J.J. Structure and function in acquired prosopagnosia: Lessons from a series of 10 patients with brain damage. J. Neuropsychol. 2008, 2, 197–225. [Google Scholar] [CrossRef] [PubMed]
- Barton, J.J.; Press, D.Z.; Keenan, J.P.; O’Connor, M. Lesions of the fusiform face area impair perception of facial configuration in prosopagnosia. Neurology 2002, 58, 71–78. [Google Scholar] [CrossRef]
- Kanwisher, N.; McDermott, J.; Chun, M.M. The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception. J. Neurosci. 1997, 17, 4302–4311. [Google Scholar] [CrossRef]
- Kanwisher, N. The quest for the FFA and where it led. J. Neurosci. 2017, 37, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, G.; Byatt, G.; Michie, P.T.; Puce, A. Is the Fusiform Face Area Specialized for Faces, Individuation, or Expert Individuation? J. Cogn. Neurosci. 2004, 16, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Brants, M.; Wagemans, J.; Op de Beeck, H.P. Activation of fusiform face area by Greebles is related to face similarity but not expertise. J. Cogn. Neurosci. 2011, 23, 3949–3958. [Google Scholar] [CrossRef] [PubMed]
- Burns, E.J.; Arnold, T.; Bukach, C.M. P-curving the fusiform face area: Meta-analyses support the expertise hypothesis. Neurosci. Biobehav. Rev. 2019, 104, 209–221. [Google Scholar] [CrossRef]
- Kiesel, A.; Kunde, W.; Pohl, C.; Berner, M.P.; Hoffmann, J. Playing Chess Unconsciously. J. Exp. Psychol.-Learn. Mem. Cogn. 2009, 35, 292–298. [Google Scholar] [CrossRef]
Group | Number | Male/Female | Age | Education Years | IQ | WM |
---|---|---|---|---|---|---|
bridge players | 6 | 3/3 | 22.83 (1.94) | 16.50 (1.38) | 66.33 (3.88) | 17.50 (2.59) |
ordinary college students | 25 | 10/15 | 20.52 (1.36) | 14.76 (1.05) | 63.72 (4.97) | 15.40 (2.57) |
Region | Hemisphere | Voxels | MNI Coordinates | F Score | ||
---|---|---|---|---|---|---|
x | y | z | ||||
Group effect | ||||||
Occipital_Sup | left | 73 | −20 | −76 | 28 | 29.118 |
Occipital_Sup | right | 183 | 24 | −88 | 34 | 27.793 |
Occipital_Inf | left | 37 | −42 | −80 | −6 | 19.413 |
Occipital_Mid | right | 60 | 38 | −90 | 8 | 22.209 |
Occipital_Mid | right | 73 | 34 | −68 | 38 | 21.451 |
Precentral | left | 40 | −42 | −4 | 40 | 18.181 |
Task effect | ||||||
Parietal_Inf | right | 34 | 52 | −52 | 38 | 15.808 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Liu, Y.; Wang, Z.; Zhang, Q.; Bai, X. Long-Term Bridge Training Induces Functional Plasticity Changes in the Brain of Early-Adult Individuals. Behav. Sci. 2024, 14, 469. https://doi.org/10.3390/bs14060469
Zhao B, Liu Y, Wang Z, Zhang Q, Bai X. Long-Term Bridge Training Induces Functional Plasticity Changes in the Brain of Early-Adult Individuals. Behavioral Sciences. 2024; 14(6):469. https://doi.org/10.3390/bs14060469
Chicago/Turabian StyleZhao, Bingjie, Yan Liu, Zheng Wang, Qihan Zhang, and Xuejun Bai. 2024. "Long-Term Bridge Training Induces Functional Plasticity Changes in the Brain of Early-Adult Individuals" Behavioral Sciences 14, no. 6: 469. https://doi.org/10.3390/bs14060469
APA StyleZhao, B., Liu, Y., Wang, Z., Zhang, Q., & Bai, X. (2024). Long-Term Bridge Training Induces Functional Plasticity Changes in the Brain of Early-Adult Individuals. Behavioral Sciences, 14(6), 469. https://doi.org/10.3390/bs14060469