Antidepressant-like Effects of Polygonum minus Aqueous Extract in Chronic Ultra-Mild Stress-Induced Depressive Mice Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Drugs
2.2. Animals and Experimental Protocol
2.3. Chronic Ultra Mild Stress Protocol
2.4. Body Weight Test
2.5. Behavioral Tests
Sucrose Preference Test
2.6. Open Field Test
2.7. Barnes Maze Assay
2.7.1. Adaptation Period
2.7.2. Acquisition Period
2.7.3. Probe Trial
2.7.4. Forced Swimming Test
2.8. Experimental Assays
Blood Sample Collection
2.9. Brain Tissue Sample Collection and Homogenization
2.10. Serum Corticosterone Assay
2.11. Measurement of Brain-Derived Neurotrophic Factor (BDNF) Level
2.12. Measurement of Serotonin (5HT) and Norepinephrine (NE), Monoamine Oxidase A (MAO-A) from the Hippocampus
2.13. Statistical Analysis
3. Results
3.1. Effects of P. minus Aqueous Extract on Body Weight
3.2. Behavioral Tests Results
3.3. Effects of P. minus Aqueous Extract on Open Field Test
3.4. Effects of P. minus Aqueous Extract on Barnes Maze Assay
3.5. Effects of P. minus Aqueous Extract on Forced Swimming Test (FST)
3.6. The Results of Experimental Assays
3.6.1. Effects of P. minus Aqueous Extract on Serum Corticosterone Level
3.6.2. Effects of P. minus Aqueous Extract on Brain-Derived Neurotrophic Factor (BDNF) Level
3.6.3. Effects of P. minus Aqueous Extract on Monoamine Oxidase -A (MAO-A)
3.6.4. Effects of P. minus Aqueous Extract on Serotonin (5-HT) Level
3.6.5. Effects of P. minus Aqueous Extract on Norepinephrine (NE) Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Remes, O.; Lafortune, L.; Wainwright, N.; Surtees, P.; Khaw, K.T.; Brayne, C. Association between Area Deprivation and Major Depressive Disorder in British Men and Women: A Cohort Study. BMJ Open 2019, 9, e027530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mulugeta, A.; Zhou, A.; King, C.; Hyppönen, E. Association between Major Depressive Disorder and Multiple Disease Outcomes: A Phenome-Wide Mendelian Randomisation Study in the UK Biobank. Mol. Psychiatry 2019, 25, 1469–1476. [Google Scholar] [CrossRef] [PubMed]
- Galimberti, C.; Bosi, M.F.; Volontè, M.; Giordano, F.; Dell’Osso, B.; Viganò, C.A. Duration of Untreated Illness and Depression Severity Are Associated with Cognitive Impairment in Mood Disorders. Int. J. Psychiatry Clin. Pract. 2020, 24, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Palagini, L.; Miniati, M.; Marazziti, D.; Sharma, V.; Riemann, D. Association among Early Life Stress, Mood Features, Hopelessness and Suicidal Risk in Bipolar Disorder: The Potential Contribution of Insomnia Symptoms. J. Psychiatr. Res. 2021, 135, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Cuijpers, P.; Stringaris, A.; Wolpert, M. Treatment Outcomes for Depression: Challenges and Opportunities. Lancet Psychiatry 2020, 7, 925–927. [Google Scholar] [CrossRef] [Green Version]
- Govindarajulu, M.; Shankar, T.; Patel, S.; Fabbrini, M.; Manohar, A.; Ramesh, S.; Boralingaiah, P.; Sharma, S.; Clark, R.C.; Deruiter, J.; et al. Reserpine-Induced Depression and Other Neurotoxicity: A Monoaminergic Hypothesis. In Medicinal Herbs and Fungi; Springer: Singapore, 2021; pp. 293–313. [Google Scholar] [CrossRef]
- Chakraborty, S.; Tripathi, S.J.; Raju, T.R.; Rao, S. Mechanisms Underlying Remediation of Depression-Associated Anxiety by Chronic N-Acetyl Cysteine Treatment. Psychopharmacology 2020, 237, 2967–2981. [Google Scholar] [CrossRef]
- Pourhamzeh, M.; Moravej, F.G.; Arabi, M.; Shahriari, E.; Mehrabi, S.; Ward, R.; Ahadi, R.; Joghataei, M.T. The Roles of Serotonin in Neuropsychiatric Disorders. Cell. Mol. Neurobiol. 2021, 1–22. [Google Scholar] [CrossRef]
- Duarte, P.; Cuadrado, A.; León, R. Monoamine Oxidase Inhibitors: From Classic to New Clinical Approaches. In Handbook of Experimental Pharmacology; Springer Press: New York, NY, USA, 2020; Volume 264, pp. 229–259. [Google Scholar] [CrossRef]
- Ege, T.; Şelimen, H.D. Monoamine Oxidase Inhibitory Effects of Medicinal Plants in Management of Alzheimer’s Disease. J. Turk. Chem. Soc. Sect. A Chem. 2021, 8, 239–248. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, C.; Xin, C.; Wang, Z. The Antidepressant-like Effect of Flavonoids from Trigonella Foenum-Graecum Seeds in Chronic Restraint Stress Mice via Modulation of Monoamine Regulatory Pathways. Molecules 2019, 24, 1105. [Google Scholar] [CrossRef] [Green Version]
- Esfahani, A.N.; Mirzaei, M. Flavonoid Derivatives for Monoamine Oxidase–A Inhibition. Adv. J. Chem.-Sect. B Nat. Prod. Med. Chem. 2019, 1, 17–22. [Google Scholar] [CrossRef]
- Cole, E.J.; Stimpson, K.H.; Bentzley, B.S.; Gulser, M.; Cherian, K.; Tischler, C.; Nejad, R.; Pankow, H.; Choi, E.; Aaron, H.; et al. Stanford Accelerated Intelligent Neuromodulation Therapy for Treatment-Resistant Depression. Am. J. Psychiatry 2020, 177, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.S.; Kim, H.B.; Lee, S.; Kim, M.J.; Kim, K.J.; Han, G.; Han, S.Y.; Lee, E.A.; Yoon, J.H.; Kim, D.O.; et al. Antidepressant-like Effects of β-Caryophyllene on Restraint plus Stress-Induced Depression. Behav. Brain Res. 2020, 380, 112439. [Google Scholar] [CrossRef] [PubMed]
- Willner, P.; Gruca, P.; Lason, M.; Tota-Glowczyk, K.; Litwa, E.; Niemczyk, M.; Papp, M. Validation of Chronic Mild Stress in the Wistar-Kyoto Rat as an Animal Model of Treatment-Resistant Depression. Behav. Pharmacol. 2019, 30, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Du, X.; Yang, Y.; Botchway, B.O.A.; Fang, M. Progesterone and Fluoxetine Treatments of Postpartum Depressive-like Behavior in Rat Model. Cell Biol. Int. 2019, 43, 539–552. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.R.; Geiger, L.; Wiborg, O.; Czéh, B. Stress-Induced Morphological, Cellular and Molecular Changes in the Brain—Lessons Learned from the Chronic Mild Stress Model of Depression. Cells 2020, 9, 1026. [Google Scholar] [CrossRef] [Green Version]
- Boulle, F.; Massart, R.; Stragier, E.; Païzanis, E.; Zaidan, L.; Marday, S.; Gabriel, C.; Mocaer, E.; Mongeau, R.; Lanfumey, L. Hippocampal and Behavioral Dysfunctions in a Mouse Model of Environmental Stress: Normalization by Agomelatine. Transl. Psychiatry 2014, 4, e485. [Google Scholar] [CrossRef] [Green Version]
- Christapher, P.; Parasuraman, S.; Christina, J.; Asmawi, M.Z.; Vikneswaran, M. Review on Polygonum Minus. Huds, a Commonly Used Food Additive in Southeast Asia. Pharmacogn. Res. 2015, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- George, A.; Ng, C.P.; O’Callaghan, M.; Jensen, G.S.; Wong, H.J. In Vitro and Ex-Vivo Cellular Antioxidant Protection and Cognitive Enhancing Effects of an Extract of Polygonum Minus Huds (LineminusTM) Demonstrated in a Barnes Maze Animal Model for Memory and Learning. BMC Complement. Altern. Med. 2014, 14, 166. [Google Scholar] [CrossRef] [Green Version]
- Lau, H.; Shahar, S.; Mohamad, M.; Rajab, N.F.; Yahya, H.M.; Din, N.C.; Hamid, H.A. The Effects of Six Months Persicaria Minor Extract Supplement among Older Adults with Mild Cognitive Impairment: A Double-Blinded, Randomized, and Placebo-Controlled Trial. BMC Complement. Med. Ther. 2020, 20, 315. [Google Scholar] [CrossRef]
- Sakai, Y.; Li, H.; Inaba, H.; Funayama, Y.; Iscience, E.; Kawatake-Kuno, A.; Yamagata, H.; Seki, T.; Hobara, T.; Nakagawa, S.; et al. Gene-Environment Interactions Mediate Stress Susceptibility and Resilience through the CaMKIIβ/TARPγ-8/AMPAR Pathway. iScience 2021, 24, 102504. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, R.; Chen, C.; Du, X.; Ruan, L.; Sun, J.; Li, J.; Zhang, L.; O’Donnell, J.M.; Pan, J.; et al. Antidepressant-like Effect of Trans-Resveratrol in Chronic Stress Model: Behavioral and Neurochemical Evidences. J. Psychiatr. Res. 2013, 47, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Sturman, O.; Germain, P.L.; Bohacek, J. Exploratory Rearing: A Context- and Stress-Sensitive Behavior Recorded in the Open-Field Test. Stress 2018, 21, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Kraeuter, A.K.; Guest, P.C.; Sarnyai, Z. The Open Field Test for Measuring Locomotor Activity and Anxiety-Like Behavior. Methods Mol. Biol. 2019, 1916, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Choukairi, Z.; Hazzaz, T.; Lkhider, M.; Ferrandez, J.M.; Fechtali, T. Effect of Salvia Officinalis L. and Rosmarinus Officinalis L. Leaves Extracts on Anxiety and Neural Activity. Bioinformation 2019, 15, 172–178. [Google Scholar] [CrossRef]
- Pitts, M.W. Barnes Maze Procedure for Spatial Learning and Memory in Mice. Bio-Protocol 2018, 8, e2744. [Google Scholar] [CrossRef] [Green Version]
- Lesuis, S.L.; Weggen, S.; Baches, S.; Lucassen, P.J.; Krugers, H.J. Targeting Glucocorticoid Receptors Prevents the Effects of Early Life Stress on Amyloid Pathology and Cognitive Performance in APP/PS1 Mice. Transl. Psychiatry 2018, 8, 53. [Google Scholar] [CrossRef]
- Chiba, S.; Numakawa, T.; Ninomiya, M.; Richards, M.C.; Wakabayashi, C.; Kunugi, H. Chronic Restraint Stress Causes Anxiety-and Depression-like Behaviors, Downregulates Glucocorticoid Receptor Expression, and Attenuates Glutamate Release Induced by Brain-Derived Neurotrophic Factor in the Prefrontal Cortex. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2012, 39, 112–119. [Google Scholar] [CrossRef]
- Juergenliemk, G.; Boje, K.; Huewel, S.; Lohmann, C.; Galla, H.J.; Nahrstedt, A. In Vitro Studies Indicate That Miquelianin (Quercetin 3-O-β-D- Glucuronopyranoside) Is Able to Reach the CNS from the Small Intestine. Planta Med. 2003, 69, 1013–1017. [Google Scholar] [CrossRef]
- Ferri, P.; Angelino, D.; Gennari, L.; Benedetti, S.; Ambrogini, P.; del Grande, P.; Ninfali, P. Enhancement of Flavonoid Ability to Cross the Blood–Brain Barrier of Rats by Co-Administration with α-Tocopherol. Food Funct. 2015, 6, 394–400. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, H.; Wu, Z.; Yu, X.; Yin, Y.; Qian, S.; Wang, Z.; Huang, J.; Wang, W.; Liu, T.; et al. Quercitrin Rapidly Alleviated Depression-like Behaviors in Lipopolysaccharide-Treated Mice: The Involvement of PI3K/AKT/NF-ΚB Signaling Suppression and CREB/BDNF Signaling Restoration in the Hippocampus. ACS Chem. Neurosci. 2021, 12, 3387–3396. [Google Scholar] [CrossRef]
- Butterweck, V.; Jürgenliemk, G.; Nahrstedt, A.; Winterhoff, H. Flavonoids from Hypericum Perforatum Show Antidepressant Activity in the Forced Swimming Test. Planta Med. 2000, 66, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, O.; Kelber, O.; Butterweck, V. Effects of St. John’s Wort Extract and Single Constituents on Stress-Induced Hyperthermia in Mice. Planta Med. 2006, 72, 1366–1371. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Fan, Y.; Shi, D.; Liu, C. Antidepressant-like Effect of Flavonoids Extracted from Apocynum Venetum Leaves on Brain Monoamine Levels and Dopaminergic System. J. Ethnopharmacol. 2013, 147, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Q.T.; Chen, Y.; Liu, J.; Shi, J.L.; Liu, Y.; Guo, J.Y. Involvement of 5-HT1A Receptors in the Anxiolytic-like Effects of Quercitrin and Evidence of the Involvement of the Monoaminergic System. Evid.-Based Complement. Altern. Med. 2016, 2016, 6530364. [Google Scholar]
Days | First Stress | Duration | Second Stress | Duration |
---|---|---|---|---|
1 | Crowded housing | 6 h | Cage tilt | 8 h |
2 | Restricted access to Food and water | 8 h | Continuous light | Over the night |
3 | Forced swimming | 20 min | Tail pinch | 2 min for each |
4 | Restraint stress | 2 h | Foreign object in | Over the night |
5 | Cage tilt | 8 h | Continuous light | Over the night |
6 | Restricted access to food | 8 h | Crowded Housing | 6 h |
7 | Forced swimming | 20 min | Wet bedding | Over the night |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bashir, M.I.; Abdul Aziz, N.H.K.; Noor, D.A.M. Antidepressant-like Effects of Polygonum minus Aqueous Extract in Chronic Ultra-Mild Stress-Induced Depressive Mice Model. Behav. Sci. 2022, 12, 196. https://doi.org/10.3390/bs12060196
Bashir MI, Abdul Aziz NHK, Noor DAM. Antidepressant-like Effects of Polygonum minus Aqueous Extract in Chronic Ultra-Mild Stress-Induced Depressive Mice Model. Behavioral Sciences. 2022; 12(6):196. https://doi.org/10.3390/bs12060196
Chicago/Turabian StyleBashir, Muhammad Irfan, Nur Hidayah Kaz Abdul Aziz, and Dzul Azri Mohamed Noor. 2022. "Antidepressant-like Effects of Polygonum minus Aqueous Extract in Chronic Ultra-Mild Stress-Induced Depressive Mice Model" Behavioral Sciences 12, no. 6: 196. https://doi.org/10.3390/bs12060196
APA StyleBashir, M. I., Abdul Aziz, N. H. K., & Noor, D. A. M. (2022). Antidepressant-like Effects of Polygonum minus Aqueous Extract in Chronic Ultra-Mild Stress-Induced Depressive Mice Model. Behavioral Sciences, 12(6), 196. https://doi.org/10.3390/bs12060196