Biochemical and Hematological Predictors of Mortality in Thai Patients with COVID-19
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients’ Demographics
2.2. Data Collection
2.3. Statistical Data Analysis
3. Results
3.1. Clinical Characteristics
3.2. Biochemical Parameters
3.3. Hematological Parameters
4. Discussion
5. Limitations and Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, P.; Hao, X.; Lau, E.H.Y.; Wong, J.Y.; Leung, K.S.M.; Wu, J.T.; Cowling, B.J.; Leung, G.M. Real-time tentative assessment of the epidemiological characteristics of novel coronavirus infections in Wuhan, China, as at 22 January 2020. Eurosurveillance 2020, 25, 2000044. [Google Scholar] [CrossRef]
- WHO. Available online: https://covid19.who.int/ (accessed on 14 August 2025).
- Ministry of Public Health. Available online: https://ddc.moph.go.th/covid19-dashboard/?dashboard=main (accessed on 14 August 2025).
- Qin, C.; Zhou, L.; Hu, Z.; Zhang, S.; Yang, S.; Tao, Y.; Xie, C.; Ma, K.; Shang, K.; Wang, W.; et al. Dysregulation of Immune Response in Patients with Coronavirus 2019 (COVID-19) in Wuhan, China. Clin. Infect. Dis. 2020, 71, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Toori, K.U.; Qureshi, M.A.; Chaudhry, A.; Safdar, M.F. Neutrophil to lymphocyte ratio (NLR) in COVID-19: A cheap prognostic marker in a resource constraint setting. Pak. J. Med. Sci. 2021, 37, 1435–1439. [Google Scholar] [CrossRef] [PubMed]
- Asghar, M.S.; Khan, N.A.; Haider Kazmi, S.J.; Ahmed, A.; Hassan, M.; Jawed, R.; Akram, M.; Rasheed, U.; Memon, G.M.; Ahmed, M.U.; et al. Hematological parameters predicting severity and mortality in COVID-19 patients of Pakistan: A retrospective comparative analysis. J. Community Hosp. Intern. Med. Perspect. 2020, 10, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Thachil, J. What do monitoring platelet counts in COVID-19 teach us? J. Thromb. Haemost. 2020, 18, 2071–2072. [Google Scholar] [CrossRef]
- Lippi, G.; Plebani, M.; Henry, B.M. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: A meta-analysis. Clin. Chim. Acta 2020, 506, 145–148. [Google Scholar] [CrossRef]
- Zong, X.; Gu, Y.; Yu, H.; Li, Z.; Wang, Y. Thrombocytopenia Is Associated with COVID-19 Severity and Outcome: An Updated Meta-Analysis of 5637 Patients with Multiple Outcomes. Lab. Med. 2021, 52, 10–15. [Google Scholar] [CrossRef]
- D’Ardes, D.; Boccatonda, A.; Cocco, G.; Fabiani, S.; Rossi, I.; Bucci, M.; Guagnano, M.T.; Schiavone, C.; Cipollone, F. Impaired coagulation, liver dysfunction and COVID-19: Discovering an intriguing relationship. World J. Gastroenterol. 2022, 28, 1102–1112. [Google Scholar] [CrossRef]
- Long, H.; Nie, L.; Xiang, X.; Li, H.; Zhang, X.; Fu, X.; Ren, H.; Liu, W.; Wang, Q.; Wu, Q. D-Dimer and Prothrombin Time Are the Significant Indicators of Severe COVID-19 and Poor Prognosis. Biomed. Res. Int. 2020, 2020, 6159720. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Lei, S.; Jiang, F.; Su, W.; Chen, C.; Chen, J.; Mei, W.; Zhan, L.Y.; Jia, Y.; Zhang, L.; Liu, D.; et al. Clinical characteristics and outcomes of patients undergoing surgeries during the incubation period of COVID-19 infection. eClinicalMedicine 2020, 21, 100331. [Google Scholar] [CrossRef]
- Salamanna, F.; Maglio, M.; Landini, M.P.; Fini, M. Body Localization of ACE-2: On the Trail of the Keyhole of SARS-CoV-2. Front. Med. 2020, 7, 594495. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181, 271–280.e8. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Penninger, J.M.; Li, Y.; Zhong, N.; Slutsky, A.S. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020, 46, 586–590. [Google Scholar] [CrossRef] [PubMed]
- Hamming, I.; Timens, W.; Bulthuis, M.L.; Lely, A.T.; Navis, G.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Coto, E.; Avanzas, P.; Gómez, J. The Renin-Angiotensin-Aldosterone System and Coronavirus Disease 2019. Eur. Cardiol. 2021, 16, e07. [Google Scholar] [CrossRef]
- Akbar, M.R.; Pranata, R.; Wibowo, A.; Irvan; Sihite, T.A.; Martha, J.W. The Prognostic Value of Hyponatremia for Predicting Poor Outcome in Patients With COVID-19: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 666949. [Google Scholar] [CrossRef]
- Ali, A.M.; Kunugi, H. Hypoproteinemia predicts disease severity and mortality in COVID-19: A call for action. Diagn. Pathol. 2021, 16, 31. [Google Scholar] [CrossRef]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef]
- Hunter, R.W.; Bailey, M.A. Hyperkalemia: Pathophysiology, risk factors and consequences. Nephrol. Dial. Transplant. 2019, 34 (Suppl. S3), iii2–iii11. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Zhao, X.; Tao, M.; Yan, W.; Fu, Y. Hypoalbuminemia—An Indicator of the Severity and Prognosis of COVID-19 Patients: A Multicentre Retrospective Analysis. Infect. Drug Resist. 2021, 14, 3699–3710. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, H.; Wang, J.; Li, X.; Xue, C.; Niu, C.; Liao, P. Serum Albumin Levels are a Predictor of COVID-19 Patient Prognosis: Evidence from a Single Cohort in Chongqing, China. Int. J. Gen. Med. 2021, 14, 2785–2797. [Google Scholar] [CrossRef]
- Bangash, M.N.; Patel, J.; Parekh, D. COVID-19 and the liver: Little cause for concern. Lancet Gastroenterol. Hepatol. 2020, 5, 529–530. [Google Scholar] [CrossRef] [PubMed]
- Henry, B.M.; Aggarwal, G.; Wong, J.; Benoit, S.; Vikse, J.; Plebani, M.; Lippi, G. Lactate dehydrogenase levels predict coronavirus disease 2019 (COVID-19) severity and mortality: A pooled analysis. Am. J. Emerg. Med. 2020, 38, 1722–1726. [Google Scholar] [CrossRef] [PubMed]
- Smilowitz, N.R.; Kunichoff, D.; Garshick, M.; Shah, B.; Pillinger, M.; Hochman, J.S.; Berger, J.S. C-reactive protein and clinical outcomes in patients with COVID-19. Eur. Heart J. 2021, 42, 2270–2279. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, T.; Ranasinghe, R.; Al-Hasani, W.; Luxton, J.; Kearney, J.; Manning, A.; Dimitriadis, G.K.; Mare, T.; Vincent, R.P. A cytokine panel and procalcitonin in COVID-19, a comparison between intensive care and non-intensive care patients. PLoS ONE 2022, 17, e0266652. [Google Scholar] [CrossRef]
- Tong-Minh, K.; van der Does, Y.; Engelen, S.; de Jong, E.; Ramakers, C.; Gommers, D.; van Gorp, E.; Endeman, H. High procalcitonin levels associated with increased intensive care unit admission and mortality in patients with a COVID-19 infection in the emergency department. BMC Infect. Dis. 2022, 22, 165. [Google Scholar] [CrossRef]
- Lippi, G.; Plebani, M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chim. Acta 2020, 505, 190–191. [Google Scholar] [CrossRef]
- Binsaleh, N.K.; Eltayeb, R.; Sherwani, S.; Almishaal, A.A.; Hindi, E.A.; Qanash, H.; Bazaid, A.S.; Alharbi, A.O.; Bazaid, M.B.; Altamimi, S.A. Comparison of Hematological Parameters Between Survivors and Non-Survivors COVID-19 Patients in Saudi Arabia. Int. J. Gen. Med. 2023, 16, 3955–3962. [Google Scholar] [CrossRef]
- Qu, R.; Ling, Y.; Zhang, Y.H.; Wei, L.Y.; Chen, X.; Li, X.M.; Liu, X.Y.; Liu, H.M.; Guo, Z.; Ren, H.; et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19. J. Med. Virol. 2020, 92, 1533–1541. [Google Scholar] [CrossRef]
- Foy, B.H.; Carlson, J.C.T.; Reinertsen, E.; Padros, I.V.R.; Pallares Lopez, R.; Palanques-Tost, E.; Mow, C.; Westover, M.B.; Aguirre, A.D.; Higgins, J.M. Association of Red Blood Cell Distribution Width with Mortality Risk in Hospitalized Adults with SARS-CoV-2 Infection. JAMA Netw. Open 2020, 3, e2022058. [Google Scholar] [CrossRef]
- Lippi, G.; Mattiuzzi, C. Hemoglobin value may be decreased in patients with severe coronavirus disease 2019. Hematol. Transfus. Cell Ther. 2020, 42, 116–117. [Google Scholar] [CrossRef]
- Kilercik, M.; Demirelce, Ö.; Serdar, M.A.; Mikailova, P.; Serteser, M. A new haematocytometric index: Predicting severity and mortality risk value in COVID-19 patients. PLoS ONE 2021, 16, e0254073. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, M.; Zhang, S.; Xia, P.; Cao, W.; Jiang, W.; Chen, H.; Ding, X.; Zhao, H.; Zhang, H.; et al. Coagulopathy and Antiphospholipid Antibodies in Patients with COVID-19. N. Engl. J. Med. 2020, 382, e38. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.-j.; Ni, Z.-y.; Hu, Y.; Liang, W.-h.; Ou, C.-q.; He, J.-x.; Liu, L.; Shan, H.; Lei, C.-l.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Cao, J.; Wang, Q.; Shi, Q.; Liu, K.; Luo, Z.; Chen, X.; Chen, S.; Yu, K.; Huang, Z.; et al. D-dimer as a biomarker for disease severity and mortality in COVID-19 patients: A case control study. J. Intensive Care 2020, 8, 49. [Google Scholar] [CrossRef]
- Connors, J.M.; Levy, J.H. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020, 135, 2033–2040. [Google Scholar] [CrossRef]
- Simadibrata, D.M.; Lubis, A.M. D-dimer levels on admission and all-cause mortality risk in COVID-19 patients: A meta-analysis. Epidemiol. Infect. 2020, 148, e202. [Google Scholar] [CrossRef]
- Wahid, L.; Ortel, T.L. Anticoagulant Therapy in Patients Hospitalized With COVID-19. JAMA Intern. Med. 2021, 181, 1621–1622. [Google Scholar] [CrossRef]
- Wynants, L.; Van Calster, B.; Collins, G.S.; Riley, R.D.; Heinze, G.; Schuit, E.; Bonten, M.M.J.; Dahly, D.L.; Damen, J.A.A.; Debray, T.P.A.; et al. Prediction models for diagnosis and prognosis of COVID-19: Systematic review and critical appraisal. BMJ 2020, 369, m1328. [Google Scholar] [CrossRef]
| Variable | Survivors Median (IQR), (n = 355) | Non-Survivors Median (IQR), (n = 42) | p-Value |
|---|---|---|---|
| Gender | |||
| -Female | 227 (63.94%) | 19 (45.24%) | 0.018 |
| -Male | 128 (36.06%) | 23 (54.76%) | |
| Age group (years) | 50.50 (39.50–61.60) | 69.45 (63.80–76.80) | <0.001 |
| -18–59 | 253 (71.27%) | 8 (19.05%) | <0.001 |
| -≥60 | 102 (28.73%) | 34 (80.95%) | |
| SBP (mmHg) | 127 (116–141) | 137 (118–145) | 0.149 |
| DBP (mmHg) | 80 (71–89) | 76 (67–90) | 0.227 |
| T (°C) | 36.80 (36.50–37.40) | 36.90 (36.50–37.60) | 0.905 |
| HR (bpm) | 90 (80–100) | 90.5 (82–100) | 0.714 |
| Parameter | Survivors Median (IQR), (n = 355) | Non-Survivors Median (IQR), (n = 42) | p-Value |
|---|---|---|---|
| Total Protein (g/dL) | 7.30 (6.90–7.70) | 6.95 (6.40–7.30) | <0.001 |
| Albumin (g/dL) | 4.10 (3.80–4.40) | 3.50 (3.20–3.90) | <0.001 |
| Albumin/Globulin Ratio | 1.30 (1.10–1.40) | 1.00 (0.90–1.30) | <0.001 |
| Total Bilirubin (mg/dL) | 0.33 (0.25–0.48) | 0.51 (0.33–0.81) | <0.001 |
| Direct Bilirubin (mg/dL) | 0.21 (0.15–0.28) | 0.31 (0.21–0.53) | <0.001 |
| Aspartate Transaminase (U/L) | 36.00 (27.00–54.00) | 52.50 (34.00–87.00) | <0.001 |
| Lactate Dehydrogenase (U/L) | 231.50 (181.50–312.50) | 311.50 (252.00–458.50) | <0.001 |
| C-Reactive Protein (mg/L) | 13.00 (5.03–41.55) | 64.60 (41.90–114.00) | <0.001 |
| Procalcitonin (ng/mL) | 0.07 (0.05–0.14) | 0.76 (0.02–1.73) | <0.001 |
| Sodium (Na+) (mmol/L) | 137.30 (134.60–139.30) | 133.85 (132.10–136.90) | <0.001 |
| Potassium (K+) (mmol/L) | 3.60 (3.40–3.90) | 3.90 (3.50–4.30) | <0.001 |
| Cl− (mmol/L) | 101.00 (98.00–103.00) | 97.50 (94.00–100.00) | <0.001 |
| HCO3− (mmol/L) | 22.55 (20.60–24.20) | 20.25 (18.60–22.20) | <0.001 |
| Anion Gap | 14.00 (12.00–16.00) | 17.00 (13.00–21.00) | <0.001 |
| Blood Urea Nitrogen (mg/dL) | 10.20 (8.10–13.20) | 17.75 (12.10–32.00) | <0.001 |
| Creatinine (mg/dL) | 0.80 (0.66–0.98) | 1.21 (0.88–2.12) | <0.001 |
| D-dimer (µg/mL) | 0.46 (0.28–0.83) | 1.185 (0.69–3.075) | <0.001 |
| Hemoglobin (g/dL) | 13.00 (11.80–14.30) | 11.45 (8.90–13.70) | <0.001 |
| Hematocrit (%) | 39.20 (35.50–42.40) | 34.40 (26.10–40.20) | <0.001 |
| Red Cell Count (×106 cells/µL) | 4.80 (4.36–5.29) | 4.27 (3.21–5.09) | 0.002 |
| RDW (%) | 13.20 (12.60–14.20) | 14.60 (13.50–17.20) | <0.001 |
| White Cell Count (×103/µL) | 6.00 (4.70–7.90) | 7.15 (5.60–10.80) | 0.010 |
| Neutrophil (%) | 63.50 (54.40–72.40) | 77.40 (68.50–84.20) | <0.001 |
| Lymphocyte (%) | 26.80 (19.50–36.60) | 14.55 (9.30–23.30) | <0.001 |
| Platelets (×103/mm3) | 231.00 (183.00–289.00) | 177.50 (117.00–232.00) | <0.001 |
| MPV (fL) | 10.20 (9.60–10.80) | 10.45 (9.90–11.20) | 0.047 |
| Factors | Odd Ratio (95%CI) | p-Value |
|---|---|---|
| Length of hospital stay (days) | 0.96 (0.92–1.01) | 0.154 |
| Age (years) | 1.11 (1.04–1.19) | 0.002 |
| DBP (mmHg) | 1.05 (0.99–1.11) | 0.072 |
| Na+ (mmol/L) | 0.90 (0.80–1.02) | 0.089 |
| K+ (mmol/L) | 6.27 (1.31–29.93) | 0.021 |
| Creatinine (mg/dL) | 1.62 (1.05–2.50) | 0.028 |
| Alkaline Phosphatase (U/L) | 1.00 (0.99–1.00) | 0.052 |
| Hemoglobin A1c (%) | 1.96 (1.30–2.97) | 0.001 |
| RDW (%) | 1.45 (1.05–2.02) | 0.026 |
| Platelets (×103 cells/ mm3) | 0.98 (0.97–0.99) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiwattanakul, S.; Taweerutchana, R.; Khuancharee, K.; Rojanasang, P.; Suwannarat, P.; Panichchob, P.; Romputtan, P.; Teravaninthorn, N.; Wiriyakunakorn, N.; Chamnanphon, M. Biochemical and Hematological Predictors of Mortality in Thai Patients with COVID-19. Med. Sci. 2025, 13, 281. https://doi.org/10.3390/medsci13040281
Wiwattanakul S, Taweerutchana R, Khuancharee K, Rojanasang P, Suwannarat P, Panichchob P, Romputtan P, Teravaninthorn N, Wiriyakunakorn N, Chamnanphon M. Biochemical and Hematological Predictors of Mortality in Thai Patients with COVID-19. Medical Sciences. 2025; 13(4):281. https://doi.org/10.3390/medsci13040281
Chicago/Turabian StyleWiwattanakul, Supaporn, Rutchaporn Taweerutchana, Kitsarawut Khuancharee, Pornparn Rojanasang, Pongwut Suwannarat, Prapaporn Panichchob, Pornsuk Romputtan, Nopparut Teravaninthorn, Nichapat Wiriyakunakorn, and Monpat Chamnanphon. 2025. "Biochemical and Hematological Predictors of Mortality in Thai Patients with COVID-19" Medical Sciences 13, no. 4: 281. https://doi.org/10.3390/medsci13040281
APA StyleWiwattanakul, S., Taweerutchana, R., Khuancharee, K., Rojanasang, P., Suwannarat, P., Panichchob, P., Romputtan, P., Teravaninthorn, N., Wiriyakunakorn, N., & Chamnanphon, M. (2025). Biochemical and Hematological Predictors of Mortality in Thai Patients with COVID-19. Medical Sciences, 13(4), 281. https://doi.org/10.3390/medsci13040281

