Cognitive Function, and Its Relationships with Comorbidities, Physical Activity, and Muscular Strength in Korean Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Participants
2.2. Variables
2.2.1. Cognitive Function
2.2.2. Comorbidities
2.2.3. Physical Activity and Lower-Body Muscle Strength
2.2.4. Covariates
2.3. Statistics
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alkema, L.; Raftery, A.E.; Gerland, P.; Clark, S.J.; Pelletier, F.; Buettner, T.; Heilig, G.K. Probabilistic projections of the total fertility rate for all countries. Demography 2011, 48, 815–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Statistics Korea. 2017 Statistics on the Aged. Available online: http://kostat.go.kr/portal/korea/kor_nw/3/index.board?bmode=read&bSeq=&aSeq=363363&pageNo=1&rowNum=10&navCount=10&currPg=&sTarget=title&sTxt (accessed on 10 November 2022).
- Lopreite, M.; Mauro, M. The effects of population ageing on health care expenditure: A Bayesian VAR analysis using data from Italy. Health Policy 2017, 121, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Kang, J.M.; Lee, H.; Kim, K.; Kim, S.; Yu, T.Y.; Lee, E.M.; Kim, C.T.; Kim, D.K.; Lewis, M.; et al. Subjective cognitive decline and subsequent dementia: A nationwide cohort study of 579,710 people aged 66 years in South Korea. Alzheimers Res. Ther. 2020, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.A.; Bouldin, E.D.; McGuire, L.C. Subjective cognitive decline among adults aged ≥45 Years—United States, 2015–2016. MMWR Morb. Mortal. Wkly. Rep. 2018, 67, 753–757. [Google Scholar] [CrossRef]
- Vance, D.; Larsen, K.I.; Eagerton, G.; Wright, M.A. Comorbidities and cognitive functioning: Implications for nursing research and practice. J. Neurosci. Nurs. 2011, 43, 215–224. [Google Scholar] [CrossRef]
- Shilpa, K.; Norman, G. Prevalence of frailty and its association with lifestyle factors among elderly in rural Bengaluru. J. Fam. Med. Prim. Care 2022, 11, 2083–2089. [Google Scholar] [CrossRef]
- Caspersen, C.J.; Powell, K.E.; Christenson, G.M. Physical activity, exercise, and physical fitness: Definitions and distinctions for health-related research. Public Health Rep. 1985, 100, 126–131. [Google Scholar]
- Vecchio, L.M.; Meng, Y.; Xhima, K.; Lipsman, N.; Hamani, C.; Aubert, I. The neuroprotective effects of exercise: Maintaining a healthy brain throughout aging. Brain Plast. 2018, 4, 17–52. [Google Scholar] [CrossRef] [Green Version]
- Dougherty, R.J.; Boots, E.A.; Lindheimer, J.B.; Stegner, A.J.; Van Riper, S.; Edwards, D.F.; Gallagher, C.L.; Carlsson, C.M.; Rowley, H.A.; Bendlin, B.B.; et al. Fitness, independent of physical activity is associated with cerebral blood flow in adults at risk for Alzheimer’s disease. Brain Imaging Behav. 2020, 14, 1154–1163. [Google Scholar] [CrossRef]
- Perrey, S. Promoting motor function by exercising the brain. Brain Sci. 2013, 3, 101–122. [Google Scholar] [CrossRef] [Green Version]
- Daimiel, L.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Schröder, H.; Vioque, J.; Romaguera, D.; Martínez, J.A.; Wärnberg, J.; Lopez-Miranda, J.; et al. Physical fitness and physical activity association with cognitive function and quality of life: Baseline cross-sectional analysis of the PREDIMED-Plus trial. Sci. Rep. 2020, 10, 3472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Hwang, G.; Cho, Y.H.; Kim, E.J.; Woang, J.W.; Hong, C.H.; Son, S.J.; Roh, H.W. Relationships of physical activity, depression, and sleep with cognitive function in community-dwelling older adults. Int J. Environ. Res. Public Health 2022, 19, 15655. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Srivastava, S.; Muhammad, T. Relationship between physical activity and cognitive functioning among older Indian adults. Sci. Rep. 2022, 12, 2725. [Google Scholar] [CrossRef] [PubMed]
- Dupré, C.; Helmer, C.; Bongue, B.; Dartigues, J.F.; Roche, F.; Berr, C.; Carrière, I. Associations between physical activity types and multi-domain cognitive decline in older adults from the three-city cohort. PLoS ONE 2021, 16, e0252500. [Google Scholar] [CrossRef] [PubMed]
- Frith, E.; Loprinzi, P.D. The Association between lower extremity muscular strength and cognitive function in a national sample of older adults. J. Lifestyle Med. 2018, 8, 99–104. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, H.; Du, C. Association of physical fitness with cognitive function in the community-dwelling older adults. BMC Geriatr. 2022, 22, 868. [Google Scholar] [CrossRef]
- Kim, T.H.; Jhoo, J.H.; Park, J.H.; Kim, J.L.; Ryu, S.H.; Moon, S.W.; Choo, I.H.; Lee, D.W.; Yoon, J.C.; Do, Y.J.; et al. Korean version of mini mental status examination for dementia screening and its’ short form. Psychiatry Investig. 2010, 7, 102–108. [Google Scholar] [CrossRef] [Green Version]
- Park, B.; Ock, M.; Lee, H.A.; Lee, S.; Han, H.; Jo, M.W.; Park, H. Multimorbidity and health-related quality of life in Koreans aged 50 or older using KNHANES 2013–2014. Health Qual. Life Outcomes 2018, 16, 186. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010; Available online: https://www.who.int/publications/i/item/9789241599979 (accessed on 5 December 2022).
- Buatois, S.; Miljkovic, D.; Manckoundia, P.; Gueguen, R.; Miget, P.; Vancon, G.; Perrin, P.; Benetos, A. Five times sit to stand test is a predictor of recurrent falls in healthy community-living subjects aged 65 and older. J. Am. Geriatr. Soc. 2008, 56, 1575–1577. [Google Scholar] [CrossRef]
- Nam, S.M.; Kim, S.G. Effects of a five times sit to stand test on the daily life independence of Korean elderly and cut-off analysis. J. Korean Soc. Phys. Med. 2019, 14, 29–35. [Google Scholar] [CrossRef]
- Lyu, J.; Lee, S.H. Alcohol consumption and cognitive impairment among Korean older adults: Does gender matter? Int. Psychogeriatr. 2014, 26, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, E.; An, M. The cognitive impact of chronic diseases on functional capacity in community-dwelling adults. J. Nurs. Res. 2019, 27, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Sujitha, P.; Gopalakrishnan, S.; Swetha, N.B.; Grace, G.A. Cognitive impairment and its correlation with comorbidities among elderly residing in old age homes in Southern India. Natl. J. Community Med. 2022, 13, 235–241. [Google Scholar] [CrossRef]
- Winning, L.; Naseer, A.; De Looze, C.; Knight, S.P.; Kenny, R.A.; O’Connell, B. Tooth loss and cognitive decline in community-dwelling older Irish adults: A cross-sectional cohort study. J. Dent. 2022, 119, 104077. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.E.; Jiang, D.; Schweizer, T.A. Determining the association of medical co-morbidity with subjective and objective cognitive performance in an inner city memory disorders clinic: A retrospective chart review. BMC Geriatr. 2010, 10, 89. [Google Scholar] [CrossRef] [Green Version]
- Whitelock, V.; Rutters, F.; Rijnhart, J.J.M.; Nouwen, A.; Higgs, S. The mediating role of comorbid conditions in the association between type 2 diabetes and cognition: A cross-sectional observational study using the UK Biobank cohort. Psychoneuroendocrinology 2021, 123, 104902. [Google Scholar] [CrossRef]
- She, R.; Yan, Z.; Hao, Y.; Zhang, Z.; Du, Y.; Liang, Y.; Vetrano, D.L.; Dekker, J.; Bai, B.; Lau, J.T.F.; et al. Comorbidity in patients with first-ever ischemic stroke: Disease patterns and their associations with cognitive and physical function. Front. Aging Neurosci. 2022, 14, 887032. [Google Scholar] [CrossRef]
- Martínez-Horta, S.; Bejr-Kasem, H.; Horta-Barba, A.; Pascual-Sedano, B.; Santos-García, D.; de Deus-Fonticoba, T.; Jesús, S.; Aguilar, M.; Planellas, L.; García-Caldentey, J.; et al. Identifying comorbidities and lifestyle factors contributing to the cognitive profile of early Parkinson’s disease. BMC Neurol. 2021, 21, 477. [Google Scholar] [CrossRef]
- Kao, S.L.; Wang, J.H.; Chen, S.C.; Li, Y.Y.; Yang, Y.L.; Lo, R.Y. Impact of comorbidity burden on cognitive decline: A prospective cohort study of older adults with dementia. Dement. Geriatr. Cogn. Disord. 2021, 50, 43–50. [Google Scholar] [CrossRef]
- Calderón-Larrañaga, A.; Vetrano, D.L.; Ferrucci, L.; Mercer, S.W.; Marengoni, A.; Onder, G.; Eriksdotter, M.; Fratiglioni, L. Multimorbidity and functional impairment-bidirectional interplay, synergistic effects and common pathways. J. Intern. Med. 2019, 285, 255–271. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.A.; Bouldin, E.D.; Greenlund, K.J.; McGuire, L.C. Comorbid chronic conditions among older adults with subjective cognitive decline, United States, 2015–2017. Innov. Aging 2020, 4, igz045. [Google Scholar] [CrossRef] [PubMed]
- Lutski, M.; Weinstein, G.; Goldbourt, U.; Tanne, D. Cardiovascular health and cognitive decline 2 decades later in men with preexisting coronary artery disease. Am. J. Cardiol. 2018, 121, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Marrie, R.A.; Patel, R.; Figley, C.R.; Kornelsen, J.; Bolton, J.M.; Graff, L.A.; Mazerolle, E.L.; Helmick, C.; Uddin, M.N.; Figley, T.D.; et al. Effects of vascular comorbidity on cognition in multiple sclerosis are partially mediated by changes in brain structure. Front. Neurol. 2022, 13, 910014. [Google Scholar] [CrossRef] [PubMed]
- Yigit, B.; Oner, C.; Cetin, H.; Simsek, E.E. Association between sarcopenia and cognitive functions in older Individuals: A Cross-Sectional Study. Ann. Geriatr. Med. Res. 2022, 26, 134–139. [Google Scholar] [CrossRef]
- Dhikav, V.; Kumar, P.; Anand, P.K. Cardiovascular comorbidities and cognitive impairment. OBM Geriatr. 2022, 6, 215. [Google Scholar] [CrossRef]
- Kobayashi, H.; Arai, H. Donepezil may reduce the risk of comorbidities in patients with Alzheimer’s disease: A large-scale matched case-control analysis in Japan. Alzheimers Dement. 2018, 4, 130–136. [Google Scholar] [CrossRef]
- Song, H.; Park, J.H. Effects of changes in physical activity with cognitive decline in Korean home-dwelling older adults. J. Multidiscip. Healthc. 2022, 15, 333–341. [Google Scholar] [CrossRef]
- Krell-Roesch, J.; Syrjanen, J.A.; Bezold, J.; Trautwein, S.; Barisch-Fritz, B.; Boes, K.; Woll, A.; Forzani, E.; Kremers, W.K.; Machulda, M.M.; et al. Physical activity and trajectory of cognitive change in older persons: Mayo Clinic Study of Aging. J. Alzheimers Dis. 2021, 79, 377–388. [Google Scholar] [CrossRef]
- Lee, J.M.J.; Ryan, E. The Relationship between muscular strength and depression in older adults with chronic disease comorbidity. Int J. Environ. Res. Public Health 2020, 17, 6830. [Google Scholar] [CrossRef]
- Jeong, S.; Kim, J. Prospective association of handgrip strength with risk of new-onset cognitive dysfunction in Korean adults: A 6-year national cohort study. Tohoku J. Exp. Med. 2018, 244, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Suh, Y.; Park, J.; Kim, G.U.; Lee, S. Combined effects of handgrip strength and sensory impairment on the prevalence of cognitive impairment among older adults in Korea. Sci. Rep. 2022, 12, 6713. [Google Scholar] [CrossRef] [PubMed]
- Strandkvist, V.; Larsson, A.; Pauelsen, M.; Nyberg, L.; Vikman, I.; Lindberg, A.; Gustafsson, T.; Röijezon, U. Hand grip strength is strongly associated with lower limb strength but only weakly with postural control in community-dwelling older adults. Arch. Gerontol. Geriatr. 2021, 94, 104345. [Google Scholar] [CrossRef]
- Tatangelo, T.; Muollo, V.; Ghiotto, L.; Schena, F.; Rossi, A.P. Exploring the association between handgrip, lower limb muscle strength, and physical function in older adults: A narrative review. Exp. Gerontol. 2022, 167, 111902. [Google Scholar] [CrossRef] [PubMed]
- Muhammad, T.; Meher, T. Association of late-life depression with cognitive impairment: Evidence from a cross-sectional study among older adults in India. BMC Geriatr. 2021, 21, 364. [Google Scholar] [CrossRef] [PubMed]
- Kong, J.Y.; Hong, H.; Kang, H. Relationship between physical activity and depressive symptoms in older Korean adults: Moderation analysis of muscular strength. BMC Geriatr. 2022, 22, 884. [Google Scholar] [CrossRef] [PubMed]
- Stranahan, A.M.; Martin, B.; Maudsley, S. Anti-inflammatory effects of physical activity in relationship to improved cognitive status in humans and mouse models of Alzheimer’s disease. Curr. Alzheimer Res. 2012, 9, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Shakouri, E.; Azarbayjani, M.A.; Jameie, S.B.; Peeri, M.; Farhadi, M. Effect of physical activity on cognitive function and neurogenesis: Roles of BDNF and oxidative stress. Thrita 2020, 9, e109723. [Google Scholar] [CrossRef]
- Yorston, L.C.; Kolt, G.S.; Rosenkranz, R.R. Physical activity and physical function in older adults: The 45 and up study. J. Am. Geriatr. Soc. 2012, 60, 719–725. [Google Scholar] [CrossRef] [Green Version]
- Ezzati, A.; Zammit, A.R.; Katz, M.J.; Derby, C.A.; Zimmerman, M.E.; Lipton, R.B. Health-related quality of life, cognitive performance, and incident dementia in a community-based elderly cohort. Alzheimer Dis. Assoc. Disord. 2019, 33, 240–245. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.W.; McLaughlin, S.J. Psychological well-being and cognitive function among older adults in China: A population-based longitudinal study. J. Aging Health 2022, 34, 173–183. [Google Scholar] [CrossRef]
- Ogonowska-Slodownik, A.; Morgulec-Adamowicz, N.; Geigle, P.R.; Kalbarczyk, M.; Kosmol, A. Objective and self-reported assessment of physical activity of women over 60 years old. Ageing Int. 2022, 47, 307–320. [Google Scholar] [CrossRef]
Variables | Number of Comorbidities | p for Linear Trends | ||
---|---|---|---|---|
0 (n = 1686/16.7%) | 1 (n = 2956/29.3%) | 2 (n = 5445/54.0%) | ||
Age in years, mean (95% CI) | 70.9 (70.6~71.2) | 72.6 (72.4~72.8) | 74.9 (74.7~75.1) | <0.001 |
BMI in kg/m2, mean (95% CI) | 23.3 (23.2~23.4) | 23.5 (23.4~23.6) | 23.7 (23.6~23.8) | <0.001 |
Gender, n (%) | <0.001 | |||
Male | 831 (49.3) | 1326 (44.9) | 1878 (34.4) | |
Female | 855 (50.7) | 1630 (55.1) | 3577 (65.6) | |
Marriage status | <0.001 | |||
Never married | 13 (0.8) | 5 (0.2) | 25 (0.5) | |
Married with a spouse | 1179 (69.9) | 1891 (64.0) | 2861 (52.4) | |
Married without a spouse | 494 (29.3) | 1060 (35.9) | 2569 (47.1) | |
Educational background, n (%) | <0.001 | |||
Elementary or less | 527 (31.3) | 1133 (38.3) | 2888 (52.9) | |
Middle/high school | 1044 (61.9) | 1644 (55.6) | 2349 (43.1) | |
College or higher | 115 (6.8) | 179 (6.1) | 218 (4.0) | |
Smoking status, n (%) | <0.001 | |||
Current/past smokers | 234 (13.9) | 363 (12.3) | 507 (9.3) | |
Alcohol intake (times/week) | 0.006 | |||
0 | - | - | - | |
1–6 | 619 (81.1) | 1058 (89.0) | 1483 (87.2) | |
≥7 | 144 (18.9) | 131 (11.0) | 218 (12.8) | |
Physical-activity status, n (%) | <0.001 | |||
Sufficient | 957 (56.8) | 1540 (52.1) | 2745 (50.3) | |
Insufficient | 729 (43.2) | 1416 (47.9) | 2710 (49.7) | |
Lower-body muscle strength, n (%) | <0.001 | |||
Normal | 1469 (91.5) | 2336 (83.0) | 3519 (67.8) | |
Weak | 136 (8.5) | 479 (17.0) | 1672 (32.2) | |
Cognitive function, mean (95% CI) | 25.3 (25.1~25.6) | 24.9 (24.8~25.1) | 23.7 (23.5~23.8) | <0.001 |
# Cognitive impairment, n (%) | 493 (29.4) | 915 (31.4) | 1905 (36.0) | <0.001 |
Variables | Unstandardized Beta | Standardized Beta | 95% CI | p-Value |
---|---|---|---|---|
Age | −0.281 | −0.346 | −0.296~−0.266 | <0.001 |
Gender | 1.306 | 0.121 | 1.094~1.519 | <0.001 |
Marriage | 1.185 | 0.168 | 1.605~2.205 | <0.001 |
Body mass index | 0.100 | 0.049 | 0.060~0.140 | <0.001 |
Education | 0.447 | 0.337 | 0.423~0.472 | <0.001 |
Smoking | −1.496 | −0.088 | −1.831~−1.162 | <0.001 |
Alcohol intake | 0.221 | 0.091 | 0.143~0.299 | <0.001 |
Comorbidities | −0.535 | −0.148 | −0.996~−0.705 | <0.001 |
PA | −1.482 | −0.139 | −1.690~−1.275 | <0.001 |
LBMS | −4.215 | −0.338 | −4.452~−3.977 | <0.001 |
Predictors | Model 1 | Model 2 | ||
---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
PA | ||||
Sufficient | 1 (reference) | 1 (reference) | ||
Insufficient | 1.325 (1.219~1.441) | <0.001 | 1.340 (1.160~1.547) | <0.001 |
LBMS | ||||
Normal | 1 (reference) | 1 (reference) | ||
Weak | 3.240 (2.607~4.027) | <0.001 | 1.719 (1.380~2.143) | <0.001 |
Number of comorbidities | ||||
0 | 1 (reference) | 1 (reference) | ||
1 | 1.099 (0.964~1.253) | 0.159 | 1.063 (0.864~1.307) | 0.564 |
≥2 | 1.321 (1.167~1.496) | <0.001 | 1.415 (1.154~1.736) | <0.001 |
Predictors | Coefficients | SE | t | p | 95% CI | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Model 1 (R2 = 0.1277, F = 275.7519, p < 0.001) | ||||||
Comorbidities (X) | 0.2443 | 0.1079 | 2.2631 | 0.0237 | 0.0327 | 0.4559 |
Physical activity (W) | −0.2432 | 0.1655 | −1.4700 | 0.1416 | −0.5675 | 0.0811 |
Interaction 1 (X × W) | −0.3753 | 0.0720 | −5.2092 | <0.001 | −0.5165 | −0.2341 |
LBMS (Z) | −4.2866 | 0.2163 | −19.8182 | <0.001 | −4.7106 | −3.8626 |
Interaction 2 (X × Z) | 0.2353 | 0.0805 | 2.9210 | 0.035 | 0.0774 | 0.3932 |
R2 change due to X × W = 0.0025 (F = 27.1362, p < 0.001) R2 change due to X × Z = 0.0008 (F = 6.5323, p = 0.0035) R2 change due to both = 0.0028 (F = 15.0746, p < 0.001) | ||||||
Model 2 (R2 = 0.1941, F = 226.4264, p < 0.001) | ||||||
Comorbidities (X) | 0.3852 | 0.1042 | 3.6962 | 0.002 | 0.1809 | 0.5895 |
Physical activity (W) | −0.0019 | 0.1596 | −0.0119 | 0.991 | −0.3148 | 0.3110 |
Interaction 1 (X × W) | −0.3383 | 0.0694 | −4.8758 | <0.001 | −0.4743 | −0.2023 |
LBMS (Z) | −2.5078 | 0.2199 | −11.4042 | <0.001 | −2.9388 | −2.0767 |
Interaction 2 (X × Z) | 0.0647 | 0.0778 | 0.8309 | 0.406 | −0.0879 | 0.2172 |
R2 change due to X × W = 0.0020 (F = 23.7736, p < 0.001) R2 change due to X × Z = 0.0001 (F = 0.6904, p = 0.406) R2 change due to both = 0.0020 (F = 11.9443, p < 0.001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S. Cognitive Function, and Its Relationships with Comorbidities, Physical Activity, and Muscular Strength in Korean Older Adults. Behav. Sci. 2023, 13, 212. https://doi.org/10.3390/bs13030212
Kim S. Cognitive Function, and Its Relationships with Comorbidities, Physical Activity, and Muscular Strength in Korean Older Adults. Behavioral Sciences. 2023; 13(3):212. https://doi.org/10.3390/bs13030212
Chicago/Turabian StyleKim, Shinuk. 2023. "Cognitive Function, and Its Relationships with Comorbidities, Physical Activity, and Muscular Strength in Korean Older Adults" Behavioral Sciences 13, no. 3: 212. https://doi.org/10.3390/bs13030212
APA StyleKim, S. (2023). Cognitive Function, and Its Relationships with Comorbidities, Physical Activity, and Muscular Strength in Korean Older Adults. Behavioral Sciences, 13(3), 212. https://doi.org/10.3390/bs13030212