Development and Validation of the Digital Life Balance (DLB) Scale: A Brand-New Measure for Both Harmonic and Disharmonic Use of ICTs
Abstract
:1. Introduction
2. Aim and Hypotheses Development
2.1. Aim of the Study
2.2. Hypotheses Development
3. Methods and Procedure
3.1. Measures
3.1.1. Digital Life Balance Scale—DLB Scale
3.1.2. Satisfaction with Life Scale (SWL—[39])
3.1.3. Flourishing Scale [42]
3.1.4. PANAS [45]
3.1.5. Bergen Social Media Addiction Scale (BSMAS—[48])
3.1.6. Smartphone Application Based Addiction Scale (SABAS [51])
3.1.7. Internet Addiction Scale [53]
3.1.8. Gaming Addiction Scale [53]
3.2. Sample and Sampling
3.3. Data Analysis
4. Results
4.1. Study 1
4.1.1. Items Descriptive Statistics
4.1.2. Confirmatory Factor Analysis (CFA)
4.1.3. Sex Invariance
4.1.4. Reliability Assessment
4.2. Study 2
External Validity
5. Discussion
5.1. Discussion
5.2. Limitation and Future Studies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chu, A.M.Y.; Chan, T.W.C.; So, M.K.P. Learning from Work-from-Home Issues during the COVID-19 Pandemic: Balance Speaks Louder than Words. PLoS ONE 2022, 17, e0261969. [Google Scholar] [CrossRef] [PubMed]
- Ruffini, K.; Wozniak, A. Supporting Workers and Families in the Pandemic Recession: Results in 2020 and Suggestions for 2021. Brook. Pap. Econ. Act. 2021, 111–139. [Google Scholar] [CrossRef]
- Thomason, B.; Williams, H. What will work-life balance look like after the pandemic. Harv. Bus. Rev. 2020, 1–4. [Google Scholar]
- Agaton, C.B.; Cueto, L.J. Learning at Home: Parents’ Lived Experiences on Distance Learning during COVID-19 Pandemic in the Philippines. Int. J. Eval. Res. Educ. 2021, 10, 901–911. [Google Scholar]
- Putranti, H.R.D.; Suparmi, S.; Susilo, A. Work Life Balance (WLB) Complexity and Performance of Employees during COVID-19 Pandemic. Arthatama 2020, 4, 56–68. [Google Scholar]
- Di Fabio, A.; Tsuda, A. The Psychology of Harmony and Harmonization: Advancing the Perspectives for the Psychology of Sustainability and Sustainable Development. Sustainability 2018, 10, 4726. [Google Scholar] [CrossRef] [Green Version]
- Li, C. The Confucian Ideal of Harmony. Philos. East West 2006, 56, 583–603. [Google Scholar] [CrossRef]
- Lomas, T. Life Balance and Harmony. Int. J. Wellbeing 2021, 11, 50–68. [Google Scholar] [CrossRef]
- Turel, O.; Qahri-Saremi, H. Problematic Use of Social Networking Sites: Antecedents and Consequence from a Dual-System Theory Perspective. J. Manag. Inf. Syst. 2016, 33, 1087–1116. [Google Scholar] [CrossRef]
- Turel, O.; Serenko, A.; Giles, P. Integrating Technology Addiction and Use: An Empirical Investigation of Online Auction Users. MIS Q. 2011, 35, 1043–1061. [Google Scholar] [CrossRef] [Green Version]
- Shaw, M.; Black, D.W. Internet Addiction. CNS Drugs 2008, 22, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A. Addiction: Definition and Implications. Br. J. Addict. 1990, 85, 1403–1408. [Google Scholar] [CrossRef] [PubMed]
- Young, K. The Evolution of Internet Addiction Disorder. In Internet Addiction: Neuroscientific Approaches and Therapeutical Implications Including Smartphone Addiction; Montag, C., Reuter, M., Eds.; Studies in Neuroscience, Psychology and Behavioral Economics; Springer International Publishing: Cham, Switzerland, 2017; pp. 3–18. ISBN 978-3-319-46276-9. [Google Scholar]
- Young, K.S. Cognitive Behavior Therapy with Internet Addicts: Treatment Outcomes and Implications. CyberPsychology Behav. 2007, 10, 671–679. [Google Scholar] [CrossRef]
- Albrecht, U.; Kirschner, N.E.; Grüsser, S.M. Diagnostic Instruments for Behavioural Addiction: An Overview. Psychosoc. Med. 2007, 4, Doc11. [Google Scholar]
- Kurniasanti, K.S.; Assandi, P.; Ismail, R.I.; Nasrun, M.W.S.; Wiguna, T. Internet Addiction: A New Addiction? Med. J. Indones. 2019, 28, 82–91. [Google Scholar] [CrossRef] [Green Version]
- Panova, T.; Carbonell, X. Is Smartphone Addiction Really an Addiction? J. Behav. Addict. 2018, 7, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Zivnuska, S.; Carlson, J.R.; Carlson, D.S.; Harris, R.B.; Harris, K.J. Social Media Addiction and Social Media Reactions: The Implications for Job Performance. J. Soc. Psychol. 2019, 159, 746–760. [Google Scholar] [CrossRef]
- Marino, L.; Capone, V. Smart Working and Well-Being before and during the COVID-19 Pandemic: A Scoping Review. Eur. J. Investig. Health Psychol. Educ. 2021, 11, 1516–1536. [Google Scholar] [CrossRef]
- Guazzini, A.; Pesce, A.; Marotta, L.; Duradoni, M. Through the Second Wave: Analysis of the Psychological and Perceptive Changes in the Italian Population during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2022, 19, 1635. [Google Scholar] [CrossRef]
- Guazzini, A.; Pesce, A.; Gino, F.; Duradoni, M. How the COVID-19 Pandemic Changed Adolescents’ Use of Technologies, Sense of Community, and Loneliness: A Retrospective Perception Analysis. Behav. Sci. 2022, 12, 228. [Google Scholar] [CrossRef]
- Skeels, M.M.; Grudin, J. When Social Networks Cross Boundaries: A Case Study of Workplace Use of Facebook and Linkedin. In Proceedings of the ACM 2009 International Conference on Supporting Group Work, Sanibel Island, FL, USA, 10–13 May 2009; Association for Computing Machinery: New York, NY, USA, 2009; pp. 95–104. [Google Scholar]
- Webber, M.; Sarris, A.; Bessell, M. Organisational Culture and the Use of Work–Life Balance Initiatives: Influence on Work Attitudes and Work–Life Conflict. Australas. J. Organ. Psychol. 2010, 3, 54–65. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Broström, A.; Nilsen, P.; Griffiths, M.D.; Pakpour, A.H. Psychometric Validation of the Persian Bergen Social Media Addiction Scale Using Classic Test Theory and Rasch Models. J. Behav. Addict. 2017, 6, 620–629. [Google Scholar] [CrossRef] [PubMed]
- Baer, S.; Saran, K.; Green, D.A. Computer/Gaming Station Use in Youth: Correlations among Use, Addiction and Functional Impairment. Paediatr. Child Health 2012, 17, 427–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gastaldi, L.; Corso, M.; Raguseo, E.; Neirotti, P.; Paolucci, E.; Martini, A. Smart Working: Rethinking Work Practices To Leverage Employees’ Innovation Potential. In Proceedings of the 15th International CINet Conference, Budapest, Hungary, 7–9 September 2014. [Google Scholar]
- Çikrıkci, Ö. The Effect of Internet Use on Well-Being: Meta-Analysis. Comput. Hum. Behav. 2016, 65, 560–566. [Google Scholar] [CrossRef]
- Caplan, S.E. Problematic Internet Use and Psychosocial Well-Being: Development of a Theory-Based Cognitive–Behavioral Measurement Instrument. Comput. Hum. Behav. 2002, 18, 553–575. [Google Scholar] [CrossRef]
- Althammer, S.E.; Reis, D.; van der Beek, S.; Beck, L.; Michel, A. A Mindfulness Intervention Promoting Work–Life Balance: How Segmentation Preference Affects Changes in Detachment, Well-Being, and Work–Life Balance. J. Occup. Organ. Psychol. 2021, 94, 282–308. [Google Scholar] [CrossRef]
- Bari, D.; Róbert, P. Who Benefits More from a Balanced Life? Gender Differences in Work-Life Balance and Satisfaction with Life in Eight Post-Communist Countries. Intersections. East Eur. J. Soc. Politics 2016, 2, 21–41. [Google Scholar] [CrossRef] [Green Version]
- Hone, L.C.; Jarden, A.; Duncan, S.; Schofield, G.M. Flourishing in New Zealand Workers: Associations With Lifestyle Behaviors, Physical Health, Psychosocial, and Work-Related Indicators. J. Occup. Environ. Med. 2015, 57, 973–983. [Google Scholar] [CrossRef] [Green Version]
- Dogan, H.; Bozgeyikli, H.; Bozdas, C. Perceived Parenting Styles as Predictor of Internet Addiction in Adolescence. Int. J. Res. Educ. Sci. 2015, 1, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, R.; Song, G. Study on Influential Factors for Internet Addiction among Adolescent Students of Tianjin. Chin. J. Prev. Control. Chronic Dis. 2006. [Google Scholar]
- Abdoli, N.; Farnia, V.; Alikhani, M.; Sadeghi-Bahmani, D.; Dürsteler, K.M.; Esmaeili, M.; Brühl, A.; Brand, S. Validation and Psychometric Properties of the Persian Version of the 21-Item Game Addiction Scale With a Sample of Adolescents and Young Adults. Front. Psychiatry 2021, 12, 649276. [Google Scholar] [CrossRef] [PubMed]
- Alheneidi, H. The Influence of Information Overload and Problematic Internet Use on Adults’ Wellbeing. Ph.D. Thesis, Cardiff University, Cardiff, UK, 2019. [Google Scholar]
- Brough, P.; Timms, C.; O’Driscoll, M.P.; Kalliath, T.; Siu, O.-L.; Sit, C.; Lo, D. Work–Life Balance: A Longitudinal Evaluation of a New Measure across Australia and New Zealand Workers. Int. J. Hum. Resour. Manag. 2014, 25, 2724–2744. [Google Scholar] [CrossRef]
- Banu, A.R.; Duraipandian, K. Development Of An Instrument To Measure Work Life Balance Of It Professionals In Chennai. Int. J. Manag. 2014, 5, 21–33. [Google Scholar]
- Liu, T.; Gao, J.; Zhu, M.; Jin, S. Women’s Work-Life Balance in Hospitality: Examining Its Impact on Organizational Commitment. Front. Psychol. 2021, 12, 625550. [Google Scholar] [CrossRef] [PubMed]
- Diener, E.; Emmons, R.A.; Larsen, R.J.; Griffin, S. The Satisfaction With Life Scale. J. Personal. Assess. 1985, 49, 71–75. [Google Scholar] [CrossRef]
- Di Fabio, A.; Busoni, L. Proprietà Psicometriche Della Versione Italiana Della Satisfaction With Life Scale (SWLS) Con Studenti Universitari. [Psychometric Properties of the Italian Version of the Satisfaction With Life Scale (SWLS) with University Students.]. Couns. G. Ital. Ric. Appl. 2009, 2, 201–211. [Google Scholar]
- López-Ortega, M.; Torres-Castro, S.; Rosas-Carrasco, O. Psychometric Properties of the Satisfaction with Life Scale (SWLS): Secondary Analysis of the Mexican Health and Aging Study. Health Qual Life Outcomes 2016, 14, 170. [Google Scholar] [CrossRef]
- Diener, E.; Wirtz, D.; Tov, W.; Kim-Prieto, C.; Choi, D.; Oishi, S.; Biswas-Diener, R. New Well-Being Measures: Short Scales to Assess Flourishing and Positive and Negative Feelings. Soc. Indic. Res. 2010, 97, 143–156. [Google Scholar] [CrossRef]
- Di Fabio, A. Flourishing Scale: Primo Contributo Alla Validazione Della Versione Italiana [Flourishing Scale: First Contribution to the Validation of the Italian Version]. Couns. G. Ital. Ric. Appl. 2016, 9. [Google Scholar] [CrossRef]
- Fassih-Ramandi, Z.; Soleimani, M.A.; Allen, K.-A.; Gorgulu, O.; Motalebi, S.A. Validity and Reliability of the Flourishing Scale in a Sample of Older Adults in Iran. Clin. Interv. Aging 2020, 15, 673–681. [Google Scholar] [CrossRef]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS Scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef] [PubMed]
- Terraciano, A.; McCrae, R.R.; Costa, P.T., Jr. Factorial and Construct Validity of the Italian Positive and Negative Affect Schedule (PANAS). Eur. J. Psychol. Assess. 2003, 19, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Thompson, E.R. Development and Validation of an Internationally Reliable Short-Form of the Positive and Negative Affect Schedule (PANAS). J. Cross Cult. Psychol. 2007, 38, 227–242. [Google Scholar] [CrossRef]
- Andreassen, C.S.; Billieux, J.; Griffiths, M.; Kuss, D.J.; Demetrovics, Z.; Mazzoni, E.; Pallesen, S. The Relationship between Addictive Use of Social Media and Video Games and Symptoms of Psychiatric Disorders: A Large-Scale Cross-Sectional Study. Psychol. Addict. Behav. 2016, 30, 252–262. [Google Scholar] [CrossRef] [Green Version]
- Monacis, L.; de Palo, V.; Griffiths, M.D.; Sinatra, M. Social Networking Addiction, Attachment Style, and Validation of the Italian Version of the Bergen Social Media Addiction Scale. J. Behav. Addict. 2017, 6, 178–186. [Google Scholar] [CrossRef] [Green Version]
- Shin, N.Y. Psychometric Properties of the Bergen Social Media Addiction Scale in Korean Young Adults. Psychiatry Investig. 2022, 19, 356–361. [Google Scholar] [CrossRef]
- Csibi, S.; Griffiths, M.D.; Cook, B.; Demetrovics, Z.; Szabo, A. The Psychometric Properties of the Smartphone Application-Based Addiction Scale (SABAS). Int. J. Ment. Health Addict. 2018, 16, 393–403. [Google Scholar] [CrossRef]
- Soraci, P.; Ferrari, A.; Antonino, U.; Griffiths, M.D. Psychometric Properties of the Italian Version of the Smartphone Application-Based Addiction Scale (SABAS). Int. J. Ment. Health Addict. 2021, 19, 1261–1273. [Google Scholar] [CrossRef] [Green Version]
- Karadağ, E.; Tosuntaş, Ş.B.; Erzen, E.; Duru, P.; Bostan, N.; Şahin, B.M.; Çulha, İ.; Babadağ, B. Determinants of Phubbing, Which Is the Sum of Many Virtual Addictions: A Structural Equation Model. J. Behav. Addict. 2015, 4, 60–74. [Google Scholar] [CrossRef] [Green Version]
- Guazzini, A.; Duradoni, M.; Capelli, A.; Meringolo, P. An Explorative Model to Assess Individuals’ Phubbing Risk. Future Internet 2019, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Comrey, A.L. Factor-Analytic Methods of Scale Development in Personality and Clinical Psychology. J. Consult. Clin. Psychol. 1988, 56, 754–761. [Google Scholar] [CrossRef] [PubMed]
- Comrey, A.L.; Lee, H.B. A First Course in Factor Analysis, 2nd ed.; Lawrence Erlbaum Associates, Inc.: Hillsdale, NJ, USA, 1992; p. xii, 430. ISBN 978-0-8058-1062-2. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 4th ed.; Guilford Publications: New York, NY, USA, 2015; ISBN 978-1-4625-2335-1. [Google Scholar]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Kretzschmar, A.; Gignac, G.E. At What Sample Size Do Latent Variable Correlations Stabilize? J. Res. Personal. 2019, 80, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Jöreskog, K.G. A General Approach to Confirmatory Maximum Likelihood Factor Analysis. Psychometrika 1969, 34, 183–202. [Google Scholar] [CrossRef]
- Tucker, L.R.; Lewis, C. A Reliability Coefficient for Maximum Likelihood Factor Analysis. Psychometrika 1973, 38, 1–10. [Google Scholar] [CrossRef]
- Bentler, P.M. EQS Structural Equations Program Manual; Multivariate Software: Encino, Calif, 1995; ISBN 978-1-885898-02-9. [Google Scholar]
- Browne, M.W.; Cudeck, R. Alternative Ways of Assessing Model Fit. Sociol. Methods Res. 1992, 21, 230–258. [Google Scholar] [CrossRef]
- Bentler, P.M. Comparative Fit Indexes in Structural Models. Psychol. Bull. 1990, 107, 238–246. [Google Scholar] [CrossRef]
- Hu, L.; Bentler, P.M. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Struct. Equ. Model. A Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Chen, F.F. Sensitivity of Goodness of Fit Indexes to Lack of Measurement Invariance. Struct. Equ. Model. A Multidiscip. J. 2007, 14, 464–504. [Google Scholar] [CrossRef]
- Cheung, G.W.; Rensvold, R.B. Testing Factorial Invariance across Groups: A Reconceptualization and Proposed New Method. J. Manag. 1999, 25, 1–27. [Google Scholar] [CrossRef]
- Meade, A.W.; Johnson, E.C.; Braddy, P.W. Power and Sensitivity of Alternative Fit Indices in Tests of Measurement Invariance. J. Appl. Psychol. 2008, 93, 568–592. [Google Scholar] [CrossRef] [PubMed]
- Dunn, T.J.; Baguley, T.; Brunsden, V. From Alpha to Omega: A Practical Solution to the Pervasive Problem of Internal Consistency Estimation. Br. J. Psychol. 2014, 105, 399–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayes, A.F.; Coutts, J.J. Use Omega Rather than Cronbach’s Alpha for Estimating Reliability. But…. Commun. Methods Meas. 2020, 14, 1–24. [Google Scholar] [CrossRef]
- Watkins, M.W. The Reliability of Multidimensional Neuropsychological Measures: From Alpha to Omega. Clin. Neuropsychol. 2017, 31, 1113–1126. [Google Scholar] [CrossRef]
- Gignac, G.E.; Szodorai, E.T. Effect Size Guidelines for Individual Differences Researchers. Personal. Individ. Differ. 2016, 102, 74–78. [Google Scholar] [CrossRef]
- Kemp, S. Digital 2022: Global Overview Report. Available online: https://datareportal.com/reports/digital-2022-global-overview-report (accessed on 4 November 2022).
- Duradoni, M.; Meacci, S.; Panerai, G.; Salvatori, G.; Guazzini, A. Development and Validation of the Social Media Capital Scale (SMC): A Brand New Measure for Online Social Capital. Hum. Behav. Emerg. Technol. 2022, 2022, 9903615. [Google Scholar] [CrossRef]
- Buffer. 2022 State of Remote Work. Available online: https://buffer.com/state-of-remote-work/2022 (accessed on 4 November 2022).
- Beard, K.W.; Wolf, E.M. Modification in the Proposed Diagnostic Criteria for Internet Addiction. CyberPsychol. Behav. 2001, 4, 377–383. [Google Scholar] [CrossRef]
- Kraut, R.; Patterson, M.; Lundmark, V.; Kiesler, S.; Mukophadhyay, T.; Scherlis, W. Internet Paradox: A Social Technology That Reduces Social Involvement and Psychological Well-Being? Am. Psychol. 1998, 53, 1017–1031. [Google Scholar] [CrossRef]
- Morahan-Martin, J.; Schumacher, P. Incidence and Correlates of Pathological Internet Use among College Students☆☆Portions of This Paper Were Presented at the 105th Convention of the American Psychological Association, August 1997, Chicago, IL. J. Morahan-Martin and P. Schumacher Contributed Equally to This Manuscript. Comput. Hum. Behav. 2000, 16, 13–29. [Google Scholar] [CrossRef]
- Pratarelli, M.E.; Browne, B.L.; Johnson, K. The Bits and Bytes of Computer/Internet Addiction: A Factor Analytic Approach. Behav. Res. Methods Instrum. Comput. 1999, 31, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Sanders, C.E.; Field, T.M.; Diego, M.; Kaplan, M. The Relationship of Internet Use to Depression and Social Isolation among Adolescents. Adolescence 2000, 35, 237–242. [Google Scholar]
- Wallace, P. The Psychology of the Internet; Cambridge University Press: Cambridge, UK, 2015; ISBN 978-1-316-43225-9. [Google Scholar]
- Young, K.S. Internet Addiction: The Emergence of a New Clinical Disorder. CyberPsychol. Behav. 1998, 1, 237–244. [Google Scholar] [CrossRef] [Green Version]
- Young, K.S.; Rogers, R.C. The Relationship Between Depression and Internet Addiction. CyberPsychol. Behav. 1998, 1, 25–28. [Google Scholar] [CrossRef] [Green Version]
- Szabo, A.; Allen, J.; Stephens, C.; Alpass, F. Longitudinal Analysis of the Relationship Between Purposes of Internet Use and Well-Being Among Older Adults. Gerontol. 2019, 59, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Jun, H.J.; Kim, M.-Y. What Accounts for the Relationship Between Internet Use and Suicidal Ideation of Korean Older Adults? A Mediation Analysis. J. Gerontol. Ser. B 2017, 72, 846–855. [Google Scholar] [CrossRef]
- Lelkes, O. Happier and Less Isolated: Internet Use in Old Age; University Library of Munich: Munich, Germany, 2012. [Google Scholar]
- Erickson, J.; Johnson, G.M. Internet Use and Psychological Wellness during Late Adulthood*. Can. J. Aging/La Rev. Can. Vieil. 2011, 30, 197–209. [Google Scholar] [CrossRef]
- Chen, Y.; Persson, A. Internet Use among Young and Older Adults: Relation to Psychological Well-Being. Educ. Gerontol. 2002, 28, 731–744. [Google Scholar] [CrossRef]
- Heo, J.; Chun, S.; Lee, S.; Lee, K.H.; Kim, J. Internet Use and Well-Being in Older Adults. Cyberpsychol. Behav. Soc. Netw. 2015, 18, 268–272. [Google Scholar] [CrossRef]
- Bipeta, R.; Yerramilli, S.S.; Karredla, A.R.; Gopinath, S. Diagnostic Stability of Internet Addiction in Obsessive-Compulsive Disorder: Data from a Naturalistic One-Year Treatment Study. Innov. Clin. Neurosci. 2015, 12, 14–23. [Google Scholar]
- Guazzini, A.; Gursesli, M.C.; Serritella, E.; Tani, M.; Duradoni, M. Obsessive-Compulsive Disorder (OCD) Types and Social Media: Are Social Media Important and Impactful for OCD People? Eur. J. Investig. Health Psychol. Educ. 2022, 12, 1108–1120. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Ryu, E.; Chon, M.-Y.; Yeun, E.-J.; Choi, S.-Y.; Seo, J.-S.; Nam, B.-W. Internet Addiction in Korean Adolescents and Its Relation to Depression and Suicidal Ideation: A Questionnaire Survey. Int. J. Nurs. Stud. 2006, 43, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Shapira, N.A.; Goldsmith, T.D.; Keck, P.E.; Khosla, U.M.; McElroy, S.L. Psychiatric Features of Individuals with Problematic Internet Use. J. Affect. Disord. 2000, 57, 267–272. [Google Scholar] [CrossRef] [PubMed]
- Jang, K.S.; Hwang, S.Y.; Choi, J.Y. Internet Addiction and Psychiatric Symptoms Among Korean Adolescents. J. Sch. Health 2008, 78, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Ko, C.-H.; Yen, J.-Y.; Chen, C.-S.; Chen, C.-C.; Yen, C.-F. Psychiatric Comorbidity of Internet Addiction in College Students: An Interview Study. CNS Spectr. 2008, 13, 147–153. [Google Scholar] [CrossRef]
- Bernardi, S.; Pallanti, S. Internet Addiction: A Descriptive Clinical Study Focusing on Comorbidities and Dissociative Symptoms. Compr. Psychiatry 2009, 50, 510–516. [Google Scholar] [CrossRef]
- Ha, J.H.; Yoo, H.J.; Cho, I.H.; Chin, B.; Shin, D.; Kim, J.H. Psychiatric Comorbidity Assessed in Korean Children and Adolescents Who Screen Positive for Internet Addiction. J. Clin. Psychiatry 2006, 67, 821–826. [Google Scholar] [CrossRef]
N° | Item | Min | Max | Mean | s.d. |
---|---|---|---|---|---|
1 | ENG: I currently have a good balance between the time I spend online and the time I have available for offline activities. IT: Attualmente ho un buon equilibrio fra il tempo che spendo online e quello disponibile per le attività offline | 1 | 7 | 4.94 | 1.62 |
2 | ENG: I have difficulty balancing my online and offline activities. [R] IT: Ho problemi a bilanciare le mie attività online e quelle offline. [R] | 1 | 7 | 5.07 | 1.74 |
3 | ENG: I feel that the balance between my online and offline activities is currently about right. IT: Ritengo che l’equilibrio fra le mie attività online e offline sia adeguato | 1 | 7 | 5.03 | 1.71 |
4 | ENG: Overall, I believe that my online and offline life are balanced. IT: Tutto sommato ritengo che la mia vita online e offline sia bilanciata | 1 | 7 | 5.16 | 1.68 |
Variables | Min | Max | Mean | s.d. | Asym. | Kurt. |
---|---|---|---|---|---|---|
Digital Life Balance Scale | 4 | 28 | 19.33 | 5.76 | −0.40 | −0.69 |
Satisfaction with Life Scale | 5 | 35 | 22.85 | 6.56 | −0.48 | −0.22 |
Flourishing Scale | 11 | 56 | 42.70 | 7.95 | −0.92 | 0.98 |
PANAS-Positive | 14 | 50 | 37.96 | 5.83 | −0.24 | 0.26 |
PANAS-Negative | 10 | 50 | 24.16 | 8.11 | 0.50 | −0.14 |
BSMAS | 6 | 30 | 13.63 | 5.58 | 0.63 | −0.29 |
SABAS | 6 | 36 | 11.36 | 5.64 | 0.98 | 0.97 |
Internet Addiction Scale | 6 | 30 | 12.55 | 4.84 | 0.75 | 0.11 |
Gaming Addiction Scale | 8 | 40 | 15.14 | 7.40 | 0.90 | −0.19 |
Variables | Digital Life Balance Scale | Digital Life Balance Scale (Controlled for Age and Sex) |
---|---|---|
Satisfaction with Life Scale | 0.32 *** | 0.31 *** |
Flourishing Scale | 0.38 *** | 0.37 *** |
PANAS—Positive | 0.28 *** | 0.26 *** |
PANAS—Negative | −0.31 *** | −0.29 *** |
BSMAS | −0.40 *** | −0.38 *** |
SABAS | −0.38 *** | −0.36 *** |
Internet Addiction Scale | −0.42 *** | −0.40 *** |
Gaming Addiction Scale | −0.23 *** | −0.22 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duradoni, M.; Serritella, E.; Avolio, C.; Arnetoli, C.; Guazzini, A. Development and Validation of the Digital Life Balance (DLB) Scale: A Brand-New Measure for Both Harmonic and Disharmonic Use of ICTs. Behav. Sci. 2022, 12, 489. https://doi.org/10.3390/bs12120489
Duradoni M, Serritella E, Avolio C, Arnetoli C, Guazzini A. Development and Validation of the Digital Life Balance (DLB) Scale: A Brand-New Measure for Both Harmonic and Disharmonic Use of ICTs. Behavioral Sciences. 2022; 12(12):489. https://doi.org/10.3390/bs12120489
Chicago/Turabian StyleDuradoni, Mirko, Elena Serritella, Claudia Avolio, Claudio Arnetoli, and Andrea Guazzini. 2022. "Development and Validation of the Digital Life Balance (DLB) Scale: A Brand-New Measure for Both Harmonic and Disharmonic Use of ICTs" Behavioral Sciences 12, no. 12: 489. https://doi.org/10.3390/bs12120489
APA StyleDuradoni, M., Serritella, E., Avolio, C., Arnetoli, C., & Guazzini, A. (2022). Development and Validation of the Digital Life Balance (DLB) Scale: A Brand-New Measure for Both Harmonic and Disharmonic Use of ICTs. Behavioral Sciences, 12(12), 489. https://doi.org/10.3390/bs12120489