Subject Specific Mastery Motivation in Moldovan Middle School Students
Abstract
:1. Introduction
2. Theoretical Framework
2.1. Evolving Concept of Mastery Motivation
2.2. Subject-Specific Mastery Motivation
2.3. Context of the Republic of Moldova
2.4. Current Study
- RQ1:
- What are the psychometric properties of the Romanian and Russian versions of the SSMMQ?
- RQ2:
- Is there an age-related (grade levels) differential distinctiveness in the SSMMQ?
- RQ3:
- What is the measurement invariance of the SSMMQ across language, grade levels, and gender?
- RQ4:
- What are the latent mean differences across languages, grade levels, and gender?
3. Method
3.1. Participants
3.2. Instrument
3.3. Translation of the SSMMQ English into Romanian and Russian
3.4. Data Collection
3.5. Analytical Procedure
3.6. Preliminary Data Analysis
4. Results
4.1. Dimensionality of Romanian and Russian Versions of SSMMQ
4.2. Validity
4.3. Measurement Invariance of the SSMMQ
4.3.1. Baseline Model
4.3.2. Invariance across Languages
4.3.3. Invariance across Grades
4.3.4. Invariance across Gender
4.4. Latent Mean Differences
5. Discussion
6. Limitations and Future Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barrett, K.C.; Morgan, G.A. Mastery motivation: Retrospect, present, and future directions. In Advances in Motivation Science; Elliot, A.J., Ed.; Elsevier Academic Press: Cambridge, MA, USA, 2018; pp. 1–39. [Google Scholar] [CrossRef]
- Wang, P.-J.; Liao, H.-F.; Hwang, A.-W.; Chen, P.-C.; Morgan, G.A. The stability of mastery motivation and its relationship with motor competence Influenced by gender in preschoolers. J. Phys. Med. Rehabil. Disabil. 2021, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Amukune, S.; Józsa, G.; Józsa, K. Comparing executive functioning in the school readiness of Hungarian and Kenyan preschoolers. Int. J. Early Child. 2022. [Google Scholar] [CrossRef]
- Gilmore, L.; Cuskelly, M. Associations of child and adolescent mastery motivation and self-regulation with adult outcomes: A longitudinal study of individuals with Down syndrome. Am. J. Intellect. Dev. Disabil. 2017, 122, 235–246. [Google Scholar] [CrossRef]
- Józsa, K.; Barrett, K.C.; Amukune, S.; Calchei, M.; Masoud, G.; Hashmi, S.I.; Podráczky, J.; Nyitrai, Á.; Wang, J. Implications of the DMQ for education and human development: Culture, age and school performance. In Assessing Mastery Motivation in Children Using the Dimensions of Mastery Questionnaire (DMQ); Morgan, G.A., Liao, H.-F., Józsa, K., Eds.; Szent István University: Gödöllő, Hungary, 2020; pp. 132–157. [Google Scholar]
- Liao, H.-F.; Józsa, K.; Wang, P.-J.; Blasco, P.M.; Morgan, G.A. Understanding and supporting mastery motivation in everyday activities: A focus on early childhood intervention. J. Psychol. Educ. Res. 2021, 29, 150–173. [Google Scholar]
- Bong, M. Between- and within-domain relations of academic motivation among middle and high school students: Self-efficacy, task-value, and achievement goals. J. Educ. Psychol. 2001, 93, 23–34. [Google Scholar] [CrossRef]
- Gaspard, H.; Dicke, A.-L.; Flunger, B.; Schreier, B.; Häfner, I.; Trautwein, U.; Nagengast, B. More value through greater differentiation: Gender differences in value beliefs about math. J. Educ. Psychol. 2015, 107, 663–677. [Google Scholar] [CrossRef]
- Green, J.; Martin, A.J.; Marsh, H.W. Motivation and engagement in English, mathematics and science high school subjects: Towards an understanding of multidimensional domain specificity. Learn. Individ. Differ. 2007, 17, 269–279. [Google Scholar] [CrossRef]
- Gunzenhauser, C.; Saalbach, H. Domain-specific self-regulation contributes to concurrent but not later mathematics performance in elementary students. Learn. Individ. Differ. 2020, 78, 101845. [Google Scholar] [CrossRef]
- Hornstra, L.; van der Veen, I.; Peetsma, T. Domain-specificity of motivation: A longitudinal study in upper primary school. Learn. Individ. Differ. 2016, 51, 167–178. [Google Scholar] [CrossRef]
- Józsa, K.; Molnár, É. The relationship between mastery motivation, self-regulated learning, and school success: A Hungarian and wider European perspective. In Handbook of Self-Regulatory Processes in Development: New Directions and International Perspectives; Barrett, K.C., Fox, N., Morgan, G.A., Fidler, D.J., Daunhauer, L.A., Eds.; Psychology Press: London, UK, 2013; pp. 265–304. [Google Scholar] [CrossRef]
- Magson, N.R.; Bodkin-Andrews, G.H.; Craven, R.G.; Nelson, G.F.; Yeung, A.S. Questioning new directions in understanding student motivation: An investigation into the domain specificity of motivational goals. Aust. Educ. Dev. Psychol. 2013, 30, 171–190. [Google Scholar] [CrossRef]
- Nagy, G.; Trautwein, U.; Baumert, J.; Köller, O.; Garrett, J. Gender and course selection in upper secondary education: Effects of academic self-concept and intrinsic value. Educ. Res. Eval. 2006, 12, 323–345. [Google Scholar] [CrossRef]
- Trautwein, U.; Lüdtke, O.; Schnyder, I.; Niggli, A. Predicting homework effort: Support for a domain-specific, multilevel homework model. J. Educ. Psychol. 2006, 98, 438–456. [Google Scholar] [CrossRef]
- Yeung, A.S.; Lau, S.; Nie, Y. Primary and secondary students’ motivation in learning English: Grade and gender differences. Contemp. Educ. Psychol. 2011, 36, 246–256. [Google Scholar] [CrossRef]
- Yıldızlı, H.; Saban, A. The effect of self-regulated learning on sixth-grade Turkish students’ mathematics achievements and motivational beliefs. Cogent Educ. 2016, 3, 1212456. [Google Scholar] [CrossRef]
- Morgan, G.A.; Józsa, K.; Liao, H.-F. Introduction to the special issue on mastery motivation: Measures and results across cultures and ages. Hung. Educ. Res. J. 2017, 7, 5–14. [Google Scholar] [CrossRef]
- Barrett, K.C.; Morgan, G.A. Continuities and discontinuities in mastery motivation during infancy and toddlerhood: A conceptualization and review. In Mastery Motivation: Origins, Conceptualizations, and Applications; MacTurk, R.H., Morgan, G.A., Eds.; Ablex Publishing: New York, NY, USA, 1995; pp. 57–93. [Google Scholar]
- Józsa, K.; Kis, N.; Barrett, K.C. Mastery motivation, parenting, and school achievement among Hungarian adolescents. European J. Psychol. Educ. 2018, 34, 317–339. [Google Scholar] [CrossRef]
- Wang, J.; Barrett, K.C. Mastery motivation and self-regulation during early childhood. In Handbook of Self-Regulatory Processes in Development, New Directions and International Perspectives; Barret, K.C., Fox, N.A., Morgan, G.A., Fidler, D.J., Daunhauer, L.A., Eds.; Routledge: Oxfordshire, UK, 2013; pp. 337–378. [Google Scholar] [CrossRef]
- Morgan, G.A.; Józsa, K.; Liao, H.-F. Overview of mastery motivation, assessment, and this book. In Assessing Mastery Motivation in Children Using the Dimensions of Mastery Questionnaire (DMQ); Morgan, G.A., Liao, H.-F., Józsa, K., Eds.; Szent István University: Gödöllő, Hungary, 2020; pp. 19–44. [Google Scholar]
- Huang, S.-Y.; Liao, H.-F.; Józsa, K.; Calchei, M.; Özbey, S.; Morgan, G.A. Overview of DMQ 18, current research, and preliminary norms. In Assessing Mastery Motivation in Children Using the Dimensions of Mastery Questionnaire (DMQ); Morgan, G.A., Liao, H.-F., Józsa, K., Eds.; Szent István University: Gödöllő, Hungary, 2020; pp. 65–86. [Google Scholar]
- Shaoli, S.S.; Islam, S.; Haque, S.; Islam, A. Validating the Bangla version of the Dimensions of Mastery Questionnaire (DMQ18) for preschoolers. Asian J. Psychiatry 2019, 44, 143–149. [Google Scholar] [CrossRef]
- Rahmawati, A.; Fajrianthi, F.; Morgan, G.A.; Józsa, K. An adaptation of DMQ 18 for measuring mastery motivation in young children. Pedogogika 2020, 140, 18–33. [Google Scholar]
- Amukune, S.; Calchei, M.; Józsa, K. Swahili version of the Dimensions of Mastery Questionnaire: Adaptation and Psychometric Properties. Electron. J. Res. Educ. Psychol. 2021, 19, 625–650. [Google Scholar] [CrossRef]
- Józsa, K.; Kis, N.; Huang, S. Mastery motivation in school subjects in Hungary and Taiwan. Hung. Educ. Res. J. 2017, 7, 158–177. [Google Scholar] [CrossRef]
- Murphy, P.K.; Alexander, P.A. A motivated exploration of motivation terminology. Contemp. Educ. Psychol. 2000, 25, 3–53. [Google Scholar] [CrossRef] [PubMed]
- Harackiewicz, J.M.; Hulleman, C.S. Promoting interest and performance in high school science classes. Science 2009, 326, 1410–1412. [Google Scholar] [CrossRef]
- Wigfield, A.; Guthrie, J.T.; Tonks, S.; Perencevich, K.C. Children’s motivation for reading: Domain specificity and instructional influences. J. Educ. Res. 2014, 97, 299–310. [Google Scholar] [CrossRef]
- Michel, Y.A.; Steinmayr, R.; Frenzel, A.C.; Ziegler, M. Unpacking domain-specific achievement motivation: The role of contextualising items for test-criterion correlations. Educ. Psychol. 2020, 42, 501–525. [Google Scholar] [CrossRef]
- Józsa, K.; Amukune, S.; Józsa, G.; Barrett, K. Design, Development and Application of Focus App for Assessment of School Readiness. In Proceedings of the 16th International Technology, Education and Development Conference, Online Conference, 7–8 March 2022; Volume 1, pp. 4903–4910. [Google Scholar] [CrossRef]
- Józsa, K. Developing new scales for assessing English and German language mastery motivation. In Studies in Honour of Marianne Nikolov; Horváth, J., Medgyes, P., Eds.; Lingua Franca Csoport: Pécs, Hungary, 2014; pp. 37–50. [Google Scholar]
- Ackerman, P.L.; Lohman, D.F. Individual differences in cognitive functions. In Handbook of Educational Psychology; Alexander, P.L., Winne, P.H., Eds.; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2006; pp. 139–161. [Google Scholar]
- Militello, L.G.; Gentner, F.C.; Swindler, S.D.; Beisner, G.I. Conation: Its historical roots and implications for future research. In Proceedings of the International Symposium on Collaborative Technologies and Systems (CTS’06), Las Vegas, NV, USA, 14–17 May 2006; pp. 240–247. [Google Scholar] [CrossRef]
- Rammstedt, B. Relationships between personality and cognitive ability: A facet-level analysis. J. Intell. 2018, 6, 28. [Google Scholar] [CrossRef]
- Teubner-Rhodes, S. Cognitive persistence and executive function in the multilingual brain during aging. Front. Psychol. 2020, 11, 568702. [Google Scholar] [CrossRef]
- Wechsler, D. Cognitive, conative, and non-intellective intelligence. Am. Psychol. 1950, 5, 78–83. [Google Scholar] [CrossRef]
- Marsh, H.W.; Ayotte, V. Do multiple dimensions of self-concept become more differentiated with age? The differential distinctiveness hypothesis. J. Educ. Psychol. 2003, 95, 687–706. [Google Scholar] [CrossRef]
- Perc, M. The Matthew effect in empirical data. J. R. Soc. Interface 2014, 11, 20140378. [Google Scholar] [CrossRef]
- Wang, F.; Amukune, S.; Calchei, M.; Morgan, G.A. Best practices in translating and adapting DMQ 18 to other languages and cultures. In Assessing Mastery Motivation in Children Using the Dimensions of Mastery Questionnaire (DMQ); Morgan, G.A., Liao, H.-F., Józsa, K., Eds.; Szent István University: Gödöllő, Hungary, 2020; pp. 225–250. [Google Scholar]
- International Test Commission. The ITC Guidelines for Translating and Adapting Tests. 2017. Available online: www.InTestCom.org (accessed on 12 January 2021).
- Marsh, H.W.; Hau, K.-T.; Grayson, D. Goodness of fit in structural equation models. In Contemporary Psychometrics: A Festschrift for Roderick P. McDonald; Maydeu-Olivares, A., McArdle, J.J., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2005; pp. 275–340. [Google Scholar]
- Kline, R.B. Principles and Practice of Structured Equation Modeling, 4th ed.; The Guilford Press: New York, NY, USA, 2016. [Google Scholar]
- Marsh, H.W.; Balla, J.R.; McDonald, R.P. Goodness-of-fit indices in confirmatory factor analysis: The effect of sample size. Psychol. Bull. 1988, 103, 391–410. [Google Scholar] [CrossRef]
- Shi, D.; Maydeu-Olivares, A.; Rosseel, Y. Assessing fit in ordinal factor analysis models: SRMR vs. RMSEA. Struct. Equ. Model. 2020, 27, 1–15. [Google Scholar] [CrossRef]
- Hu, L.-T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Marsh, H.W.; Hau, K.T.; Wen, Z. In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Struct. Equ. Model. 2004, 11, 320–341. [Google Scholar] [CrossRef]
- Padilla, M.A.; Divers, J. A comparison of composite reliability estimators: Coefficient omega confidence intervals in the current literature. Educ. Psychol. Meas. 2016, 76, 436–453. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis, 8th ed.; Cengage: Boston, MA, USA, 2018. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating structural equation models with unobservable variables and measurement error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2015, 43, 115–135. [Google Scholar] [CrossRef]
- Putnick, D.L.; Bornstein, M.H. Measurement invariance conventions and reporting: The state of the art and future directions for psychological research. Dev. Rev. 2016, 41, 71–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Byrne, B.M.; Shavelson, R.J.; Bengt, M. Testing for the equivalence of factor covariance and mean structures: The issue of partial measurement invariance. Psychol. Bull. 1989, 105, 456–466. [Google Scholar] [CrossRef]
- Meredith, W. Measurement invariance, factor analysis and factorial invariance. Psychometrika 1993, 58, 525–543. [Google Scholar] [CrossRef]
- Chen, F.F. Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct. Equ. Model. 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Aiken, L.S.; Stein, J.A.; Bentler, P.M. Structural equation analyses of clinical subpopulation differences and comparative treatment outcomes: Characterizing the daily lives of drug addicts. J. Consult. Clin. Psychol. 1994, 62, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming, 3rd ed.; Routledge: Oxfordshire, UK, 2013. [Google Scholar] [CrossRef]
- Chen, H.; Dai, J.; Gao, Y. Measurement invariance and latent mean differences of the Chinese version physical activity self-efficacy scale across gender and education levels. J. Sport Health Sci. 2019, 8, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Tsaousis, I.; Kazi, S. Factorial invariance and latent mean differences of scores on trait emotional intelligence across gender and age. Personal. Individ. Differ. 2013, 54, 169–173. [Google Scholar] [CrossRef]
- Teo, T. Unpacking teachers’ acceptance of technology: Tests of measurement invariance and latent mean differences. Comput. Educ. 2014, 75, 127–135. [Google Scholar] [CrossRef]
- Little, R.J.A. A test of missing completely at random for multivariate data with missing values. J. Am. Stat. Assoc. 1988, 83, 1198–1202. [Google Scholar] [CrossRef]
- Jiang, Y.; Rosenzweig, E.Q.; Gaspard, H. An expectancy-value-cost approach in predicting adolescent students’ academic motivation and achievement. Contemp. Educ. Psychol. 2018, 54, 139–152. [Google Scholar] [CrossRef]
- Graham, J.W. Missing data analysis: Making it work in the real world. Annu. Rev. Psychol. 2009, 60, 549–576. [Google Scholar] [CrossRef]
- Sass, D.A.; Schmitt, T.A. Testing measurement and structural invariance: Implications for practice. In Handbook of Quantitative Methods for Educational Research; Teo, T., Ed.; Sense Publishers: Rotterdam, The Netherlands, 2013; pp. 315–345. [Google Scholar]
- Curran, P.J.; West, S.G.; Finch, J.F. The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychol. Methods 1996, 1, 16–29. [Google Scholar] [CrossRef]
- Rattray, J.; Jones, M.C. Essential elements of questionnaire design and development. J. Clin. Nurs. 2007, 16, 234–243. [Google Scholar] [CrossRef]
- Gliner, J.; Morgan, G.A.; Leech, N.L. Research Methods in Applied Settings: An Integrated Approach to Design and Analysis, 3rd ed.; Routledge: Oxfordshire, UK, 2017. [Google Scholar] [CrossRef]
- Streiner, D.L. Starting at the beginning: An introduction to coefficient alpha and internal consistency. J. Personal. Assess. 2003, 80, 99–103. [Google Scholar] [CrossRef]
- Marsh, H.W.; Xu, M.; Martin, A.J. Self-concept: A synergy of theory, method, and application. In APA Educational Psychology Handbook, Vol 1: Theories, Constructs, and Critical Issues; Harris, K.R., Graham, S., Urdan, T., McCormick, C.B., Sinatra, G.M., Sweller, J., Eds.; American Psychological Association: Worcester, MA, USA, 2012; pp. 427–458. [Google Scholar] [CrossRef]
- Hui, C.H.; Triandis, H.C. Measurement in cross-cultural psychology: A review and comparison of strategies. J. Cross-Cult. Psychol. 1985, 16, 131–152. [Google Scholar] [CrossRef]
- Watt, H.M.G. Gender and motivation. In Handbook of Motivation at School, 2nd ed.; Wentzel, K.R., Miele, D.B., Eds.; Routledge: Oxfordshire, UK, 2016; pp. 320–339. [Google Scholar] [CrossRef]
- Han, F. Self-concept and achievement in math among Australian primary students: Gender and culture issues. Front. Psychol. 2019, 10, 603. [Google Scholar] [CrossRef] [PubMed]
- Karimova, K.; Csapó, B. Cognitive and affective components of verbal self-concepts and internal/external frame of reference within the multidimensional verbal domain. SAGE Open 2021, 11. [Google Scholar] [CrossRef]
- Koposov, R.; Isaksson, J.; Vermeiren, R.; Schwab-Stone, M.; Stickley, A.; Ruchkin, V. Community violence exposure and school functioning in youth: Cross-country and gender perspectives. Front. Public Health 2021, 9, 692402. [Google Scholar] [CrossRef] [PubMed]
- Bruick, T.J. Mastery Motivation: Moving Towards a Better Understanding of College Student Success. Ph.D. Thesis, Colorado State University, Fort Collins, CO, USA, 2019. Available online: https://hdl.handle.net/10217/195348 (accessed on 28 January 2022).
Samples | Reading | Math | Music | Science | English | Art |
---|---|---|---|---|---|---|
Overall sample (N = 939) | 3.651(0.846) | 3.814 (0.878) | 2.716 (1.310) | 3.224 (0.952) | 4.091 (0.912) | 3.311 (1.266) |
Romanian (N = 586) | 3.691 (0.838) | 3.879 (0.846) | 2.802 (1.329) | 3.270 (0.879) | 4.128 (0.938) | 3.304 (1.263) |
Russian (N = 353) | 3.584 (0.856) | 3.708 (0.919) | 2.573 (1.266) | 3.148 (1.058) | 4.029 (0.863) | 3.321 (1.271) |
5th grade (N = 346) | 3.657 (0.833) | 3.956 (0.824) | 2.926 (1.290) | 3.325 (0.961) | 4.133 (0.873) | 3.677 (1.126) |
7th grade (N = 304) | 3.652 (0.855) | 3.675 (0.887) | 2.629 (1.307) | 3.222 (0.943) | 4.183 (0.875) | 3.231 (1.237) |
9th grade (N = 289) | 3.641 (0.856) | 3.792 (0.907) | 2.557 (1.308) | 3.106 (0.940) | 3.943 (0.978) | 2.957 (1.340) |
Female (N = 472) | 3.867 (0.805) | 3.859 (0.884) | 3.023 (1.315) | 3.363 (0.948) | 4.241 (0.868) | 3.718 (1.145) |
Male (N = 466) | 3.433 (0.832) | 3.770 (0.871) | 2.402 (1.230) | 3.085 (0.937) | 3.941 (0.930) | 2.899 (1.251) |
Version | Model | χ2 (df) | χ2/df | TLI | CFI | RMSEA [90% CI] | SRMR |
---|---|---|---|---|---|---|---|
Ro | Model 1 | 2605.054 (798) | 3.264 | 0.889 | 0.897 | 0.062 [0.060, 0.065] | 0.064 |
Model 2 | 2255.256 (804) | 2.805 | 0.912 | 0.917 | 0.056 [0.053, 0.058] | 0.056 | |
Model 3 | 1433.384 (579) | 2.476 | 0.940 | 0.944 | 0.050 [0.047, 0.054] | 0.041 | |
Model 3a | 1090.799 (574) | 1.900 | 0.963 | 0.966 | 0.039 [0.036, 0.043] | 0.041 | |
Ru | Model 1 | 1998.593 (798) | 2.505 | 0.869 | 0.879 | 0.065 [0.062, 0.069] | 0.070 |
Model 2 | 1780.355 (804) | 2.214 | 0.894 | 0.901 | 0.059 [0.055, 0.062] | 0.061 | |
Model 3 | 1228.756 (579) | 2.122 | 0.919 | 0.926 | 0.056 [0.052, 0.061] | 0.050 | |
Model 3a | 985.752 (574) | 1.717 | 0.948 | 0.953 | 0.045 [0.040, 0.050] | 0.050 |
Items | Factor Loadings | Composite Reliability ω | AVE | Cronbach’s α | ||||
---|---|---|---|---|---|---|---|---|
RO | RU | RO | RU | RO | RU | RO | RU | |
Music Mastery Motivation | ||||||||
Music 3 | 0.899 | 0.873 | 0.949 | 0.932 | 0.757 | 0.697 | 0.952 | 0.936 |
Music 4 | 0.947 | 0.835 | ||||||
Music 2 | 0.855 | 0.825 | ||||||
Music 6 | 0.820 | 0.874 | ||||||
Music1 | 0.833 | 0.787 | ||||||
Music 5 | 0.859 | 0.813 | ||||||
Art Mastery Motivation | ||||||||
Art 6 | 0.869 | 0.932 | 0.935 | 0.935 | 0.706 | 0.706 | 0.935 | 0.937 |
Art 3 | 0.917 | 0.868 | ||||||
Art 5 | 0.763 | 0.897 | ||||||
Art 4 | 0.884 | 0.803 | ||||||
Art 2 | 0.873 | 0.792 | ||||||
Art 1 | 0.718 | 0.734 | ||||||
English Mastery Motivation | ||||||||
ENG3 | 0.893 | 0.888 | 0.921 | 0.893 | 0.662 | 0.573 | 0.922 | 0.889 |
ENG4 | 0.898 | 0.811 | ||||||
ENG6 | 0.845 | 0.863 | ||||||
ENG5 | 0.783 | 0.734 | ||||||
ENG2 | 0.761 | 0.678 | ||||||
ENG1 | 0.679 | 0.580 | ||||||
Mathematics Mastery Motivation | ||||||||
Math 4 | 0.799 | 0.825 | 0.902 | 0.903 | 0.605 | 0.605 | 0.901 | 0.901 |
Math 6 | 0.801 | 0.797 | ||||||
Math 2 | 0.812 | 0.835 | ||||||
Math 1 | 0.790 | 0.738 | ||||||
Math 5 | 0.722 | 0.794 | ||||||
Math 3 | 0.740 | 0.678 | ||||||
Science Mastery Motivation | ||||||||
Science 3 | 0.779 | 0.876 | 0.864 | 0.904 | 0.517 | 0.612 | 0.862 | 0.903 |
Science 2 | 0.776 | 0.807 | ||||||
Science 1 | 0.768 | 0.788 | ||||||
Science 5 | 0.715 | 0.737 | ||||||
Science 4 | 0.641 | 0.716 | ||||||
Science 6 | 0.618 | 0.758 | ||||||
Reading Mastery Motivation | ||||||||
Reading 4 | 0.720 | 0.670 | 0.876 | 0.854 | 0.542 | 0.497 | 0.878 | 0.865 |
Reading 2 | 0.813 | 0.760 | ||||||
Reading 5 | 0.779 | 0.817 | ||||||
Reading 3 | 0.776 | 0.722 | ||||||
Reading 6 | 0.665 | 0.673 | ||||||
Reading 1 | 0.650 | 0.560 |
SSMMQ Scales | Music | Art | English | Mathematics | Science | Reading |
---|---|---|---|---|---|---|
Music | 0.295 | 0.228 | 0.151 | 0.400 | 0.346 | |
Art | 0.398 | 0.164 | 0.183 | 0.439 | 0.335 | |
English | 0.172 | 0.154 | 0.458 | 0.312 | 0.424 | |
Math | 0.163 | 0.223 | 0.518 | 0.326 | 0.458 | |
Science | 0.418 | 0.406 | 0.378 | 0.449 | 0.536 | |
Reading | 0.441 | 0.486 | 0.437 | 0.518 | 0.597 |
SSMMQ Scales | Romanian | Russian | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 1 | 2 | 3 | 4 | 5 | 6 | |
1. Music | 0.870 | 0.835 | ||||||||||
2. Art | 0.404 | 0.840 | 0.299 | 0.840 | ||||||||
3. English | 0.175 | 0.156 | 0.814 | 0.233 | 0.167 | 0.757 | ||||||
4. Math | 0.165 | 0.224 | 0.386 | 0.778 | 0.152 | 0.184 | 0.506 | 0.778 | ||||
5. Science | 0.421 | 0.408 | 0.381 | 0.448 | 0.719 | 0.404 | 0.441 | 0.316 | 0.326 | 0.782 | ||
6. Reading | 0.448 | 0.491 | 0.443 | 0.521 | 0.600 | 0.736 | 0.356 | 0.343 | 0.438 | 0.467 | 0.547 | 0.705 |
SSMMQ Scales | Language | Grade Level | |||
---|---|---|---|---|---|
Romanian | Russian | 5th Grade | 7th Grade | 9th Grade | |
Reading-Math | 0.472 ** | 0.410 ** | 0.518 ** | 0.423 ** | 0.417 ** |
Reading-Science | 0.520 ** | 0.468 ** | 0.532 ** | 0.383 ** | 0.488 ** |
Reading-English | 0.438 ** | 0.417 ** | 0.391 ** | 0.474 ** | 0.415 ** |
Reading-Art | 0.445 ** | 0.315 ** | 0.386 ** | 0.503 ** | 0.396 ** |
Reading-Music | 0.410 ** | 0.297 ** | 0.410 ** | 0.432 ** | 0.321 ** |
Math-Science | 0.391 ** | 0.293 ** | 0.454 ** | 0.306 ** | 0.275 ** |
Math-English | 0.381 ** | 0.486 ** | 0.501 ** | 0.400 ** | 0.386 ** |
Math-Art | 0.191 ** | 0.174 ** | 0.131 * | 0.279 ** | 0.092 |
Math-Music | 0.164 ** | 0.147 ** | 0.215 ** | 0.201 ** | 0.036 |
Science-English | 0.368 ** | 0.291 ** | 0.315 ** | 0.205 ** | 0.347 ** |
Science-Art | 0.367 ** | 0.408 ** | 0.365 ** | 0.331 ** | 0.342 ** |
Science-Music | 0.394 ** | 0.379 ** | 0.314 ** | 0.446 ** | 0.397 ** |
English-Art | 0.167 ** | 0.157 ** | 0.103 | 0.201 ** | 0.151 ** |
English-Music | 0.187 ** | 0.243 ** | 0.209 ** | 0.205 ** | 0.205 ** |
Art-Music | 0.394 ** | 0.285 ** | 0.347 ** | 0.413 ** | 0.331 ** |
Groups | Model | χ2 (df) | TLI | CFI | RMSEA [90% CI] | SRMR |
---|---|---|---|---|---|---|
Romanian | Original model | 1433.384 (579) | 0.897 | 0.889 | 0.062 [0.047, 0.054] | 0.040 |
Modified model | 1090.799 (574) | 0.963 | 0.966 | 0.039 [0.036, 0.043] | 0.041 | |
Baseline model | 1136.058 (574) | 0.960 | 0.963 | 0.041 [0.037, 0.044] | 0.042 | |
Russian | Original model | 1228.756 (579) | 0.879 | 0.869 | 0.065 [0.052, 0.061] | 0.050 |
Modified model | 985.752 (574) | 0.948 | 0.953 | 0.045 [0.040, 0.050] | 0.049 | |
Baseline model | 1001.223 (574) | 0.946 | 0.951 | 0.046 [0.041, 0.051] | 0.048 | |
5th grade | Original model | 1028.426 (579) | 0.896 | 0.888 | 0.058 [0.043, 0.052] | 0.045 |
Modified model | 878.451 (575) | 0.957 | 0.961 | 0.039 [0.034, 0.044] | 0.045 | |
Baseline model | 892.844 (574) | 0.955 | 0.959 | 0.040 [0.035, 0.045] | 0.046 | |
7th grade | Original model | 1102.555 (579) | 0.893 | 0.884 | 0.064 [0.050, 0.060] | 0.050 |
Modified model | 938.494 (576) | 0.950 | 0.955 | 0.046 [0.040, 0.051] | 0.051 | |
Baseline model | 920.029 (574) | 0.953 | 0.957 | 0.045 [0.039, 0.050] | 0.050 | |
9th grade | Original model | 1294.335 (579) | 0.855 | 0.844 | 0.075 [0.061, 0.070] | 0.052 |
Modified model | 1006.727 (573) | 0.940 | 0.945 | 0.051 [0.046, 0.056] | 0.051 | |
Baseline model | 1058.615 (574) | 0.933 | 0.939 | 0.054 [0.049, 0.059] | 0.051 | |
Female | Original model | 1283.040 (579) | 0.888 | 0.880 | 0.063 [0.047, 0.054] | 0.041 |
Modified model | 1024.173 (574) | 0.958 | 0.961 | 0.041 [0.037, 0.045] | 0.041 | |
Baseline model | 1043.189 (574) | 0.956 | 0.960 | 0.042 [0.038, 0.046] | 0.041 | |
Male | Original model | 1322.864 (579) | 0.884 | 0.874 | 0.063 [0.049, 0.056] | 0.045 |
Modified model | 1054.240 (575) | 0.953 | 0.957 | 0.042 [0.038, 0.046] | 0.044 | |
Baseline model | 1053.149 (574) | 0.953 | 0.957 | 0.042 [0.038, 0.046] | 0.044 |
Models | χ2 | CFI | RMSEA [90% CI] | SRMR | ΔCFI | ΔRMSEA | ΔSRMR | Decision |
---|---|---|---|---|---|---|---|---|
Language invariance models (NRO = 586, NRU = 353) | ||||||||
Configural | 2564.612 (1146) | 0964 | 0.029 [0.027, 0.030] | 0.042 | ||||
Metric | 2181.757 (1176) | 0.958 | 0.030 [0.028, 0.032] | 0.042 | −0.006 | 0.001 | 0.000 | Accept |
Scalar | 2081.155 (1212) | 0.947 | 0.032 [0.030, 0.034] | 0.046 | −0.011 | 0.002 | 0.004 | Reject |
Scalar (Music 4) | 2050.433 (1211) | 0.949 | 0.032 [0.029, 0.034] | 0.046 | −0.009 | 0.002 | 0.004 | Accept |
Residual | 2715.169 (1247) | 0.939 | 0.035 [0.034, 0.037] | 0.043 | −0.010 | 0.003 | −0.003 | Accept |
Grade level invariance models (N5 = 346, N7 = 304, N9 = 289) | ||||||||
Configural | 2887.185 (1719) | 0.951 | 0.028 [0.026, 0.029] | 0.051 | ||||
Metric | 2906.709 (1779) | 0.952 | 0.026 [0.024, 0.028] | 0.047 | 0.001 | −0.002 | −0.004 | Accept |
Scalar | 3185.840 (1851) | 0.944 | 0.028 [0.026, 0.029] | 0.048 | 0.008 | 0.002 | 0.001 | Accept |
Residual | 3315.650(1923) | 0.941 | 0.028 [0.026, 0.029] | 0.048 | 0.003 | 0.000 | 0.000 | Accept |
Gender invariance models (NFA = 472, NMA = 466) | ||||||||
Configural | 2085.271 (1146) | 0.959 | 0.030 [0.028, 0.032] | 0.041 | ||||
Metric | 2141.529 (1176) | 0.958 | 0.030 [0.028 0.032] | 0.042 | −0.001 | 0.000 | 0.001 | Accept |
Scalar | 2368.548 (1212) | 0.949 | 0.032 [0.030, 0.034] | 0.044 | −0.009 | 0.002 | 0.002 | Accept |
Residual | 2482.448 (1248) | 0.946 | 0.032 [0.031, 0.034] | 0.045 | −0.003 | 0.000 | 0.001 | Accept |
Groups | SSMMQ Scale | MD | CR | d |
---|---|---|---|---|
Gender 1 | Music | −0.609 | −7.064 *** | 0.488 |
Art | −0.902 | −10.531 *** | 0.683 | |
English | −0.284 | −4.544 *** | 0.334 | |
Math | −0.082 | −1.392 | ||
Science | −0.287 | −4.360 *** | 0.295 | |
Reading | −0.415 | −7.756 *** | 0.531 | |
Languages 2 | Music | −0.302 | −2.992 * | 0.175 |
Art | −0.436 | −4.273 *** | 0.013 | |
English | −0.122 | −1.802 | ||
Math | −0.261 | −3.761 *** | 0.196 | |
Science | −0.174 | −2.124 * | 0.129 | |
Reading | −0.086 | −1.353 | ||
5th grade vs. 7th grade 3 | Music | −0.297 | −2.819 * | 0.229 |
Art | −0.474 | −4.668 *** | 0.379 | |
English | 0.049 | 0.681 | ||
Math | −0.295 | −4.216 *** | 0.329 | |
Science | −0.107 | −1.348 | ||
Reading | −0.015 | −0.231 | ||
5th grade vs. 9th grade | Music | −0.398 | −3.729 *** | 0.285 |
Art | −0.809 | −7.542 *** | 0.427 | |
English | −0.220 | −2.794 * | 0.205 | |
Math | −0.178 | −2.484 * | 0.190 | |
Science | −0.220 | −2.714 * | 0.231 | |
Reading | −0.062 | −0.943 | ||
7th grade vs. 9th grade | Music | −0.101 | −0.914 | |
Art | −0.335 | −2.935 *** | 0.213 | |
English | −0.269 | −3.313 *** | 0.258 | |
Math | 0.116 | 1.527 | ||
Science | −0.112 | −1.355 | ||
Reading | −0.047 | −0.687 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calchei, M.; Oo, T.Z.; Józsa, K. Subject Specific Mastery Motivation in Moldovan Middle School Students. Behav. Sci. 2023, 13, 166. https://doi.org/10.3390/bs13020166
Calchei M, Oo TZ, Józsa K. Subject Specific Mastery Motivation in Moldovan Middle School Students. Behavioral Sciences. 2023; 13(2):166. https://doi.org/10.3390/bs13020166
Chicago/Turabian StyleCalchei, Marcela, Tun Zaw Oo, and Krisztián Józsa. 2023. "Subject Specific Mastery Motivation in Moldovan Middle School Students" Behavioral Sciences 13, no. 2: 166. https://doi.org/10.3390/bs13020166
APA StyleCalchei, M., Oo, T. Z., & Józsa, K. (2023). Subject Specific Mastery Motivation in Moldovan Middle School Students. Behavioral Sciences, 13(2), 166. https://doi.org/10.3390/bs13020166