Socio-Demographic, Self-Control, Bullying, Parenting, and Sleep as Proximal Factors Associated with Food Addiction among Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Procedure
2.2. Measures
2.2.1. Demographic Characteristics
2.2.2. Parental Control and Parental Monitoring
2.2.3. Family Affluence
2.2.4. Addictive Eating
2.2.5. Self-Control
2.2.6. Bullying
2.2.7. Sleep
2.3. Data Analysis
2.4. Missing Data Analysis
3. Results
3.1. Participants Characteristics
3.2. Addictive Eating Symptoms by Gender
3.3. Association between Categorical Indicators of Social, Lifestyle, and Mental Health Status and Addictive Eating
3.4. All-Inclusive Model of Dimensional Predictors of Addictive Eating
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pozzi, E.; Simmons, J.G.; Bousman, C.A.; Vijayakumar, N.; Bray, K.O.; Dandash, O.; Richmond, S.; Schwartz, O.; Seal, M.; Sheeber, L.; et al. The Influence of Maternal Parenting Style on the Neural Correlates of Emotion Processing in Children. J. Am. Acad. Child Adolesc. Psychiatry 2020, 59, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Rakesh, D.; Allen, N.B.; Whittle, S. Balancing act: Neural correlates of affect dysregulation in youth depression and substance use—A systematic review of functional neuroimaging studies. Dev. Cogn. Neurosci. 2020, 42, 100775. [Google Scholar] [CrossRef] [PubMed]
- Natsuaki, M.N.; Biehl, M.C.; Ge, X. Trajectories of depressed mood from early adolescence to young adulthood: The effects of pubertal timing and adolescent dating. J. Res. Adolesc. 2009, 19, 47–74. [Google Scholar] [CrossRef]
- Rodriguea, C.; Gearhard, A.N.; Bégina, C. Food Addiction in Adolescents: Exploration of psychological symptoms and executive functioning difficulties in a non-clinical sample. Appetite 2019, 141, 104303. [Google Scholar] [CrossRef]
- Patton, G.C.; Sawyer, S.M.; Santelli, J.S.; Ross, D.A.; Afifi, R.; Allen, N.B.; Arora, M.; Azzopardi, P.; Baldwin, W.; Bonell, C.; et al. Our future: A Lancet commission on adolescent health and wellbeing. Lancet 2016, 387, 2423–2478. [Google Scholar] [CrossRef] [Green Version]
- Fomina, T.; Burmistrova-Savenkova, A.; Morosanova, V. Self-Regulation and Psychological Well-Being in Early Adolescence: A Two-Wave Longitudinal Study. Behav. Sci. 2020, 10, 67. [Google Scholar] [CrossRef] [Green Version]
- Whittle, S.; Lichter, R.; Dennison, M.; Vijayakumar, N.; Schwartz, O.; Byrne, M.L.; Simmons, J.G.; Yücel, M.; Pantelis, C.; McGorry, P.; et al. Structural brain development and depression onset during adolescence: A prospective longitudinal study. Am. J. Psychiatry 2014, 171, 564–571. [Google Scholar] [CrossRef]
- Favaro, A.; Busetto, P.; Collantoni, E.; Santonastaso, P. The age of onset of eating disorders. In Age of Onset of Mental Disorders: Etiopathogenetic and Treatment Implications; de Girolamo, G., McGorry, P.D., Sartorius, N., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 203–216. [Google Scholar]
- Skinner, J.; Jebeile, H.; Burrows, T. Food addiction and mental health in adolescents: A systematic review. Lancet Child Adoles. Health 2021, 10, 751–766. [Google Scholar] [CrossRef]
- French, S.A.; Story, M.; Neumark-Sztainer, D.; Fulkerson, J.A.; Hannan, P. Fast food restaurant use among adolescents: Associations with nutrient intake, food choices and behavioral and psychosocial variables. Int. J. Obes. 2001, 25, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Savige, G.; Macfarlane, A.; Ball, K.; Worsley, A.; Crawford, D. Snacking behaviours of adolescents and their association with skipping meals. Int. J. Behav. Nutr. Phys. Act. 2007, 4, 36. [Google Scholar] [CrossRef]
- Tompkins, C.L.; Laurent, J.; Brock, D.W. Food Addiction: A barrier for effective weight management for obese adolescents. Child. Obes. 2017, 13, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Burrows, T.B.; Skinner, J.A.; Jebeile, H. Food addiction in Children and Adolescents. In Food and Addiction: A Comprehensive Handbook, 2nd ed.; Brownell, K., Gold, M., Gearhardt, A., Potenza, M., Eds.; Oxford University Press: New York, NY, USA, in press.
- Schulte, E.M.; Potenza, M.N.; Gearhardt, A.N. A commentary on the “eating addiction” versus “food addiction” perspectives on addictive-like food consumption. Appetite 2017, 115, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Pursey, K.M.; Skinner, J.; Leary, M.; Burrows, T. The relationship between addictive eating and dietary intake: A systematic review. Nutrients 2022, 14, 164. [Google Scholar] [CrossRef] [PubMed]
- Li, J.T.E.; Pursey, K.M.; Duncan, M.J.; Burrows, T. Addictive Eating and Its Relation to Physical Activity and Sleep Behavior. Nutrients 2018, 10, 1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, C.M.; MacKillop, J. Food addiction and self-regulation. In Compulsive Eating Behavior and Food Addiction: Emerging Pathological Constructs; Cottone, P., Sabino, V., Moore, C.F., Koob, G.F., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 193–216. [Google Scholar]
- Scaglioni, S.; Salvioni, M.; Galimberti, C. Influence of parental attitudes in the development of children eating behaviour. Br. J. Nutr. 2008, 99, S22–S25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lie, S.Ø.; Rø, Ø.; Bang, L. Is bullying and teasing associated with eating disorders? A systematic review and meta-analysis. Int. J. Eat Disord. 2019, 52, 497–514. [Google Scholar] [CrossRef]
- St-Onge, M.-P.; Roberts, A.L.; Chen, J.; Kelleman, M.; O’Keeffe, M.; RoyChoudhury, A.; Jones, P.J.H. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am. J. Clin. Nutr. 2011, 94, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Q.; Arem, H.; Moore, S.C.; Hollenbeck, A.R.; Matthews, C.E. A large prospective investigation of sleep duration, weight change, and obesity in the NIH-AARP Diet and Health Study cohort. Am. J. Epidemiol. 2013, 178, 1600–1610. [Google Scholar] [CrossRef] [Green Version]
- Tangney, J.P.; Baumeister, R.F.; Boone, A.L. High Self-Control Predicts Good Adjustment, Less Pathology, Better Grades, and Interpersonal Success. J. Pers. 2004, 72, 2. [Google Scholar] [CrossRef]
- Rosenthal, J.; Dietl, E. The role of trait self-control, healthy eating habits and decentering ability in response conflict. Personal. Individ. Differ. 2022, 188, 111483. [Google Scholar] [CrossRef]
- Kerr, M.; Stattin, H. What parents know, how they know it, and several forms of adolescent adjustment: Further support for a reinterpretation of monitoring. Dev. Psychol. 2000, 36, 366. [Google Scholar] [CrossRef]
- Hamza, C.A.; Willoughby, T. Perceived Parental Monitoring, Adolescent Disclosure, and Adolescent Depressive Symptoms: A Longitudinal Examination. J. Youth Adol. 2011, 40, 902–915. [Google Scholar] [CrossRef] [PubMed]
- Pettit, G.S.; Laird, R.D.; Dodge, K.A.; Bates, J.E.; Criss, M.M. Antecedents and behavior-problem outcomes of parental monitoring and psychological control in early adolescence. Child Dev. 2001, 72, 583–598. [Google Scholar] [CrossRef] [Green Version]
- Kiesner, J.; Dishion, T.J.; Poulin, F.; Pastore, M. Temporal dynamics linking aspects of parent monitoring with early adolescent antisocial behavior. Social Dev. 2009, 18, 765–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinson, L.E.; Esposito-Smythers, C.; Blalock, D.V. The Effect of Parental Monitoring on Trajectories of Disordered Eating Attitudes and Behaviors Among Adolescents: An Individual Growth Curve Analysis. Appetite 2016, 107, 180–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savage, J.S.; Fisher, J.O.; Birch, L.L. Parental influence on eating behaviour. J. Law Med. Ethics 2007, 35, 22–34. [Google Scholar] [CrossRef] [Green Version]
- Idsoe, T.; Dyregrov, A.; Idsoe, E.C. Bullying and PTSD symptoms. J. Abnor. Child Psychol. 2012, 40, 901–911. [Google Scholar] [CrossRef]
- Vilija, M.; Romualdas, M. Unhealthy food in relation to posttraumatic stress symptoms among adolescents. Appetite 2014, 74, 86–91. [Google Scholar] [CrossRef]
- Hirth, A.M.; Rahman, M.; Berenson, A.B. The association of posttraumatic stress disorder with fast food and soda consumption and unhealthy weight loss behaviors among young women. J. Women’s Health 2011, 20, 1141–1149. [Google Scholar] [CrossRef] [Green Version]
- Burrows, T.; Skinner, J.; Joyner, M.A.; Palmieri, J.; Vaughan, K.; Gearhardt, A.N. Food addiction in children: Associations with obesity, parental food addiction and feeding practices. Eat Behav. 2017, 26, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Burrows, T.; Dayas, C.; Skinner, J.; Pursey, K.M.; Kay-Lambkin, F. Food Addiction and associations with mental health symptoms: A systematic review with meta-analysis. J. Hum. Nutr. Diet. 2018, 31, 544–572. [Google Scholar] [CrossRef]
- Yekaninejad, M.S.; Badrooj, N.; Vosoughi, F.; Lin, C.Y.; Potenza, M.N.; Pakpour, A.H. Prevalence of food addiction in children and adolescents: A systematic review and meta-analysis. Obes. Rev. 2021, 22, e13183. [Google Scholar] [CrossRef] [PubMed]
- Schulte, E.M.; Gearhardt, A.N. Associations of Food Addiction in a Sample Recruited to be Nationally Representative of the United States. Eur. Eat Dis. Rev. 2018, 26, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Teesson, M.; Champion, K.E.; Newton, N.C.; Kay-Lambkin, F.; Chapman, C.; Thornton, L.; Slade, T.; Sunderland, M.; Mills, K.; Gardner, L.A.; et al. Study protocol of the Health4Life initiative: A cluster randomised controlled trial of an eHealth school based program targeting multiple lifestyle risk behaviours among young Australians. BMJ Open 2020, 10, e035662. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Census of Population and Housing: Socio-Economic Indexes for Areas (SEIFA). 2016. Available online: https://www.abs.gov.au/ausstats/[email protected]/mf/2033.0.55.001 (accessed on 9 July 2022).
- World Health Organization (WHO). Physical Status. The Use and Interpretation of Anthropometry. WHO Technical Report Series. 1995. Available online: https://apps.who.int/iris/handle/10665/37003 (accessed on 4 September 2022).
- Cole, T.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larios, S.E.; Ayala, G.X.; Arredondo, E.M.; Baquero, B.; Elder, J.P. Development and validation of a scale to measure Latino parenting strategies related to children’s obesigenic behaviors. The parenting strategies for eating and activity scale (PEAS). Appetite 2009, 52, 166–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small, S.A.; Kerns, D. Unwanted sexual activity among peers during early and middle adolescence: Incidence and risk factors. J. Marriage Fam. 1993, 55, 941–952. [Google Scholar] [CrossRef]
- Torsheim, T.; Cavallo, F.; Levin, K.A.; Schnohr, C.; Mazur, J.; Niclasen, B.; Currie, C. Psychometric Validation of the Revised Family Affluence Scale: A Latent Variable Approach. Child Ind. Res. 2016, 9, 771–784. [Google Scholar] [CrossRef] [Green Version]
- Gearhardt, A.N.; Roberto, C.A.; Seamans, M.J.; Corbin, W.R.; Brownell, K.D. Preliminary validation of the Yale Food Addiction Scale for children. Eat Behav. 2013, 14, 508–512. [Google Scholar] [CrossRef] [Green Version]
- Solberg, M.E.; Olweus, D. Prevalence estimation of school bullying with the Olweus Bully/Victim Questionnaire. Agg. Behav. 2003, 29, 239–268. [Google Scholar] [CrossRef]
- Drake, C.; Nickel, C.; Burduvali, E.; Roth, T.; Jefferson, C.; Pietro, B. The pediatric daytime sleepiness scale (PDSS): Sleep habits and school outcomes in middle-school children. Sleep 2003, 26, 455–458. [Google Scholar] [PubMed]
- Short, M.A.; Gradisar, M.; Lack, L.C.; Wright, H.R.; Chatburn, A. Estimating adolescent sleep patterns: Parent reports versus adolescent self-report surveys, sleep diaries, and actigraphy. Nat. Sci. Sleep 2013, 5, 23–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- StataCorp. Stata Statistical Software: Release 16; StataCorp LLC: College Station, TX, USA, 2019. [Google Scholar]
- Pursey, K.; Stanwell, P.; Gearhardt, A.; Collins, C.; Burrows, T. The prevalence of food addiction as assessed by the Yale Food Addiction Scale: A systematic review. Nutrients 2014, 6, 4552–4590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leary, M.; Pursey, K.M.; Verdejo-Garcia, A.; Burrows, T.L. Current intervention treatments for food addiction: A systematic review. Behav. Sci. 2021, 11, 80. [Google Scholar] [CrossRef] [PubMed]
- Praxedes, D.R.S.; Silva-Júnior, A.E.; Macena, M.L.; Oliveira, A.D.; Cardoso, K.S.; Nunes, L.O.; Monteiro, M.B.; Melo, I.S.V.; Gearhardt, A.N.; Bueno, N.B. Prevalence of food addiction determined by the Yale Food Addiction Scale and associated factors: A systematic review with meta-analysis. Eur. Eat Disord. Rev. 2022, 30, 85–95. [Google Scholar] [CrossRef]
- Carr, M.M.; Lawson, J.L.; Wiedemann, A.A.; Barnes, R.D. Examining impairment and distress from food addiction across demographic and weight groups. Eat Behav. 2021, 101574. [Google Scholar] [CrossRef]
- Yarnell, L.M.; Stafford, R.E.; Neff, K.D.; Reilly, E.D.; Knox, M.C.; Mullarkey, M. Meta-Analysis of Gender Differences in Self-Compassion. Self Identity 2015, 14, 499–520. [Google Scholar] [CrossRef]
- Wang, D.; Huang, K.; Schulte, E.; Zhou, W.; Li, H.; Hu, Y.; Fu, J. The Association Between Food Addiction and Weight Status in School-Age Children and Adolescents. Front. Psychiatry 2022, 13, 824234. [Google Scholar] [CrossRef]
- Naghashpour, M.; Rouhandeh, R.; Karbalaipour, M.; Miryan, M. Prevalence of food addiction among Iranian children and adolescents: Associations with sociodemographic and anthropometric indices. Med. J. Islam Repub. Iran. 2018, 32, 8. [Google Scholar] [CrossRef] [Green Version]
- Schiestl, E.T.; Gearhardt, A.N. Preliminary validation of the Yale Food Addiction Scale for Children 2.0: A dimensional approach to scoring. Eur. Eat Dis. Rev. 2018, 26, 605–617. [Google Scholar] [CrossRef]
- Singh, G.K.; Kogan, M.D.; van Dyck, P.C.; Siahpush, M. Racial/ethnic, socioeconomic, and behavioral determinants of childhood and adolescent obesity in the United States: Analyzing independent and joint associations. Ann. Epidemiol. 2008, 18, 682–695. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, M.E.; Gower, A.L.; McMorris, B.J.; Rider, N.; Shea, G.; Coleman, E. Risk and Protective Factors in the Lives of Transgender/Gender Non-Conforming Adolescents. J. Adolesc. Health 2017, 61, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Perez-Brumer, A.; Day, J.K.; Russell, S.T.; Hatzenbuehler, M.L. Prevalence and correlates of suicidal ideation among transgender youth in California: Findings from a representative, population-based sample of high school students. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 739–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aparicio-Garci, M.E.; Diaz-Ramiro, E.M.; Rubio-Valdehita, S.; Lopez-Nunez, M.I.; Garcia-Nieto, I. Health and well-being of cisgender, transgender and non-binary young people. Int. J. Environ. Res. Public Health 2018, 15, 2133. [Google Scholar] [CrossRef] [Green Version]
- Gordon, A.R.; Moore, L.B.; Guss, C. Eating Disorders Among Transgender and Gender Non-binary People. In Eating Disorders in Boys and Men; Nagata, J.M., Brown, T.A., Murray, S.B., Lavender, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 265–281. [Google Scholar]
- Chuang, H.; Wang, Y. Understanding the Associations Among Perceived Stress, Self-Control Skills, and Overeating in Asian Adolescents. J. Dev. Behav. Pediatr. 2022, 43, e347–e355. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Y.; Sun, X.; Dong, J.; Wu, J.; Lin, X. Mediating effect of self-control in the relationship between psychological distress and food addiction among college students. Appetite 2022, 179, 106278. [Google Scholar] [CrossRef]
- Ivezaj, V.; White, M.A.; Grilo, C.M. Examining Binge-Eating Disorder and Food Addiction in Adults with Overweight and Obesity. Obesity 2016, 24, 2064–2069. [Google Scholar] [CrossRef] [Green Version]
- Collins, R.; Haracz, K.; Leary, M.; Rollo, M.; Burrows, T. No control and overwhelming cravings: Australian adults’ perspectives on the experience of food addiction. Appetite 2021, 159, 105054. [Google Scholar] [CrossRef]
- Lindner, C.; Nagy, G.; Retelsdorf, J. The Dimensionality of the Brief Self-Control Scale—An Evaluation of Unidimensional and Multidimensional Applications. Personal. Individ. Differ. 2015, 86, 465–473. [Google Scholar] [CrossRef]
- Boat, R.; Williams, R.A.; Dring, K.J.; Morris, J.G.; Sunderland, C.; Nevill, M.E.; Cooper, S.B. Associations of Self-Control with Physical Activity, Physical Fitness, and Adiposity in Adolescents. Behav. Med. 2022, 1–9. [Google Scholar] [CrossRef]
- Duckworth, A.L.; Tsukayama, E.; Geier, A.B. Self-controlled children stay leaner in the transition to Adolescence. Appetite 2010, 54, 304–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najem, J.; Saber, M.; Aoun, C.; Osta, N.E.; Papazian, T.; Khabbaz, L.R. Prevalence of food addiction and association with stress, sleep quality and chronotype: A cross-sectional survey among university students. Clin. Nutr. 2020, 39, 533–539. [Google Scholar] [CrossRef]
- Kaniušonytė, G. The Effects of Parental Monitoring on Adolescent and Emerging Adult Contribution: A Longitudinal Examination. Int. J. Psych. Stud. 2015, 7, 9–16. [Google Scholar]
- Berge, J.M.; Wall, M.; Larson, N.; Eisenberg, M.E.; Loth, K.A.; Neumark-Sztainer, D. The unique and additive associations of family functioning and parenting practices with disordered eating behaviors in diverse adolescents. J. Behav. Med. 2014, 37, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Dev, D.A.; McBride, B.A.; Fiese, B.H.; Jones, B.L.; Cho, H.; Behalf of the Strong Kids Research Team. Risk factors for overweight/obesity in preschool children: An ecological approach. Child. Obes. 2013, 9, 399–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinquart, M. Associations of Parenting Dimensions and Styles With Externalizing Problems of Children and Adolescents: An Updated Meta-Analysis. Dev. Psych. 2017, 53, 873–932. [Google Scholar] [CrossRef]
- Vidmar, A.P.; Pretlow, R.; Borzutzky, C.; Wee, C.P.; Fox, D.S.; Fink, C.; Mittelman, S.D. An addiction model-based mobile health weight loss intervention in adolescents with obesity. Pediatr. Obes. 2019, 14, e12464. [Google Scholar] [CrossRef] [Green Version]
- Trapp, G.; Hooper, P.; Thornton, L.; Kennington, K.; Sartori, A.; Hurworth, M.; Billingham, W. Association between food-outlet availability near secondary schools and junk-food purchasing among Australian adolescents. Nutrition 2021, 91–92, 111488. [Google Scholar] [CrossRef]
- Curtis, R.G.; Olds, T.; Plotnikoff, R.; Vandelanotte, C.; Edney, S.; Ryan, J.; Maher, C. Validity and bias on the online active Australia survey: Activity level and participant factors associated with self-report bias. BMC Med. Res. Methodol. 2020, 20, 6. [Google Scholar] [CrossRef]
- Kopala-Sibley, D.C.; Zuroff, D.C.; Hankin, B.L.; Abela, J.R.Z. The development of self-criticism and dependency in early adolescence and their role in the development of depressive and anxiety symptoms. Personal. Soc. Psychol. Bull. 2015, 41, 1094–1109. [Google Scholar] [CrossRef]
YFAS-C Missing | YFAS-C Captured | Significance of Difference | SEIFA Missing | SEIFA Captured | Significance of Difference | ||||
---|---|---|---|---|---|---|---|---|---|
Gender | Male Female Prefer not to say Non-binary | 524 (15.9%) 399 (12.5%) 12 (17.9%) 3 (10.7%) | 2773 (84.1%) 2796 (87.5%) 55 (82.1%) 25 (89.3%) | 0.001 | Gender | Male Female Prefer not to say Non-binary | 1233 (37.4%) 1185 (37.1%) 41 (61.2%) 13 (46.4%) | 2064 (62.6%) 2010 (62.9%) 26 (38.8%) 15 (53.6%) | 0.001 |
Age | 11 12 13 14 | 1 (11.1%) 386 (16.4%) 540 (13%) 11 (15.5%) | 8 (88.9%) 1974 (83.6%) 3605 (87%) 60 (84.5%) | 0.003 | Age | 11 12 13 14 | 0 (0%) 947 (40.1%) 1494 (36%) 31 (43.7%) | 9 (100%) 1413 (59.9%) 2651 (64%) 40 (56.3%) | 0.001 |
BMI z-score | 272 (12.5%) | 1901 (87.5%) | BMI z-score | 555 (25.5%) | 1618 (74.5%) | ||||
SEIFA | 508 (12.3%) | 3607 (87.7%) | YFAS-C | 2042 (36.1%) | 3607 (63.9%) |
Male | Female | Prefer Not to Say | Non-Binary | Total | |
---|---|---|---|---|---|
Gender | 3297 (50.05%) | 3195 (48.5%) | 67 (1.02%) | 28 (0.43%) | 6587 |
Age (years) | 12.93 ± 0.39 (Range from 10.95 to 14.98) n = 3297 (50.05%) | 12.86 ± 0.38 (Range from 11.50 to 14.97) n = 3195 (48.5%) | 12.96 ± 0.43 (Range from 11.37 to 13.84) n = 67 (1.02%) | 12.93 ± 0.46 (Range from 12.0 to 14.0) n = 28 (0.43%) | 12.90 ± 0.39 (Range from 10.95 to 14.98) n = 6587 |
BMI z-score Category Healthy weight Overweight Obesity | −0.10 ± 1.15 (Range from −3.83 to 2.86) n = 1247 (57.2%) n = 1002 (46%) n = 213 (9.8%) n = 32 (1.5%) | −0.31 ± 1.09 (Range from −3.99 to 2.70) n = 926 (42.5%) n = 830 (38.1%) n = 88 (4.0%) n = 8 (0.4%) | 0.78 ± 0.74 (Range from −0.07 to 1.73) n = 4 (0.2%) n = 3 (0.14%) n = 1 (0.01%) n = 0 (0%) | 0.95 ± 1.27 (Range from 0.05 to 1.85) n = 2 (0.1%) n = 1 (0.01%) n = 0 (0%) n = 1 (0.01%) | −0.19 ± 1.13 (Range from −3.99 to 2.86) n = 2179 n = 1836 n = 302 n = 41 |
Socio-Economic Status (SEIFA) (Range from 1 to 10) | 6.75 ± 2.67 n = 2064 (50.2%) | 7.24 ± 2.60 n = 2010 (48.8%) | 7.15 ± 2.72 n = 26 (0.6%) | 7.07 ± 2.46 n = 15 (0.4%) | 6.99 ± 2.64 n = 4115 |
Family affluence scale (Range from 0 to 13) | 9.18 ± 1.96 n = 2941 (49.2%) | 9.51 ± 1.84 n = 2952 (49.4%) | 8.89 ± 2.25 n = 61 (1.02%) | 8.32 ± 2.30 n = 25 (0.4%) | 9.34 ± 1.92 n = 5979 |
Self-control (Range from 13 to 65) | 44.19 ± 8.02 n = 2813 (49.1%) | 45.77 ± 7.98 n = 2838 (49.5%) | 40.54 ± 8.25 n = 56 (1.0%) | 38.64 ± 8.37 n = 25 (0.4%) | 44.91 ± 8.06 n = 5732 |
Parental monitoring (Range from 0 to 24) | 20.13 ± 4.73 n = 3016 (49.3%) | 21.89 ± 3.36 n = 3018 (49.3%) | 19.51 ± 5.83 n = 61 (1.0%) | 18.5 ± 4.57 n = 26 (0.4%) | 20.98 ± 4.22 n = 6121 |
Parental control (Range from 7 to 35) | 25.51 ± 6.31 n = 2999 (49.2%) | 26.80 ± 6.08 n = 3008 (49.4%) | 25.36 ± 7.25 n = 61 (1.0%) | 23.04 ± 6.47 n = 26 (0.4%) | 26.13 ± 6.24 n = 6094 |
Paediatric daytime sleepiness scale (Range from 0 to 32) | 13.25 ± 6.06 n = 3279 (50.0%) | 14.45 ± 6.09 n = 3183 (48.6%) | 17.15 ± 6.24 n = 67 (1.0%) | 16.52± 6.94 n = 27 (0.4%) | 13.88 ± 6.12 n = 6556 |
Total FA Symptoms (Range from 0 to 7) | 1.31 ± 1.38 n = 2773 (49.1%) | 1.37 ± 1.52 n = 2796 (49.5%) | 1.85 ± 1.60 n = 55 (1.0%) | 1.8 ± 1.44 n = 25 (0.4%) | 1.35 ± 1.45 n = 5649 |
Symptom 1 | Symptom 2 | Symptom 3 | Symptom 4 | Symptom 5 | Symptom 6 | Symptom 7 | <3 Symptoms | ≥3 Symptoms | |
---|---|---|---|---|---|---|---|---|---|
Male | 342 (12.3%) | 1086 (39.2%) | 182 (6.6%) | 854 (30.8%) | 253 (9.1%) | 536 (19.3%) | 386 (13.9%) | 2300 (82.9%) | 473 (17.1%) |
Female | 375 (13.4%) | 1142 (40.8%) | 184 (6.6%) | 775 (27.7%) | 324 (11.6%) | 556 (19.9%) | 461 (16.5%) | 2278 (81.5%) | 518 (18.5%) |
Prefer not to say | 9 (16.4%) | 30 (54.5%) | 4 (7.3%) | 20 (36.4%) | 12 (21.8%) | 15 (27.3%) | 12 (21.8%) | 37 (67.3%) | 18 (32.7%) |
Non- binary | 5 (20%) | 17 (68%) | 0 (0%) | 7 (28%) | 3 (12%) | 8 (32%) | 5 (20%) | 19 (76%) | 6 (24%) |
Total | 731 (12.9%) | 2275 (40.3%) | 370 (6.5%) | 1656 (29.3%) | 592 (10.5%) | 1115 (19.7%) | 864 (15.3%) | 4634 (82%) | 1015 (18%) |
Variable | Category | YFAS-C Symptom Score ± SD | p-Value |
---|---|---|---|
Socio-demographic | |||
Gender | Male | 1.31 ± 1.38 (n = 2773) | 0.011 |
Female | 1.37 ± 1.52 (n = 2796) | ||
Prefer not to say Non-binary | 1.85 ± 1.6 (n = 55) 1.8 ± 1.44 (n = 25) | ||
BMI z-score * Male | Healthy weight (<0.91) Overweight (>+0.91) Obesity (>+1.84) | 1.22 ± 1.27 (n = 862) 1.36 ± 1.46 (n = 182) 1.76 ± 1.88 (n = 29) | 0.052 |
Female | Healthy weight (<0.97) Overweight (>+0.97) Obesity (>+1.76) | 1.31 ± 1.47 (n = 746) 1.88 ± 1.78 (n = 76) 3.0 ± 2.53 (n = 6) | <0.001 |
Sleep | |||
Sleep Quality (Paediatric daytime sleepiness scale) | Excessive daytime sleepiness Not excessive daytime sleepiness | 1.74 ± 1.66 (n = 2476) 1.04 ± 1.19 (n = 3176) | <0.001 |
Sleep habits (Difficulty getting to sleep) | No difficulty | 1.15 ± 1.30 (n = 3436) | <0.001 |
Mild difficulty | 1.34 ± 1.47 (n = 844) | ||
Moderate difficulty | 1.68 ± 1.55 (n = 933) | ||
Severe difficulty | 2.03 ± 1.75 (n = 350) | ||
Very severe difficulty | 3.06 ± 2.20 (n = 83) | ||
Sleep score simple (Modified Sleep Habits Survey) | Normal sleep Under sleep Oversleep | 1.18 ± 1.35 (n = 3090) 1.48 ± 1.53 (n = 2047) 1.50 ± 1.42 (n = 252) | <0.001 |
Sleep score simple (Modified Sleep Habits Survey) | Not at risk (meeting National sleep guidelines) At risk (not meeting National sleep guidelines) | 1.18 ± 1.35 (n = 3090) 1.49 ± 1.52 (n = 2299) | <0.001 |
Bullying | |||
Victim of Bullying | Never | 1.13 ± 1.29 (n = 2516) | <0.001 |
Not at all | 1.25 ± 1.39 (n = 1048) | ||
Only once or twice | 1.48 ± 1.52 (n = 1227) | ||
From 2 to 3 times a month | 1.78 ± 1.66 (n = 364) | ||
About once a week | 2.03 ± 1.68 (n = 194) | ||
More than once a week | 2.01 ± 1.85 (n = 268) | ||
Bullying frequency | Never | 1.28 ± 1.41 (n = 4893) | <0.001 |
Not at all | 1.64 ± 1.56 (n = 193) | ||
Only once or twice | 1.80 ± 1.63 (n = 371) | ||
From 2 to 3 times a month | 2.30 ± 1.95 (n = 56) | ||
About once a week | 2.20 ± 2.09 (n = 20) | ||
More than once a week | 2.22 ± 2.08 (n = 27) |
Variable | β Coef | 95% CI | p-Value |
---|---|---|---|
Gender | 0.215 | (0.066 to 0.363) | 0.005 |
SEIFA | −0.013 | (−0.040 to 0.014) | 0.340 |
BMI z−score | 0.012 | (−0.050 to 0.074) | 0.699 |
Sleep Quality (PDSS) | 0.017 | (0.004 to 0.031) | 0.013 |
Sleep habits (difficulty getting to sleep) | 0.076 | (−0.001 to 0.153) | 0.052 |
Parental control | −0.010 | (−0.022 to 0.002) | 0.111 |
Parental monitoring | −0.006 | (−0.026 to 0.013) | 0.525 |
Family affluence scale | −0.033 | (−0.072 to 0.006) | 0.101 |
Bullying | 0.067 | (−0.029 to 0.163) | 0.172 |
Victim of bullying | 0.055 | (0.002 to 0.108) | 0.040 |
Self-control | −0.053 | (−0.064 to −0.043) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leary, M.; Pursey, K.M.; Verdejo-Garcia, A.; Smout, S.; McBride, N.; Osman, B.; Champion, K.E.; Gardner, L.A.; Jebeile, H.; Kelly, E.V.; et al. Socio-Demographic, Self-Control, Bullying, Parenting, and Sleep as Proximal Factors Associated with Food Addiction among Adolescents. Behav. Sci. 2022, 12, 488. https://doi.org/10.3390/bs12120488
Leary M, Pursey KM, Verdejo-Garcia A, Smout S, McBride N, Osman B, Champion KE, Gardner LA, Jebeile H, Kelly EV, et al. Socio-Demographic, Self-Control, Bullying, Parenting, and Sleep as Proximal Factors Associated with Food Addiction among Adolescents. Behavioral Sciences. 2022; 12(12):488. https://doi.org/10.3390/bs12120488
Chicago/Turabian StyleLeary, Mark, Kirrilly M. Pursey, Antonio Verdejo-Garcia, Scarlett Smout, Nyanda McBride, Bridie Osman, Katrina E. Champion, Lauren A. Gardner, Hiba Jebeile, Erin V. Kelly, and et al. 2022. "Socio-Demographic, Self-Control, Bullying, Parenting, and Sleep as Proximal Factors Associated with Food Addiction among Adolescents" Behavioral Sciences 12, no. 12: 488. https://doi.org/10.3390/bs12120488