Artificial Intelligence for Risk Stratification in Diffuse Large B-Cell Lymphoma: A Systematic Review of Classification Models and Predictive Performances
Abstract
1. Introduction
2. Methods
2.1. Eligibility Criteria
2.2. Information Sources and Search Strategy
- PubMed/MEDLINE: ((“Lymphoma, Large B-Cell, Diffuse”[Mesh]) AND “Prognosis”[Mesh]) AND “Artificial Intelligence”[Mesh]
- Scopus: TITLE-ABS-KEY ((“diffuse large B-cell lymphoma” OR DLBCL) AND (prognosis OR prognostic) AND (“artificial intelligence” OR “machine learning”))
- Cochrane Library: (“diffuse large B-cell lymphoma” AND prognosis AND “artificial intelligence”)
3. Results
- Clinical Features and Risk Scores (n = 8)—Most of these studies reported logistic regression, ensemble models (e.g., XGBoost, LightGBM), or Bayesian networks to enhance prediction of OS and PFS based on data involving clinical and demographic features.
- Digital Pathology and Optical Imaging (n = 3)—Based on CNNs and MIL models that used hematoxylin and eosin (H&E)-stained whole slide images for diagnosis, decoded cell-of-origin (COO) classification, or served tools for therapy response prediction.
- Conventional Histopathology (n = 2)—Amongst these studies, ML algorithms were used on gene expression signatures or immunohistochemical surrogates to classify COO and predict survival.
- CT conventional imaging (n = 1)—A single study reports a model which focuses on secondary endpoints such as major cardiac events, estimated based on a calculated calcium score.
- PET/CT Imaging (n = 30)—A numerous cohort of studies using machine learning techniques such as deep learning and radiomics-based models to select various prognostic features derived from PET/CT scans. The studies mostly benchmarked their OS and PFS predictive scores to IPI models, outperforming them.
- Transcriptomic and Gene Expression Profiling (n = 19)—Many models included LASSO, autoencoders, and swarm optimization. The outputs ranged from immune subtype classification to gene signature-based survival prediction.
- Specific Genetic Mutations (n = 18)—Various supervised models, incorporating mutational data (e.g., TP53, MYD88, EZH2), aimed at risk stratification with refined molecular subtyping.
- ctDNA and Liquid Biopsy (n = 3)—A small number of reported studies employed ML to predict early relapse or survival using parameters such as the ctDNA burden, clonality, and even fragmentation features.
- microRNA-Based Models (n = 2)—Two studies which used miRNA expression to predict R-CHOP response via Random Forest classification and to diagnose a rare subtype of DLBCL via fluid expression of microRNA.
- Multi-Omics Integration (n = 5)—Integrative models which combine gene expression, methylation, CNVs, and clinical data using ML techniques (e.g., Random Forest, Cox regression) to produce advanced and refined composite prognostic scores.
3.1. Clinical Features and Risk Score Modeling
3.2. Digital Pathology and Optical Imaging
3.3. Conventional Histopathology (Non-Digital)
3.4. CT Conventional Imaging
3.5. PET-CT Imaging
3.6. Gene Expression and Transcriptomic Profiling
3.7. Specific Genetic Mutations
3.8. microRNA Profiling in DLBCL
3.9. Circulating Tumor DNA (ctDNA) Analysis and Liquid Biopsy Applications
3.10. Multi-Omics Integration
3.11. Superiority of AI/ML over Traditional Prognostic Indices
3.12. Model Interpretability and the Path to Clinical Translation
4. Discussions, Future Perspectives
4.1. Synthesis of Findings and Domain-Specific Trends
4.2. Challenges, Knowledge Gaps, and Future Directions
4.3. Strengths and Limitations of the Scoping Review Methodology
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABC | Activated B-cell-like |
| AI | Artificial Intelligence |
| ALB | Albumin |
| ANN | Artificial Neural Network |
| ASPP | Atrous Spatial Pyramid Pooling |
| AUC | Area Under the Curve |
| AUROC | Area Under the Receiver Operating Characteristic Curve |
| BCL-2 | B-cell Lymphoma 2 |
| CAF | Cancer-Associated Fibroblast |
| CACS | Coronary Artery Calcium Score |
| CD20 | Cluster of Differentiation 20 |
| CHAID | Chi-squared Automatic Interaction Detection |
| COO | Cell of Origin |
| CR | Complete Response |
| CVD | Cardiovascular Disease |
| CXR | Chest X-ray |
| DL | Deep Learning |
| DLBCL | Diffuse Large B-cell Lymphoma |
| DSC | Dice Similarity Coefficient |
| ECOG | Eastern Cooperative Oncology Group |
| EFS | Event-Free Survival |
| FISH | Fluorescence In Situ Hybridization |
| FFNN | Feedforward Neural Network |
| FFPE | Formalin-Fixed Paraffin-Embedded |
| FL | Follicular Lymphoma |
| FNN | Fuzzy Neural Network |
| FOXP1 | Forkhead Box Protein P1 |
| GCB | Germinal Center B-cell |
| GEP | Gene Expression Profiling |
| GNN | Graph Neural Network |
| H&E | Hematoxylin and Eosin |
| HGBL | High-Grade B-cell Lymphoma |
| HR | Hazard Ratio |
| ICC | Intraclass Correlation Coefficient |
| IHC | Immunohistochemistry |
| IPI | International Prognostic Index |
| IRF4 | Interferon Regulatory Factor 4 |
| KNN | k-Nearest Neighbors |
| KM | Kaplan–Meier |
| LASSO | Least Absolute Shrinkage and Selection Operator |
| LDH | Lactate Dehydrogenase |
| LR | Logistic Regression |
| MACEs | Major Adverse Cardiovascular Events |
| ML | Machine Learning |
| MLP | Multilayer Perceptron |
| MRI | Magnetic Resonance Imaging |
| MTV | Metabolic Tumor Volume |
| MYC | Myelocytomatosis Viral Oncogene |
| NCCN-IPI | National Comprehensive Cancer Network version of the IPI |
| NF-κB | Nuclear Factor Kappa-light-chain-enhancer of Activated B cells |
| NGTDM | Neighborhood Gray Tone Difference Matrix |
| NN | Neural Network |
| OS | Overall Survival |
| ODC1 | Ornithine Decarboxylase 1 |
| PARS | PET Automated Region Segmentation |
| PCA | Principal Component Analysis |
| PERCIST | PET Response Criteria in Solid Tumors |
| PET/CT | Positron Emission Tomography/Computed Tomography |
| PFS | Progression-Free Survival |
| qRT-PCR | Quantitative Reverse Transcription Polymerase Chain Reaction |
| RF | Random Forest |
| RFS | Relapse-Free Survival |
| R-CHOP | Rituximab, Cyclophosphamide, Doxorubicin, Vincristine, Prednisone |
| RSF | Random Survival Forest |
| scRNA-seq | Single-Cell RNA Sequencing |
| SEER | Surveillance, Epidemiology, and End Results Program |
| SHAP | SHapley Additive exPlanations |
| SHR | Subdistribution Hazard Ratio |
| SOM | Self-Organizing Map |
| SUV | Standardized Uptake Value |
| SUVmax | Maximum Standardized Uptake Value |
| SVC | Support Vector Classifier |
| SVM | Support Vector Machine |
| TLA | Three-Letter Acronym |
| TLG | Total Lesion Glycolysis |
| TMTV | Total Metabolic Tumor Volume |
| TME | Tumor Microenvironment |
| TP53 | Tumor Protein P53 |
| UMAP | Uniform Manifold Approximation and Projection |
| VAF | Variant Allele Frequency |
| VOI | Volume of Interest |
| WSI | Whole-Slide Image |
| XGBoost | Extreme Gradient Boosting |
References
- Tavakkoli, M.; Barta, S.K. 2024 Update: Advances in the Risk Stratification and Management of Large B-cell Lymphoma. Am. J. Hematol. 2023, 98, 1791–1805. [Google Scholar] [CrossRef]
- Zelenetz, A.D.; Gordon, L.I.; Abramson, J.S.; Advani, R.H.; Andreadis, B.; Bartlett, N.L.; Budde, L.E.; Caimi, P.F.; Chang, J.E.; Christian, B.; et al. NCCN Guidelines® Insights: B-Cell Lymphomas 3.2025: Featured Updates to the NCCN Guidelines. J. Natl. Compr. Canc. Netw. 2025, 23, e250048. [Google Scholar] [CrossRef]
- Jebaraj, B.M.C.; Liew, M.; Seyfried, F. Editorial: Reviews in Hematologic Malignancies: 2023. Front. Oncol. 2024, 14, 1412843. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, L.; Guan, Y.Q.; Shen, K.F.; Zhang, M.L.; Cai, H.D.; Wang, J.C.; Wang, Y.; Huang, L.; Cao, Y.; et al. Novel Bioinformatic Classification System for Genetic Signatures Identification in Diffuse Large B-Cell Lymphoma. BMC Cancer 2020, 20, 714. [Google Scholar] [CrossRef]
- Shipp, M.A.; Ross, K.N.; Tamayo, P.; Weng, A.P.; Kutok, J.L.; Aguiar, R.C.T.; Gaasenbeek, M.; Angelo, M.; Reich, M.; Pinkus, G.S.; et al. Diffuse Large B-Cell Lymphoma Outcome Prediction by Gene-Expression Profiling and Supervised Machine Learning. Nat. Med. 2002, 8, 68–74. [Google Scholar] [CrossRef]
- Shouval, R.; Fein, J.A.; Savani, B.; Mohty, M.; Nagler, A. Machine Learning and Artificial Intelligence in Haematology. Br. J. Haematol. 2021, 192, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Biccler, J.L.; Eloranta, S.; de Nully Brown, P.; Frederiksen, H.; Jerkeman, M.; Jørgensen, J.; Jakobsen, L.H.; Smedby, K.E.; Bøgsted, M.; El-Galaly, T.C. Optimizing Outcome Prediction in Diffuse Large B-Cell Lymphoma by Use of Machine Learning and Nationwide Lymphoma Registries: A Nordic Lymphoma Group Study. JCO Clin. Cancer Inform. 2018, 2, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Zhao, Z.; Zhang, Y.; Yu, H.; Zheng, C.; Huang, X.; Yang, Z.; Xing, M.; Lu, Q.; Luo, Y. Probability Calibration-Based Prediction of Recurrence Rate in Patients with Diffuse Large B-Cell Lymphoma. BioData Min. 2021, 14, 38. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Kahttana, I.; Yoon, H.; Chang, S.; Yoon, S.O. Exploring the Potential of Enhanced Prognostic Performance of NCCN-IPI in Diffuse Large B-Cell Lymphoma by Integrating Tumor Microenvironment Markers: Stromal FOXC1 and Tumor pERK1/2 Expression. Cancer Med. 2024, 13, e70305. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.-J.; Zhu, X.-X.; Chen, X.; Sang, W.; Jin, Y.-L. Comparison of Cox Regression and Generalized Cox Regression Models to Machine Learning in Predicting Survival of Children with Diffuse Large B-Cell Lymphoma. Transl. Cancer Res. 2024, 13, 3370–3381. [Google Scholar] [CrossRef]
- Samarina, S.V.; Luchinin, A.S.; Minaeva, N.V.; Paramonov, I.V.; D’yakonov, D.A.; Vaneeva, E.V.; Rosin, V.A.; Gritsaev, S.V. Immunohistochemical subtype and parameters of international prognostic index in the new prognostic model of diffuse large B-Cell lymphoma. Clin. Oncohematol. 2019, 12, 385–390. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, S.; Jiao, Y.; Shi, Y.; Zhang, H.; Wang, F.; Wang, L.; Zhu, T.; Miao, Y.; Sang, W.; et al. LASSO Model Better Predicted the Prognosis of DLBCL than Random Forest Model: A Retrospective Multicenter Analysis of HHLWG. J. Oncol. 2022, 2022, 1618272. [Google Scholar] [CrossRef]
- Zhao, A.; Sun, X.; Cheng, W.; Yang, Y.; Xiang, B.; Niu, T. Epidemiology Characteristics and Clinical Outcomes of Composite Hodgkin Lymphoma and Diffuse Large B-Cell Lymphoma Using Machine Learning. Oncol. 2025, 30, oyae221. [Google Scholar] [CrossRef]
- Zhu, N.; Shen, R.-B.; Chen, J.-F.; Gu, J.-Y.; Xiang, S.-C.; Zhang, Y.; Qian, L.-L.; Guo, Q.; Chen, S.-N.; Shen, J.-P.; et al. Predicting the Risk of Ibrutinib in Combination with R-ICE in Patients with Relapsed or Refractory DLBCL Using Explainable Machine Learning Algorithms. Clin. Exp. Med. 2025, 25, 177. [Google Scholar] [CrossRef]
- Biccler, J.L.; El-Galaly, T.C.; Bøgsted, M.; Jørgensen, J.; de Nully Brown, P.; Poulsen, C.B.; Starklint, J.; Juul, M.B.; Christensen, J.H.; Josefsson, P.; et al. Clinical Prognostic Scores Are Poor Predictors of Overall Survival in Various Types of Malignant Lymphomas. Leuk. Lymphoma 2019, 60, 1580–1583. [Google Scholar] [CrossRef]
- Swiderska-Chadaj, Z.; Hebeda, K.M.; van den Brand, M.; Litjens, G. Artificial Intelligence to Detect MYC Translocation in Slides of Diffuse Large B-Cell Lymphoma. Virchows Arch. 2021, 479, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Song, G.-Y.; Lee, J.; Kang, S.-R.; Moon, K.M.; Choi, Y.-D.; Shen, J.; Noh, M.-G.; Yang, D.-H. Prediction of Immunochemotherapy Response for Diffuse Large B-Cell Lymphoma Using Artificial Intelligence Digital Pathology. J. Pathol. Clin. Res. 2024, 10, e12370. [Google Scholar] [CrossRef]
- Cristian, M.; Așchie, M.; Deacu, M.; Boșoteanu, M.; Bălțătescu, G.I.; Stoica, A.G.; Nicolau, A.A.; Poinăreanu, I.; Orășanu, C.I. Comparison of Ki67 Proliferation Index in Gastrointestinal Non-Hodgkin Large B-Cell Lymphomas: The Conventional Method of Evaluation or AI Evaluation? Diagnostics 2023, 13, 2775. [Google Scholar] [CrossRef]
- Da Costa, C.B.T. Machine Learning Provides an Accurate Classification of Diffuse Large B-Cell Lymphoma from Immunohistochemical Data. J. Pathol. Inform. 2018, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Xue, X.; Zeng, N.; Gao, Z.; Du, M.-Q. Diffuse Large B-Cell Lymphoma: Sub-Classification by Massive Parallel Quantitative RT-PCR. Lab. Investig. 2015, 95, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Lian, Y.; Yin, J.; Zhu, M.; Yang, C.; Tu, C.; Peng, Y.; Li, X.; Zhang, J. Cardiovascular Risk Stratification by Automatic Coronary Artery Calcium Scoring on Pretreatment Chest Computed Tomography in Diffuse Large B-Cell Lymphoma Receiving Anthracycline-Based Chemotherapy: A Multicenter Study. Circ. Cardiovasc. Imaging 2023, 16, e014829. [Google Scholar] [CrossRef]
- Capobianco, N.; Meignan, M.; Cottereau, A.-S.; Vercellino, L.; Sibille, L.; Spottiswoode, B.; Zuehlsdorff, S.; Casasnovas, O.; Thieblemont, C.; Buvat, I. Deep-Learning 18F-FDG Uptake Classification Enables Total Metabolic Tumor Volume Estimation in Diffuse Large b-Cell Lymphoma. J. Nucl. Med. 2021, 62, 30–36. [Google Scholar] [CrossRef]
- Zhao, J.; Zhao, W.; Chen, M.; Rong, J.; Teng, Y.; Chen, J.; Xu, J. 18F-FDG PET Radiomics Score Construction by Automatic Machine Learning for Treatment Response Prediction in Elderly Patients with Diffuse Large B-Cell Lymphoma: A Multicenter Study. J. Cancer Res. Clin. Oncol. 2025, 151, 125. [Google Scholar] [CrossRef]
- Thiery, O.; Rizkallah, M.; Bailly, C.; Bodet-Milin, C.; Itti, E.; Casasnovas, R.-O.; Le Gouill, S.; Carlier, T.; Mateus, D. PET-Based Lesion Graphs Meet Clinical Data: An Interpretable Cross-Attention Framework for DLBCL Treatment Response Prediction. Comput. Med. Imaging Graph. 2025, 120, 102481. [Google Scholar] [CrossRef]
- Chen, J.; Lin, F.; Dai, Z.; Chen, Y.; Fan, Y.; Li, A.; Zhao, C. Survival Prediction in Diffuse Large B-Cell Lymphoma Patients: Multimodal PET/CT Deep Features Radiomic Model Utilizing Automated Machine Learning. J. Cancer Res. Clin. Oncol. 2024, 150, 452. [Google Scholar] [CrossRef]
- Ferrández, M.C.; Golla, S.S.V.; Eertink, J.J.; Wiegers, S.E.; Zwezerijnen, G.J.C.; Heymans, M.W.; Lugtenburg, P.J.; Kurch, L.; Hüttmann, A.; Hanoun, C.; et al. Validation of an Artificial Intelligence–Based Prediction Model Using 5 External PET/CT Datasets of Diffuse Large B-Cell Lymphoma. J. Nucl. Med. 2024, 65, 1802–1807. [Google Scholar] [CrossRef] [PubMed]
- Girum, K.B.; Cottereau, A.-S.; Vercellino, L.; Rebaud, L.; Clerc, J.; Casasnovas, O.; Morschhauser, F.; Thieblemont, C.; Buvat, I. Tumor Location Relative to the Spleen Is a Prognostic Factor in Lymphoma Patients: A Demonstration from the REMARC Trial. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2024, 65, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Carlier, T.; Frécon, G.; Mateus, D.; Rizkallah, M.; Kraeber-Bodéré, F.; Kanoun, S.; Blanc-Durand, P.; Itti, E.; Le Gouill, S.; Casasnovas, R.-O.; et al. Prognostic Value of 18F-FDG PET Radiomics Features at Baseline in PET-Guided Consolidation Strategy in Diffuse Large B-Cell Lymphoma: A Machine-Learning Analysis from the GAINED Study. J. Nucl. Med. 2024, 65, 156–162. [Google Scholar] [CrossRef] [PubMed]
- de Jesus, F.M.; Yin, Y.; Mantzorou-Kyriaki, E.; Kahle, X.U.; de Haas, R.J.; Yakar, D.; Glaudemans, A.W.J.M.; Noordzij, W.; Kwee, T.C.; Nijland, M. Machine Learning in the Differentiation of Follicular Lymphoma from Diffuse Large B-Cell Lymphoma with Radiomic [18F]FDG PET/CT Features. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.-C.; Chen, C.-H.; Hsieh, J.-G.; Jeng, J.-H. Iterated Cross Validation Method for Prediction of Survival in Diffuse Large B-Cell Lymphoma for Small Size Dataset. Sci. Rep. 2023, 13, 1438. [Google Scholar] [CrossRef]
- Detrait, M.Y.; Warnon, S.; Lagasse, R.; Dumont, L.; De Prophétis, S.; Hansenne, A.; Raedemaeker, J.; Robin, V.; Verstraete, G.; Gillain, A.; et al. A Machine Learning Approach in a Monocentric Cohort for Predicting Primary Refractory Disease in Diffuse Large B-Cell Lymphoma Patients. PLoS ONE 2024, 19, e0311261. [Google Scholar] [CrossRef]
- Czibor, S.; Csatlós, Z.; Fábián, K.; Piroska, M.; Györke, T. Volumetric and Textural Analysis of PET/CT in Patients with Diffuse Large B-Cell Lymphoma Highlights the Importance of Novel MTVrate Feature. Nucl. Med. Commun. 2024, 45, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tu, J.; Yao, L.; Peng, L.; Fang, R.; Lu, Y.; He, F.; Xiong, J.; Li, Y. MRI-Based Radiomics Virtual Biopsy for BCL6 in Primary Central Nervous System Lymphoma. Clin. Radiol. 2025, 80, 106746. [Google Scholar] [CrossRef]
- Jiang, C.; Qian, C.; Jiang, Z.; Teng, Y.; Lai, R.; Sun, Y.; Ni, X.; Ding, C.; Xu, Y.; Tian, R. Robust Deep Learning-Based PET Prognostic Imaging Biomarker for DLBCL Patients: A Multicenter Study. Eur. J. Nucl. Med. Mol. Imaging 2023, 50, 3949–3960. [Google Scholar] [CrossRef]
- Luo, Y.; Li, Y.; Yang, Z.; Zhang, Y.; Yu, H.; Zhao, Z.; Yu, K.; Guo, Y.; Wang, X.; Yang, N.; et al. A Multi-View Prognostic Model for Diffuse Large B-Cell Lymphoma Based on Kernel Canonical Correlation Analysis and Support Vector Machine. BMC Cancer 2024, 24, 1495. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, J.; Jin, C.; Zhang, X.; Xue, C.; Zhou, R.; Zhong, Y.; Liu, Y.; He, X.; Zhou, Y.; et al. Stacking Ensemble Learning-Based [(18)F]FDG PET Radiomics for Outcome Prediction in Diffuse Large B-Cell Lymphoma. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 2023, 64, 1603–1609. [Google Scholar] [CrossRef]
- Santiago, R.; Ortiz Jimenez, J.; Forghani, R.; Muthukrishnan, N.; Del Corpo, O.; Karthigesu, S.; Haider, M.Y.; Reinhold, C.; Assouline, S. CT-Based Radiomics Model with Machine Learning for Predicting Primary Treatment Failure in Diffuse Large B-Cell Lymphoma. Transl. Oncol. 2021, 14, 101188. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, X.-Y.; Xu, Y.-C.; Ma, X.-L.; Tian, R. Radiomics Based on 18F-FDG PET for Predicting Treatment Response and Prognosis in Newly Diagnosed Diffuse Large B-Cell Lymphoma Patients: Do Lesion Selection and Segmentation Methods Matter? Quant. Imaging Med. Surg. 2025, 15, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Kuker, R.A.; Lehmkuhl, D.; Kwon, D.; Zhao, W.; Lossos, I.S.; Moskowitz, C.H.; Alderuccio, J.P.; Yang, F. A Deep Learning-Aided Automated Method for Calculating Metabolic Tumor Volume in Diffuse Large B-Cell Lymphoma. Cancers 2022, 14, 5221. [Google Scholar] [CrossRef]
- Pinochet, P.; Eude, F.; Becker, S.; Shah, V.; Sibille, L.; Toledano, M.N.; Modzelewski, R.; Vera, P.; Decazes, P. Evaluation of an Automatic Classification Algorithm Using Convolutional Neural Networks in Oncological Positron Emission Tomography. Front. Med. 2021, 8, 628179. [Google Scholar] [CrossRef]
- Yuan, C.; Zhang, M.; Huang, X.; Xie, W.; Lin, X.; Zhao, W.; Li, B.; Qian, D. Diffuse Large B-Cell Lymphoma Segmentation in PET-CT Images via Hybrid Learning for Feature Fusion. Med. Phys. 2021, 48, 3665–3678. [Google Scholar] [CrossRef]
- Ferrández, M.C.; Golla, S.S.V.; Eertink, J.J.; de Vries, B.M.; Lugtenburg, P.J.; Wiegers, S.E.; Zwezerijnen, G.J.C.; Pieplenbosch, S.; Kurch, L.; Hüttmann, A.; et al. An Artificial Intelligence Method Using FDG PET to Predict Treatment Outcome in Diffuse Large B Cell Lymphoma Patients. Sci. Rep. 2023, 13, 13111. [Google Scholar] [CrossRef]
- Ritter, Z.; Papp, L.; Zámbó, K.; Tóth, Z.; Dezső, D.; Veres, D.S.; Máthé, D.; Budán, F.; Karádi, E.; Balikó, A.; et al. Two-Year Event-Free Survival Prediction in DLBCL Patients Based on In Vivo Radiomics and Clinical Parameters. Front. Oncol. 2022, 12, 820136. [Google Scholar] [CrossRef]
- Jing, F.; Zhang, X.; Liu, Y.; Chen, X.; Zhao, J.; Zhao, X.; Chen, X.; Yuan, H.; Dai, M.; Wang, N.; et al. Baseline 18F-FDG PET/CT Radiomics for Prognosis Prediction in Diffuse Large B Cell Lymphoma with Extranodal Involvement. Clin. Transl. Oncol. 2025, 27, 727–735. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Guo, Y.; Zhang, N.; Huang, X.; Decazes, P.; Becker, S.; Ruan, S. Multi-Scale Feature Similarity-Based Weakly Supervised Lymphoma Segmentation in PET/CT Images. Comput. Biol. Med. 2022, 151, 106230. [Google Scholar] [CrossRef]
- Frood, R.; Clark, M.; Burton, C.; Tsoumpas, C.; Frangi, A.F.; Gleeson, F.; Patel, C.; Scarsbrook, A.F. Discovery of Pre-Treatment FDG PET/CT-Derived Radiomics-Based Models for Predicting Outcome in Diffuse Large B-Cell Lymphoma. Cancers 2022, 14, 1711. [Google Scholar] [CrossRef] [PubMed]
- Girum, K.B.; Rebaud, L.; Cottereau, A.-S.; Meignan, M.; Clerc, J.; Vercellino, L.; Casasnovas, O.; Morschhauser, F.; Thieblemont, C.; Buvat, I. 18F-FDG PET Maximum-Intensity Projections and Artificial Intelligence: A Win-Win Combination to Easily Measure Prognostic Biomarkers in DLBCL Patients. J. Nucl. Med. 2022, 63, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Jemaa, S.; Paulson, J.N.; Hutchings, M.; Kostakoglu, L.; Trotman, J.; Tracy, S.; de Crespigny, A.; Carano, R.A.D.; El-Galaly, T.C.; Nielsen, T.G.; et al. Full Automation of Total Metabolic Tumor Volume from FDG-PET/CT in DLBCL for Baseline Risk Assessments. Cancer Imaging Off. Publ. Int. Cancer Imaging Soc. 2022, 22, 39. [Google Scholar] [CrossRef]
- Jiang, C.; Huang, X.; Li, A.; Teng, Y.; Ding, C.; Chen, J.; Xu, J.; Zhou, Z. Radiomics Signature from [18F]FDG PET Images for Prognosis Predication of Primary Gastrointestinal Diffuse Large B Cell Lymphoma. Eur. Radiol. 2022, 32, 5730–5741. [Google Scholar] [CrossRef]
- Jiang, C.; Li, A.; Teng, Y.; Huang, X.; Ding, C.; Chen, J.; Xu, J.; Zhou, Z. Optimal PET-Based Radiomic Signature Construction Based on the Cross-Combination Method for Predicting the Survival of Patients with Diffuse Large B-Cell Lymphoma. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2902–2916. [Google Scholar] [CrossRef]
- Jing, F.; Liu, Y.; Zhao, X.; Wang, N.; Dai, M.; Chen, X.; Zhang, Z.; Zhang, J.; Wang, J.; Wang, Y. Baseline 18F-FDG PET/CT Radiomics for Prognosis Prediction in Diffuse Large B Cell Lymphoma. EJNMMI Res. 2023, 13, 92. [Google Scholar] [CrossRef]
- Chen, M.; Rong, J.; Zhao, J.; Teng, Y.; Jiang, C.; Chen, J.; Xu, J. PET-Based Radiomic Feature Based on the Cross-Combination Method for Predicting the Mid-Term Efficacy and Prognosis in High-Risk Diffuse Large B-Cell Lymphoma Patients. Front. Oncol. 2024, 14, 1394450. [Google Scholar] [CrossRef]
- Risueno, A.; Hagner, P.R.; Towfic, F.; Fontanillo, C.; Djebbari, A.; Parker, J.S.; Drew, C.; Nowakowski, G.S.; Maurer, M.J.; Cerhan, J.R.; et al. Leveraging Gene Expression Subgroups to Classify DLBCL Patients and Enrich for Clinical Benefit to a Novel Agent. Blood 2020, 135, 1008–1018. [Google Scholar] [CrossRef]
- Cui, H.; Chen, M.; Zhao, M.; Li, B. A Novel Cancer-Associated Fibroblast–Related Gene Signature for Predicting Diffuse Large B Cell Lymphoma Prognosis Using Weighted Gene Co-Expression Network Analysis and Machine Learning. J. Int. Med. Res. 2025, 53, 3000605251331250. [Google Scholar] [CrossRef]
- Carreras, J.; Hamoudi, R. Anomaly Detection and Artificial Intelligence Identified the Pathogenic Role of Apoptosis and RELB Proto-Oncogene, NF-kB Subunit in Diffuse Large B-Cell Lymphoma. BioMedInformatics 2024, 4, 1480–1505. [Google Scholar] [CrossRef]
- Zaccaria, G.M.; Altini, N.; Mezzolla, G.; Vegliante, M.C.; Stranieri, M.; Pappagallo, S.A.; Ciavarella, S.; Guarini, A.; Bevilacqua, V. SurvIAE: Survival Prediction with Interpretable Autoencoders from Diffuse Large B-Cells Lymphoma Gene Expression Data. Comput. Methods Programs Biomed. 2024, 244, 107966. [Google Scholar] [CrossRef] [PubMed]
- Merdan, S.; Subramanian, K.; Ayer, T.; Van Weyenbergh, J.; Chang, A.; Koff, J.L.; Flowers, C. Gene Expression Profiling-Based Risk Prediction and Profiles of Immune Infiltration in Diffuse Large B-Cell Lymphoma. Blood Cancer J. 2021, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Gao, Y.; Chen, Y.; Li, P.; Zeng, Y.; Chen, Y.; Yin, Y.; Jia, Y.; Wang, Y. Development of a Mitochondria-Related Gene Signature for Prognostic Assessment in Diffuse Large B Cell Lymphoma. Front. Oncol. 2025, 15, 1542829. [Google Scholar] [CrossRef]
- He, T.; Geng, J.; Hou, C.; Li, H.; Zhang, H.; Zhao, P.; He, P.; Lu, X. Predictive Biomarkers and Molecular Subtypes in DLBCL: Insights from PCD Gene Expression and Machine Learning. Discov. Oncol. 2025, 16, 542. [Google Scholar] [CrossRef] [PubMed]
- Steen, C.B.; Luca, B.A.; Esfahani, M.S.; Azizi, A.; Sworder, B.J.; Nabet, B.Y.; Kurtz, D.M.; Liu, C.L.; Khameneh, F.; Advani, R.H.; et al. The Landscape of Tumor Cell States and Ecosystems in Diffuse Large B Cell Lymphoma. Cancer Cell 2021, 39, 1422–1437.e10. [Google Scholar] [CrossRef]
- Qi, J.; Xu, L.; Huang, D.; He, H.; Yao, J.; Zhang, J.; Xu, Y.; Yang, L. Defining Diffuse Large B-Cell Lymphoma Immunotypes by CD8+ T Cells and Natural Killer Cells. J. Oncol. 2022, 2022, 3168172. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, Z.; Zhang, J.; Mu, X.; Ai, L. Identification of M2 Macrophage-Related Genes Associated with Diffuse Large B-Cell Lymphoma via Bioinformatics and Machine Learning Approaches. Biol. Direct 2025, 20, 58. [Google Scholar] [CrossRef]
- Bentink, S.; Wessendorf, S.; Schwaenen, C.; Rosolowski, M.; Klapper, W.; Rosenwald, A.; Ott, G.; Banham, A.H.; Berger, H.; Feller, A.C.; et al. Pathway Activation Patterns in Diffuse Large B-Cell Lymphomas. Leukemia 2008, 22, 1746–1754. [Google Scholar] [CrossRef]
- Hopp, L.; Löffler-Wirth, H.; Binder, H. Epigenetic Heterogeneity of B-Cell Lymphoma: DNA Methylation, Gene Expression and Chromatin States. Genes 2015, 6, 812–840. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Cai, X.; Wunsch II, D.C. Gene Expression Data for DLBCL Cancer Survival Prediction with a Combination of Machine Learning Technologies. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005, 2006, 894–897. [Google Scholar]
- Halder, A.; Kumar, A. Active Learning Using Rough Fuzzy Classifier for Cancer Prediction from Microarray Gene Expression Data. J. Biomed. Inform. 2019, 92, 103136. [Google Scholar] [CrossRef] [PubMed]
- Murphy, R.G.; Gilmore, A.; Senevirathne, S.; O’Reilly, P.G.; LaBonte Wilson, M.; Jain, S.; McArt, D.G. Particle Swarm Optimization Artificial Intelligence Technique for Gene Signature Discovery in Transcriptomic Cohorts. Comput. Struct. Biotechnol. J. 2022, 20, 5547–5563. [Google Scholar] [CrossRef]
- Wang, Y.; Tsukamoto, Y.; Hori, M.; Iha, H. Disulfidptosis: A Novel Prognostic Criterion and Potential Treatment Strategy for Diffuse Large B-Cell Lymphoma (DLBCL). Int. J. Mol. Sci. 2024, 25, 7156. [Google Scholar] [CrossRef]
- Zhao, S.; Dong, X.; Shen, W.; Ye, Z.; Xiang, R. Machine Learning-Based Classification of Diffuse Large B-Cell Lymphoma Patients by Eight Gene Expression Profiles. Cancer Med. 2016, 5, 837–852. [Google Scholar] [CrossRef]
- Zhuang, X.; Liu, B.; Long, J.; Wang, H.; Yu, J.; Ji, X.; Li, J.; Zhu, N.; Li, L.; Chen, Y.; et al. Machine-Learning-Based Classification of Diffuse Large B-Cell Lymphoma Patients by a 7-mRNA Signature Enriched with Immune Infiltration and Cell Cycle. Clin. Transl. Oncol. Off. Publ. Fed. Span. Oncol. Soc. Natl. Cancer Inst. Mex. 2024, 26, 936–950. [Google Scholar] [CrossRef]
- Du, K.-X.; Wu, Y.-F.; Hua, W.; Duan, Z.-W.; Gao, R.; Liang, J.-H.; Li, Y.; Yin, H.; Wu, J.-Z.; Shen, H.-R.; et al. Identify Truly High-Risk TP53-Mutated Diffuse Large B Cell Lymphoma Patients and Explore the Underlying Biological Mechanisms. Cell Commun. Signal. 2024, 22, 401. [Google Scholar] [CrossRef]
- Zhu, M.; Xiao, Q.; Cai, X.; Chen, Z.; Shi, Q.; Sun, X.; Xie, X.; Sun, M. Predicting Lymphoma Prognosis Using Machine Learning-Based Genes Associated with Lactylation. Transl. Oncol. 2024, 49, 102102. [Google Scholar] [CrossRef]
- Zhou, Z.-Z.; Lu, J.-C.; Guo, S.-B.; Tian, X.-P.; Li, H.-L.; Zhou, H.; Huang, W.-J. A Mitochondria-Related Signature in Diffuse Large B-Cell Lymphoma: Prognosis, Immune and Therapeutic Features. Cancer Med. 2025, 14, e70602. [Google Scholar] [CrossRef]
- Liang, X.; Guo, J.; Wang, X.; Luo, B.; Fu, R.; Chen, H.; Yang, Y.; Jin, Z.; Lin, C.; Zang, A.; et al. Overexpression of Ornithine Decarboxylase 1 Mediates the Immune-Deserted Microenvironment and Poor Prognosis in Diffuse Large B-Cell Lymphoma. J. Natl. Cancer Cent. 2025, 5, 57–74. [Google Scholar] [CrossRef]
- Albitar, M.; Zhang, H.; Goy, A.; Xu-Monette, Z.Y.; Bhagat, G.; Visco, C.; Tzankov, A.; Fang, X.; Zhu, F.; Dybkaer, K.; et al. Determining Clinical Course of Diffuse Large B-Cell Lymphoma Using Targeted Transcriptome and Machine Learning Algorithms. Blood Cancer J. 2022, 12, 25. [Google Scholar] [CrossRef]
- Carreras, J.; Kikuti, Y.Y.; Miyaoka, M.; Hiraiwa, S.; Tomita, S.; Ikoma, H.; Kondo, Y.; Ito, A.; Nakamura, N.; Hamoudi, R. A Combination of Multilayer Perceptron, Radial Basis Function Artificial Neural Networks and Machine Learning Image Segmentation for the Dimension Reduction and the Prognosis Assessment of Diffuse Large B-Cell Lymphoma. AI Switz. 2021, 2, 106–134. [Google Scholar] [CrossRef]
- Carreras, J.; Kikuti, Y.Y.; Roncador, G.; Miyaoka, M.; Hiraiwa, S.; Tomita, S.; Ikoma, H.; Kondo, Y.; Ito, A.; Shiraiwa, S.; et al. High Expression of Caspase-8 Associated with Improved Survival in Diffuse Large B-Cell Lymphoma: Machine Learning and Artificial Neural Networks Analyses. BioMedInformatics 2021, 1, 18–46. [Google Scholar] [CrossRef]
- Carreras, J.; Hiraiwa, S.; Kikuti, Y.Y.; Miyaoka, M.; Tomita, S.; Ikoma, H.; Ito, A.; Kondo, Y.; Roncador, G.; Garcia, J.F.; et al. Artificial Neural Networks Predicted the Overall Survival and Molecular Subtypes of Diffuse Large B-Cell Lymphoma Using a Pancancer Immune Oncology Panel. Cancers 2021, 13, 6384. [Google Scholar] [CrossRef] [PubMed]
- Carreras, J.; Kikuti, Y.Y.; Miyaoka, M.; Roncador, G.; Garcia, J.F.; Hiraiwa, S.; Tomita, S.; Ikoma, H.; Kondo, Y.; Ito, A.; et al. Integrative Statistics, Machine Learning and Artificial Intelligence Neural Network Analysis Correlated CSF1R with the Prognosis of Diffuse Large B-Cell Lymphoma. Hemato 2021, 2, 182–206. [Google Scholar] [CrossRef]
- Peng, H.; Su, M.; Guo, X.; Shi, L.; Lei, T.; Yu, H.; Xu, J.; Pan, X.; Chen, X. Artificial Intelligence-Based Prognostic Model Accurately Predicts the Survival of Patients with Diffuse Large B-Cell Lymphomas: Analysis of a Large Cohort in China. BMC Cancer 2024, 24, 621. [Google Scholar] [CrossRef]
- Mosquera Orgueira, A.; Díaz Arias, J.Á.; Cid López, M.; Peleteiro Raíndo, A.; Antelo Rodríguez, B.; Aliste Santos, C.; Alonso Vence, N.; Bendaña López, Á.; Abuín Blanco, A.; Bao Pérez, L.; et al. Improved Personalized Survival Prediction of Patients with Diffuse Large B-Cell Lymphoma Using Gene Expression Profiling. BMC Cancer 2020, 20, 1017. [Google Scholar] [CrossRef]
- Stokes, M.E.; Wenzl, K.; Huang, C.C.; Ortiz, M.; Hsu, C.-C.; Maurer, M.J.; Stong, N.; Nakayama, Y.; Wu, L.; Chiu, H.; et al. Transcriptomic Classification of Diffuse Large B-Cell Lymphoma Identifies a High-Risk Activated B-Cell-like Subpopulation with Targetable MYC Dysregulation. Nat. Commun. 2024, 15, 6790. [Google Scholar] [CrossRef]
- Loeffler-Wirth, H.; Kreuz, M.; Hopp, L.; Arakelyan, A.; Haake, A.; Cogliatti, S.B.; Feller, A.C.; Hansmann, M.-L.; Lenze, D.; Möller, P.; et al. A Modular Transcriptome Map of Mature B Cell Lymphomas. Genome Med. 2019, 11, 27. [Google Scholar] [CrossRef]
- Tyryshkin, K.; Moore, A.; Good, D.; Popov, J.; Crocker, S.; Rauh, M.J.; Baetz, T.; LeBrun, D.P. Expression of TCF3 Target Genes Defines a Subclass of Diffuse Large B-Cell Lymphoma Characterized by up-Regulation of MYC Target Genes and Poor Clinical Outcome Following R-CHOP Therapy. Leuk. Lymphoma 2023, 64, 119–129. [Google Scholar] [CrossRef]
- Xu-Monette, Z.Y.; Zhang, H.; Zhu, F.; Tzankov, A.; Bhagat, G.; Visco, C.; Dybkaer, K.; Chiu, A.; Tam, W.; Zu, Y.; et al. A Refined Cell-of-Origin Classifier with Targeted NGS and Artificial Intelligence Shows Robust Predictive Value in DLBCL. Blood Adv. 2020, 4, 3391–3404. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Li, J.; Yamamoto, K.; Goyama, S.; Loza, M.; Park, S.-J.; Nakai, K. Integrative Analysis of Cancer Multimodality Data Identifying COPS5 as a Novel Biomarker of Diffuse Large B-Cell Lymphoma. Front. Genet. 2024, 15, 1407765. [Google Scholar] [CrossRef]
- de Groen, R.A.L.; de Groot, F.A.; Böhringer, S.; Kret, E.J.; de Haan, L.M.; Noordenbos, T.; Blommers, S.; Jansen, R.E.W.; van Wezel, T.; van Eijk, R.; et al. Superior Survival in Diffuse Large B Cell Lymphoma of the Bone with Immune Rich Tumor Microenvironment. Blood Cancer J. 2025, 15, 82. [Google Scholar] [CrossRef]
- Minezaki, T.; Usui, Y.; Asakage, M.; Takanashi, M.; Shimizu, H.; Nezu, N.; Narimatsu, A.; Tsubota, K.; Umazume, K.; Yamakawa, N.; et al. High-throughput Microrna Profiling of Vitreoretinal Lymphoma: Vitreous and Serum Microrna Profiles Distinct from Uveitis. J. Clin. Med. 2020, 9, 1844. [Google Scholar] [CrossRef]
- Nakamura, N.; Hamada, R.; Kaneko, H.; Ohta, S. Selecting Optimum miRNA Panel for miRNA Signature-Based Companion Diagnostic Model to Predict the Response of R-CHOP Treatment in Diffuse Large B-Cell Lymphoma. J. Biosci. Bioeng. 2023, 135, 341–347. [Google Scholar] [CrossRef]
- Meriranta, L.; Alkodsi, A.; Pasanen, A.; Lepistö, M.; Mapar, P.; Blaker, Y.N.; Jørgensen, J.; Karjalainen-Lindsberg, M.-L.; Fiskvik, I.; Mikalsen, L.T.G.; et al. Molecular Features Encoded in the ctDNA Reveal Heterogeneity and Predict Outcome in High-Risk Aggressive B-Cell Lymphoma. Blood 2022, 139, 1863–1877. [Google Scholar] [CrossRef]
- Mutter, J.A.; Alig, S.K.; Esfahani, M.S.; Lauer, E.M.; Mitschke, J.; Kurtz, D.M.; Kühn, J.; Bleul, S.; Olsen, M.; Liu, C.L.; et al. Circulating Tumor DNA Profiling for Detection, Risk Stratification, and Classification of Brain Lymphomas. J. Clin. Oncol. 2023, 41, 1684–1694. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zheng, X.; Liu, X.; Liu, T.; Ke, Z.; Zhu, F.; Wen, Q.; Xin, B.; Li, Q.; Zhang, L. Tissue-Matched IgH Gene Rearrangement of Circulating Tumor DNA Shows Significant Value in Predicting the Progression of Diffuse Large B Cell Lymphoma. Oncologist 2024, 29, e672–e680. [Google Scholar] [CrossRef]
- Futschik, M.E.; Sullivan, M.; Reeve, A.; Kasabov, N. Prediction of Clinical Behaviour and Treatment for Cancers. Appl. Bioinform. 2003, 2, S53–S58. [Google Scholar]
- Mosquera Orgueira, A.; Diaz Arias, J.A.; Cid Lopez, M.; Peleteiro Raindo, A.; Lopez Garcia, A.; Abal Garcia, R.; Gonzalez Perez, M.S.; Antelo Rodriguez, B.; Aliste Santos, C.; Perez Encinas, M.M.; et al. Prognostic Stratification of Diffuse Large B-Cell Lymphoma Using Clinico-Genomic Models: Validation and Improvement of the LymForest-25 Model. HemaSphere 2022, 6, e706. [Google Scholar] [CrossRef]
- Mosquera Orgueira, A.; Díaz Arías, J.Á.; Serrano Martín, R.; Portela Piñeiro, V.; Cid López, M.; Peleteiro Raíndo, A.; Bao Pérez, L.; González Pérez, M.S.; Pérez Encinas, M.M.; Fraga Rodríguez, M.F.; et al. A Prognostic Model Based on Gene Expression Parameters Predicts a Better Response to Bortezomib-Containing Immunochemotherapy in Diffuse Large B-Cell Lymphoma. Front. Oncol. 2023, 13, 1157646. [Google Scholar] [CrossRef]
- Goedhart, J.M.; Klausch, T.; Janssen, J.; van de Wiel, M.A. Adaptive Use of Co-Data Through Empirical Bayes for Bayesian Additive Regression Trees. Stat. Med. 2025, 44, e70004. [Google Scholar] [CrossRef]
- Ouyang, W.; Lai, Z.; Huang, H.; Ling, L. Machine Learning-Based Identification of Cuproptosis-Related lncRNA Biomarkers in Diffuse Large B-Cell Lymphoma. Cell Biol. Toxicol. 2025, 41, 72. [Google Scholar] [CrossRef]
- Liu, R.; Rizzo, S.; Wang, L.; Chaudhary, N.; Maund, S.; Garmhausen, M.R.; McGough, S.; Copping, R.; Zou, J. Characterizing Mutation-Treatment Effects Using Clinico-Genomics Data of 78,287 Patients with 20 Types of Cancers. Nat. Commun. 2024, 15, 10884. [Google Scholar] [CrossRef]
- Eckardt, J.-N.; Röllig, C.; Metzeler, K.; Kramer, M.; Stasik, S.; Georgi, J.-A.; Heisig, P.; Spiekermann, K.; Krug, U.; Braess, J.; et al. Prediction of Complete Remission and Survival in Acute Myeloid Leukemia Using Supervised Machine Learning. Haematologica 2022, 108, 690–704. [Google Scholar] [CrossRef]
- Ilyas, M.; Ramzan, M.; Deriche, M.; Mahmood, K.; Naz, A. An Efficient Leukemia Prediction Method Using Machine Learning and Deep Learning with Selected Features. PLoS ONE 2025, 20, e0320669. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhu, Y.; Liu, H.; Zhang, Y.; Liu, H.; Adegboro, A.A.; Dang, R.; Dai, L.; Wanggou, S.; Li, X. Pan-Cancer Evaluation of Regulated Cell Death to Predict Overall Survival and Immune Checkpoint Inhibitor Response. Npj Precis. Oncol. 2024, 8, 77. [Google Scholar] [CrossRef] [PubMed]


| First Author (Year) | Data Modality | Dataset Size/Source | Input Features | AI/ML Method | Outcome Predicted | Model Performance | Validation Strategy |
|---|---|---|---|---|---|---|---|
| Biccler (2018a) [16] | Clinical | 4420 DLBCL patients/Danish National Lymphoma Registry | Age, stage, LDH, ECOG, extranodal sites, + up to 20 clinical variables | RSF, penalized Cox, CPH | Overall Survival | tAUC > IPI (exact value not provided) | 10-fold cross-validation |
| Biccler (2018b) [8] | Clinical | 5173/Danish + Swedish National Registries | Age, ECOG, LDH, stage, albumin, etc. | Stacked model (CPH, AFT, parametric) | Overall Survival | C-index 0.756 (DK); tAUC ~0.75; IBS 0.131 vs. IPI 0.150 | 10-fold CV + External (SE cohort) |
| Fan (2021) [9] | Clinical + Molecular | 510 training/530 external validation | Age, stage, LDH, β2-microglobulin, extranodal sites, genetic mutations | Logistic regression + ML classifiers (LR, NB, RF, SVM, FFNN) | Overall Survival | C-index 0.71 | External validation cohort |
| Kim (2024) [10] | Clinical + IHC | 134 DLBCL/single-center cohort | NCCN-IPI, stromal FOXC1, tumor pERK1/2 | FastSVM, RF-Survival, Survival Tree, XGBoost, GBoostSurv, Bagging SurvTree | Time to death | C-index 0.801 (NCCN-IPI + FOXC1 + pERK1-2, p = 0.030) | Internal comparison |
| Qin (2024) [11] | Clinical (SEER data) | 836 pediatric DLBCL patients (2000–2019) | Age, sex, Ann Arbor stage, surgery, chemotherapy, radiotherapy, systemic therapy, diagnosis delay | XGBoost, Cox regression, Generalized Cox (NPH, NLL, NPHNLL) | Overall survival | XGBoost AUC: 0.892 (train), 0.889 (validation) | Internal validation (7:3 split) |
| Samarina (2019) [12] | Clinical + IHC (Hans) | 81 DLBCL/single-center (Russia) | IPI risk group, GCB/non-GCB subtype | CART | Overall survival | 2-yr OS: 100% (low risk), 74% (intermediate), 46% (high); median OS 25 mo (high) | Internal comparison only |
| Shen (2022) [13] | Clinical | 1211/7 Chinese centers | Demographic, ECOG, Ann Arbor, CBC indices, albumin, cholesterol, GCB subtype | LASSO (penalized Cox) vs. Random Forest | Overall survival | LASSO AUC 75.8%, C-index 0.704 (train) | Internal split (training vs. validation) |
| Zhu (2025) [15] | Clinical + PET/CT | 28/The First Affiliated Hospital of Zhejiang CMU | CD5+, LDH, ALB, β2-MG, initial response, time to relapse, anemia, stage, etc. | RSF, GBM, Cox-XGBoost, Stepwise Cox | OS and PFS (1–3 yr) | OS AUC (test): 0.863–0.898; PFS AUC (test): 0.769–0.784 | Internal (train/test split) |
| First Author (Year) | Data Modality | Dataset Size/Source | Input Features | AI/ML Method | Outcome Predicted | Model Performance | Validation Strategy |
|---|---|---|---|---|---|---|---|
| Swiderska-Chadaj (2020) [17] | Digital pathology (H&E) | 287 WSIs/11 hospitals (Netherlands) | H&E image morphology | U-Net CNN + Random Forest | MYC rearrangement | Sensitivity 0.90–0.95; Specificity ~0.52 | Internal + external (WSI split) |
| Lee (2024) [18] | Digital pathology + clinical | 251 WSIs from 216 cases/single center (Korea) | WSI morphology (contrastive learning) + clinical (TabNet) | DINO + MIL + TabNet + UMAP (no tumor annotation) | Response to R-CHOP, RFS | AUROC: 0.744 (Histo), 0.856 (Multimodal); AUPRC: 0.935/0.961; log-rank p = 0.041/0.026/0.037 | 5-fold CV + external (TCGA survival) |
| Cristian (2023) [19] | Digital pathology (IHC) | 15 GI lymphoma cases (13 DLBCL, 2 HGBL)/single center | Ki67 IHC images | QuPath (automated quant) | OS and PFS (via Ki67 score) | R2 = 0.87; OS p = 0.0014; PFS p = 0.0028 | Manual vs. AI agreement; survival stratification |
| First Author (Year) | Data Modality | Dataset Size/Source | Input Features | AI/ML Method | Outcome Predicted | Model Performance | Validation Strategy |
|---|---|---|---|---|---|---|---|
| Da Costa (2018) [20] | Conventional histopathology | 475 patients (Visco-Young dataset) | IHC markers: CD10, MUM1, FOXP1 | J48 decision tree | Cell of origin, OS, PFS | Kappa = 0.83; OS p = 0.007; PFS p = 0.017 | 10-fold CV (internal); Kaplan–Meier; Cox model |
| Xue (2015) [21] | Histopathology (qRT-PCR from FFPE) | 143 DLBCL patients (120 R-CHOP treated) | 20 COO classifier genes, 5 NF-κB target genes | SimpleLogistic | COO subtype, OS | OS p = 0.043; elevated NF-κB expression in ABC | External (public GEP datasets) + OS stratification |
| First Author (Year) | Data Modality | Dataset Size/Source | Input Features | AI/ML Method | Outcome Predicted | Model Performance | Validation Strategy |
|---|---|---|---|---|---|---|---|
| Shen (2023) [22] | CT imaging (non-gated) | 1468 DLBCL patients/4 hospitals (Asia) | AI-derived CACS | Automated CACS scoring + regression models | CTRCD and MACEs | OR for CTRCD: 2.59–5.24; SHR for MACE: 3.73–7.86; all p < 0.001 | Internal retrospective stratification + Fine–Gray competing risk models |
| Tool Name | Innovative Features |
|---|---|
| PET automated region segmentation—PARS (Capobianco 2021) [23] | A CNN-based segmentation method which classifies lesions for automated TMTV quantification |
| AutoGluon (Zhao 2025) [24] | An automated machine learning tool which generates radscore and provides treatment response prediction |
| Graph Neural Network with cross-attention fusion (Thiéry 2024) [25] | A graph modeling tool which seeks to examine lesion-level patterns and cross-checks with clinical and imaging data |
| PET-fusion DFR-signature (Chen 2024) [26] | A tool leveraging deep features of combined PET/CT images -> integrated into an AutoML survival prediction model |
| MIP-CNN (Ferrandez 2024) [27] | A CNN centered on maximum intensity projection images (MIPs) without needing a segmentation step |
| Spleen-referenced radiomics (Girum 2024) [28] | A model based on dissemination metrics involving spleen anatomy distances with an OS/PFS prediction model |
| First Author (Year) | Data Modality | Dataset Size/Source | Input Features | AI/ML Method | Outcome Predicted | Model Performance | Validation Strategy |
|---|---|---|---|---|---|---|---|
| Capobianco (2021) [23] | PET/CT | 250 patients (R-CHOP-treated DLBCL) | Radiomic features from baseline PET | LASSO + Cox regression | OS, PFS | C-index 0.74 (OS), 0.72 (PFS) | 10-fold cross-validation |
| Carlier (2024) [29] | PET/CT + Clinical | 545 patients (GAINED study) | PET radiomics + clinical variables | Logistic regression + penalized Cox | 2y PFS | C-index gain minimal with PET radiomics | Internal validation |
| Ferrandez (2023) [43] | PET/CT | 1132 patients from 5 trials | Maximum-intensity projection (MIP) images | CNN (ResNet) | 2y PFS | CNN AUC = 0.66 vs. IPI AUC = 0.60 | External validation (5 trials) |
| Ferrandez (2024) [27] | PET/CT | 177 high-risk DLBCL | PET radiomics | 7 × 7 ML cross-combinations (e.g., LASSO-LASSO) | Mid-treatment response, PFS, OS | RadScore AUC > clinical models | Cross-validation |
| Frood (2022) [47] | PET/CT | 296 patients | Radiomic features (GLSZM, etc.) | Ridge regression | 2y EFS | AUC = 0.75 (val), 0.73 (test) | Split-sample validation |
| Girum (2022) [48] | PET/CT | 382 patients from REMARC and LNH073B | MIP-based surrogate TMTV and Dmax | AI segmentation algorithm | PFS | HRs for sTMTV and sDmax ~11–12 | External validation across trials |
| Girum (2024) [28] | PET/CT | 282 patients from REMARC | SpreadSpleen, Dspleen, sDspleen + TMTV + IPI | AI segmentation + multivariate Cox | PFS, OS | Improved C-index with spleen-relative features | Internal validation |
| Huang (2022) [46] | PET/CT | 147 DLBCL patients (Henri Becquerel Center) | Weakly labeled and fully labeled PET/CT | 3D V-Net + ASPP, Cosine similarity | Tumor segmentation | DSC = 71.47% (avg WS), 75.21% (FS_120) | Experiments: FS_60, WS_60_60, FS_120 |
| Jemaa (2022) [49] | PET/CT + Clinical | 1268 patients from GOYA trial (NCT01287741); training: 846; hold-out: 422 | Deep learning-extracted PET metrics (TMTV, lesion distribution, CNS risk) + IPI components | Fully automated AI-based segmentation and prediction pipeline | 4-year PFS, OS; 2-year CNS relapse risk | PFS HR 1.87 (95% CI: 1.31–2.67); OS HR 2.16 (95% CI: 1.37–3.40); C-index 0.59 vs. 0.55 (vs. IPI); 17.1% 2-year CNS relapse risk | Stratified train–test split (33% hold-out balanced by treatment, IPI, PFS/OS events, TMTV); model selection via univariate Cox PH + LASSO + 5-fold CV; final model tested on hold-out set using C-index and AUC |
| Jesus (2021) [30] | PET/CT Imaging | 120 patients (44 FL, 76 DLBCL); 348 lesions | 79 PET radiomics, 51 CT features, 6 shapes | Gradient Boosting (vs. LR, AdaBoost, XGBoost) | Discrimination of FL vs. DLBCL | AUC = 0.86, Accuracy = 80% (vs. SUVmax AUC = 0.79) | Internal testing with p-value comparison to baseline |
| Jiang (2022) [50] | PET/CT Radiomics | 140 PGI-DLBCL patients, single-center (pre-treatment FDG PET/CT) | 1421 radiomic features from PET (reduced to 5 via ensemble feature selection); combined with metabolic metrics and clinical risk factors | SVM classifier (radiomics signature); multivariate Cox regression (combined model) | Progression-free survival (PFS), overall survival (OS) | Radiomics signature alone significantly associated with OS and PFS (p < 0.05); combined model: PFS C-index = 0.831, OS = 0.877 (validation) | Split into training and validation sets; performance tested with Cox model and decision curve analysis (DCA) |
| Jiang (2022) [51] | PET Radiomics | 383 DLBCL patients from two medical centers (2011–2019) | 3 types of PET radiomics features, metabolic metrics, clinical risk factors | 7 ML classifiers via cross-combination, Cox regression | PFS, OS | Combined model C-index (PFS: 0.801, OS: 0.807); external C-index (PFS: 0.758, OS: 0.794) | Internal and external validation (training and validation cohorts); DCA, calibration curves |
| Jing (2023) [52] | PET/CT Radiomics | 201 DLBCL patients (China) | 1328 radiomics features from baseline 18F-FDG PET/CT; clinical and metabolic variables | LASSO + Cox regression | 2-year progression-free survival (PFS), 5-year overall survival (OS) | Radiomics-only model: C-index PFS = 0.732, OS = 0.759; AUC PFS = 0.768, OS = 0.767; outperformed clinical and metabolic models | Internal validation using hold-out test set |
| Chang (2023) [31] | PET/CT + Clinical data | 122 patients (Taiwan) | IPI, laboratory parameters, MTVsum (from baseline FDG-PET/CT) | Logistic regression, Random Forest, SVC, DNN, FNN | 3-year PFS and 3-year OS (binary classification) | Best accuracy: PFS—71% (SVC, DNN); OS—76% (DNN) | 10-iterated fivefold cross-validation with shuffling |
| Chen (2024) [26] | Fused PET/CT + Clinical | 369 patients (2 centers: Nanjing and Sichuan) | DFR-signature (1000 deep features from fused PET/CT) + NCCN-IPI | AutoML (AutoGluon) | PFS and OS | C-index: PFS—0.784 (train), 0.739 (val); OS—0.831 (train), 0.782 (val) | 10-fold CV; internal validation |
| Chen (2024) [53] | PET Radiomics | 177 high-risk DLBCL patients from 2 centers (2012–2022) | 110 handcrafted PET features + SUVmax, MTV, TLG | 7 × 7 ML cross-combinatorial pipeline (49 models); LASSO–LASSO for RadScore | Mid-term treatment outcome, PFS, OS | AUC (combined model): 0.846 (train), 0.724 (val); RadScore: OR = 7.17; PFS HR = 2.17, OS HR = 2.14 | Random 70:30 split into training (n = 123) and validation (n = 54); KM and Cox analysis |
| Czibor (2024) [33] | PET Radiomics + Clinical | 50 DLBCL patients (baseline [18F]FDG-PET/CT) | MTV, novel MTVrate, LDH, 1st–3rd order texture features from largest lesion VOI | Logistic regression (ML-based prognostic model) | 24-month PFS | AUC = 0.83 (ML model); best individual: MTVrate AUC = 0.74 | ROC analysis; log-rank; subgroup stratification |
| Detrait (2024) [32] | PET/CT + Clinical + Treatment data | 130 DLBCL patients (2017–2022) | Demographics, disease features (Ann Arbor stage, IPI, CMV/EBV), treatment type, early PET-CT after 2 cycles | 5 ML models: Naïve Bayes (categorical), XGBoost, RF, SVM, Logistic Regression | Primary refractory disease | Naïve Bayes: AUC = 0.81, Accuracy = 83%, F1 = 0.82, FPR = 10%; others: XGBoost AUC = 0.74, RF = 0.67 | Performance metrics reported on validation set; no external test cohort |
| Jing (2025) [45] | PET/CT Radiomics + Clinical | 126 DLBCL patients with extranodal involvement (ENI) | 1328 PET/CT radiomics features (PyRadiomics), SDmax, clinical data | LASSO–Cox for feature selection; Cox regression for model building | PFS and OS | Combined model C-index: 0.724 (PFS), 0.842 (OS); radiomics-only: 0.704/0.744; clinical-only: 0.615/0.792 | Internal validation with AIC comparison; bootstrap resampling; KM + log-rank for survival analysis |
| Kuker (2022) [40] | PET/CT (MTV quantification) | 100 newly diagnosed DLBCL patients (Alliance/CALGB 50303 trial) | Automated segmentation of physiologic structures using CT + FDG-PET overlay | Deep convolutional neural network (CNN)-based segmentation (fully automated MTV pipeline) | Agreement with manual MTV and SUVmax quantification | Pearson r ≈ 0.98; ICC = 0.98 vs. both readers; minimal bias on Bland–Altman plots | Internal validation against 2 expert readers (manual MTV assessment); ICC, Pearson r, Bland–Altman analysis |
| Liu (2024) [34] | Brain MRI Radiomics (CE-T1WI, FLAIR) | 102 PCNSL patients (31 BCL6+, 71 BCL6−), single-center | Radiomics from VOI_tumour and VOI_peritumour (CE-T1WI, FLAIR) | LASSO for feature selection; ML classifiers: LR, RF, SVM, KNN | BCL6 gene rearrangement (binary classification) | Best AUC (logistic regression): 0.935 (train), 0.923 (validation) | 7:3 train/validation split; univariate + multivariate logistic regression |
| Luo (2024) [36] | PET/CT + Clinical | 187 newly diagnosed DLBCL patients | Imaging features (PET/CT radiomics), clinical features (age, LDH, ECOG, etc.) | Multi-view learning: SVM with kernel canonical correlation analysis (SVM-2 KCCA) | Prognosis/survival classification | AUC = 0.921; Accuracy = 96.9%; F1 = 92.8%; Sensitivity = 90.9% | Train/test split with comparison to 3 other MVL models; metrics: AUC, accuracy, F1, G-mean |
| Pinochet (2021) [41] | PET/CT (TMTV segmentation) | 119 DLBCL patients (research cohort) + 430 mixed-cancer patients (clinical cohort) | Baseline PET scans; manual vs. automated TMTV using CNN-based PARS prototype | Convolutional Neural Network (CNN) (PARS, Siemens Healthineers, Knoxville, TN, USA) | Prognostic value of automated vs. manual TMTV for PFS and OS | ICC = 0.68 (manual vs. auto TMTV); HR for PFS: 2.1 (auto), 3.3 (manual); Dice score = 0.65 | Internal comparison of automated vs. manual segmentations; survival analysis with HRs and ICCs |
| Ritter (2022) [44] | Baseline PET/CT Radiomics | 85 DLBCL patients (Center 1: training; Center 2: external test set) | Conventional PET metrics + radiomics (e.g., TLG, MTV, NGTDM busyness/coarseness, max diameter) | Automated machine learning (AutoML framework with feature selection and model training) | 2-year event-free survival (EFS) | External test set: AUC = 0.85; Sensitivity = 79%; Specificity = 83%; NPV = 89% | External validation across 2 centers (Center 2 as test set); performance evaluated on EFS prediction |
| Santiago (2021) [38] | Contrast-enhanced CT Radiomics | 52 DLBCL patients (26 refractory, 26 non-refractory); 180 lymph nodes; dual-reader segmentation | 1218 handcrafted radiomic features from manually contoured lymph nodes (PyRadiomics); + nodal site + necrosis | Random Forest classifier with recursive feature elimination and 10-fold CV | Primary Treatment Failure (PTF) | AUC = 0.83 (Reader 1), 0.79 (Reader 2); Accuracy = 73%, Sensitivity = 62%, Specificity = 82% | 70/30 train–test split; dual-reader reproducibility; model trained on Reader 1 and tested on Reader 2 |
| Thiéry (2024) [25] | FDG-PET/CT + Clinical Data | 545 patients from prospective multicenter cohort | Attributed lesion-graphs from baseline PET/CT (multiple lesion nodes); clinical tabular data (IPI, LDH, ECOG, etc.) | Graph Neural Network (GNN) with cross-attention fusion | 2-year progression-free survival (PFS) | Outperformed clinical-only models (exact metrics not stated); interpretable lesion-level attribution | Internal validation; multiple attention configurations tested; interpretable model outputs |
| Yuan (2021) [42] | PET/CT Imaging | 45 patients with DLBCL (multi-region scans: nasopharynx, chest, abdomen) | Multimodal image features from PET and CT, fused via hybrid learning module | Supervised CNN with hybrid feature fusion | Lesion segmentation in DLBCL | Mean DSC = 73.03%; MHD = 4.39 mm; superior to IL, MC, MB, QW baselines | Internal validation with ablation comparisons; region-specific accuracy (≥99%) reported |
| Zhao (2023) [37] | PET Radiomics + Clinical | 240 patients from 2 centers (141 train, 61 internal test, 38 external test) | 830 harmonized PET radiomics features from SUV4.0 segmentation + clinical data (selected via Pearson + LASSO) | Stacking ensemble (SVM, RF, GBDT, AdaBoost with RF meta-learner) | 2-year PFS and OS | External test AUC: PFS = 0.771, OS = 0.725; Accuracy: PFS = 78.9%, OS = 76.3% | Internal and external validation; log-rank tests for KM stratification |
| Zhao (2025) [24] | PET Radiomics | 175 elderly DLBCL patients (≥60 yrs), 1010 lesions, 2 centers | Baseline PET radiomics features, NCCN-IPI, BCL-2, TMTV | AutoML (AutoGluon), multivariable logistic regression | Treatment response | AUC (validation): Radscore = 0.712 vs. SUVmax = 0.616, MTV = 0.639, TLG = 0.657; combined model: significant (p < 0.05) | Train/validation cohorts; lesion-level + patient-level analysis |
| Zhou (2025) [39] | PET Radiomics + Clinical | 522 DLBCL patients (response); 382 (2y-EFS); 1 center | Radiomics from 3 lesion selection + 5 segmentation methods; clinical data | XGBoost with RF feature selection | Treatment response; 2-year EFS | Combined model AUC = 0.908 (response), 0.837 (EFS); clinical only AUC = 0.622–0.636 | Internal split; comparative AUC with Delong test |
| Tool Name (Author, Year) | Innovative Feature |
|---|---|
| RELB Anomaly Classifier (Carreras, 2024) [56] | A tool which identifies survival-linked anomalies via XGBoost and IHC validation |
| CAF Risk Model (Cui, 2025) [55] | A 13-gene CAF-based model with high 1–5y AUC prediction, validated across datasets |
| SurvIAE (Zaccaria, 2024) [57] | A combined autoencoder + MLP framework with explainability; MCC = 0.42 vs. R-IPI = 0.18 |
| EcoTyper (Steen, 2021) [61] | A GEP + scRNA-seq integration to define TME ecosystems with prognostic relevance |
| MitoRG Risk Score (Wang, 2025) [59] | An 8-gene mitochondrial signature linked to OS and immune infiltration |
| First Author (Year) | Data Modality | Dataset Size/Source | Input Features | AI/ML Method | Outcome Predicted | Model Performance | Validation Strategy |
|---|---|---|---|---|---|---|---|
| Bentink (2008) [64] | Gene expression profiling | 220 aggressive B-cell lymphomas (incl. 134 with OS data); validation on 303 external cases (GEO GSE4475) | Expression of 8 conserved oncogene-inducible modules (e.g., MYC.1, E2F3.1, RAS.4, SRC.2, etc.) | Semi-supervised clustering (ISIS), PAP derivation from binary module activation states | PAP subtype classification (BL-PAP, PAP-1 to PAP-4); Overall survival | PAP-1: HR = 0.25 (95% CI: 0.1–0.65); PAP-2: HR = 2.45 (95% CI: 1.16–5.17); E2F3.1 module: HR = 0.47 (p = 0.00003) | External validation on 303 patients using cross-platform transfer of PAP classifiers |
| Carreras (2024) [56] | Gene expression profiling | 414 patients (GSE10846); external: TCGA, GSE57611, GSE31312, GSE117556 | 12 genes identified via anomaly detection (e.g., RELB, UBL7, HYAL2, IGFBP7, TRAPPC1) from apoptosis, MAPK, mTOR, and NF-κB pathways | Anomaly detection, ML classifiers (XGBoost, RF, ANN), Cox regression | Overall survival (OS) | XGBoost: 99.8% accuracy; RF: 98.6%; Cox: HYAL2/UBL7 = poor OS; TRAPPC1/IGFBP7/RELB = good OS (p < 0.01); RELB validated via GSEA and log-rank test | External validation in TCGA, GSE57611; anomaly signature tested in GSE31312, GSE117556; IHC in 30 DLBCL and 10 tonsils |
| Cui (2025) [55] | Gene expression profiling | 412 patients (GSE10846 and GSE11318); validation: GSE53786 | 13 CAF-related genes from WGCNA module of 247 prognostic genes (e.g., FNDC1, IGFBP3, CSTA) | MCP-counter, ESTIMATE, WGCNA, LASSO Cox regression | Overall survival (OS) | AUC = 0.826 (1y), 0.808 (3y), 0.795 (5y); HR = 3.78 (training), HR = 4.01 (validation), both p < 0.001 | Internal split (7:3 ratio), external validation in GSE53786; PCA, t-SNE, ROC, KM, nomogram, STROBE-compliant |
| Halder (2019) [67] | Gene expression profiling | 77 samples (Harvard DLBCL dataset); 58 DLBCL, 19 FL | 7129 gene expression features | ALRFC (Active Learning Rough-Fuzzy Classifier), compared with AL-MI, ALBT-MCSVM, FKNN, FRNN, etc. | Lymphoma subtype (DLBCL vs. FL) | ALRFC: Accuracy = 87.26%, Precision = 0.7992, Recall = 0.8478, F1 = 0.8170, Kappa = 0.5868; outperformed all baselines | Internal validation; model trained with 12–15 actively selected samples |
| He (2024) [60] | Gene expression (PCD-related) | 5 GEO datasets (n = 207 total; 95 train, 72 test); cell line validation in VAL and IM-9 | 1074 DEGs from 1545 PCD-related genes | 12 ML algorithms (XGBoost, GBM, etc.); 91 combinations | DLBCL molecular subtype (C1/C2), prognosis | AUC = 0.7–0.9; high F-scores in test sets | Internal train–test splits; external test cohorts; transcriptome sequencing validation in cell lines |
| Hopp (2015) [65] | Gene expression + DNA methylation | 936 samples (MMML cohort): 5 lymphoma subtypes + B/GCB cells + cell lines | Methylation and expression profiles (Affymetrix U133A; centralized β-values); co-regulated gene clusters | Self-organizing maps (SOM); integrative multi-omics clustering | Lymphoma subtype-specific expression/methylation patterns | SOM modules captured subtype-specific regulatory modes (e.g., hyper/hypomethylation, expression–methylation correlations) | Internal profiling; cross-comparison between lymphoma subtypes and healthy B/GCB cell references |
| Merdan (2021) [58] | Gene expression (RNA-seq) + Immune infiltration | 718 DLBCL patients (Reddy et al. cohort) | Normalized gene expression (≥12,000 genes), IPI, tumor-infiltrating immune cell fractions via CIBERSORT (no B-cells) | Hierarchical clustering, Lasso Cox regression, multivariable survival modeling | Overall survival (OS) | AUC = 0.78 (2y), 0.78 (5y), 0.80 (10y); HR = 2.45 for high- vs. low-risk groups; improved performance when combined with IPI | 70:30 train/test split; multiple clustering strategies; validated with survival metrics, immune infiltration correlation, and KM/log-rank |
| Murphy (2022) [68] | Gene expression (microarray) | 77 samples (58 DLBCL, 19 FL); 7129 genes | DEGs via limma; 250 top-ranked features | Enhanced BPSO (EBPSO) vs. standard BPSO + SVM + LOOCV | DLBCL vs. FL classification | Accuracy = 100% (EBPSO); signature = 5 genes; runtime = 684 s (vs. 1447 s for BPSO); smaller gene sets | 10 repeated runs; compared EBPSO and BPSO on same system; evaluated stability, parsimony, and reproducibility |
| Qi (2022) [62] | Gene expression (microarray) | Training: 432 samples (5 GEO datasets); Testing: 420 (GSE10846) + ICB: GSE35640 | CD8+ T cells, NK cells; 12 gene signatures (e.g., VGF, RAD54L) | RF, SVM, ANN with 5-fold CV; random search tuning | Immune subtype (IS vs. NIS); prognosis; ICB response | AUC = 0.948 (immune subtype classifier); IS had better OS and ICB response (57% vs. 19%) | External validation on GSE10846 (n = 420); immune function/ICB correlation; docking with ZINC15 compounds |
| Risueno (2020) [54] | Transcriptomics (FFPE) | 414 GEP (GSE10846), 245 FFPE NanoString, 94 R/R in trial | Gene expression (26-gene classifier), TME immune composition | RFE-SVM, LDA, NTP, hierarchical clustering | Avadomide response, PFS, Immune-rich subgroup classification | Classifier-positive vs. -negative: ORR 44% vs. 19%, median PFS 6.2 vs. 1.6 months (HR = 0.49, p = 0.0096); Not predictive for R-CHOP or chemo | Internal training (nested CV), Affymetrix-to-NanoString replication, IHC confirmation, clinical validation (NCT01421524) |
| Shipp (2002) [5] | Gene expression profiling | 77 samples (58 DLBCL, 19 FL); Affymetrix oligoarrays | 6817 gene expression features from diagnostic biopsies | Supervised learning (Weighted Voting) | OS (cure vs. fatal/refractory); DLBCL vs. FL classification | 5-year OS: 70% (predicted cured) vs. 12% (refractory); good separation of FL vs. DLBCL | Internal validation with outcome-based classifier development |
| Steen (2021) [61] | Transcriptomics + Single-cell RNA-seq | Bulk RNA-seq cohorts + scRNA-seq (size not specified) | Transcriptomic profiles of malignant B cells and 12 TME cell lineages | EcoTyper (ML framework combining deconvolution and clustering) | Identification of malignant B-cell and TME cell states and ecosystems | Stratified 5 malignant B-cell states and 12 TME lineages into ecosystems with prognostic relevance | Internal validation across multiple cohorts; integration with known COO/genotypic subtypes |
| Wang (2024) [69] | Transcriptomics (DRG-based profiling) | GSE31312 (n = 470), GSE12453 (DLBCL + normal B-cell subsets) | 24 disulfidptosis-related genes (DRGs) → narrowed to 8 prognostic DRGs: CAPZB, DSTN, GYS1, IQGAP1, MYH9, NDUFA11, NDUFS1, OXSM | Unsupervised clustering, LASSO–Cox regression, risk score modeling, RF classifier | Prognostic stratification (OS), immune infiltration profiling | AUC = 0.716 (5-year OS), cluster 3 (low-risk) had best prognosis | Internal validation via consensus clustering, KM analysis, ROC, and immune landscape analysis |
| Wang (2025) [59] | Transcriptomics | GSE56315 (55 DLBCL, 33 normal); GSE10846 (training); GSE11318 and GSE87371 (validation) | 1136 mitochondria-related genes (MitoRGs) → 305 DEGs → 8-gene prognostic signature (e.g., PCK2, NDUFA11, MYH9) | LASSO Cox regression, multivariate Cox, ssGSEA, ROC, Random Forest, consensus clustering | Overall survival (OS); immune infiltration; drug sensitivity | AUC = 0.79 (5-year OS, training); immune and drug response profiles stratified by risk group | External validation in GSE11318 and GSE87371; experimental validation (PCK2 knockdown) |
| Xu (2005) [66] | Transcriptomics (Microarray) | 240 DLBCL patients (GSE10846/Rosenwald et al.): 160 training, 80 test | 7399 gene expression features from diagnostic biopsy samples | PSO for feature selection + PNN classifier | Survival risk group (high vs. low) | 80% accuracy (test); log-rank p < 0.0001 (train and test) | Training: LOOCV; Independent hold-out test set (n = 80) |
| Zaccaria (2024) [57] | Transcriptomics | GSE117556 (n = 928), GSE98588 (n = 137), Schmitz (n = 240), GSE181063 (n = 100+) | DEGs from 9737 shared genes (standardized), SHAP-ranked | Autoencoder (AE) + MLP (SurvIAE), SHAP for XAI | OS and PFS at 12, 36, 60 months | Best MCC = 0.42 (SurvIAE-S-PFS36) vs. 0.18 (R-IPI) | Multiset internal + external validation, comparison to R-IPI |
| Zhang (2025) [63] | Transcriptomics (M2 Macrophage-Associated Genes) | GEO (GSE9327, GSE23647, GSE32018, GSE83632; prognostic validation: GSE181063) | 77 DEGs identified by CIBERSORT and WGCNA modules; 7 biomarkers selected: SMAD3, IL7R, IL18, FAS, CD5, CCR7, CSF1R | LASSO, SVM-RFE, Random Forest; Logistic Regression | Diagnosis and Prognosis of DLBCL | AUCs not explicitly reported; 5 genes (SMAD3, IL7R, IL18, FAS, CD5) significantly predicted OS (p < 0.01); HRs 0.78–0.87 | Prognostic value assessed using Kaplan–Meier and univariate Cox regression in GSE181063 |
| Zhao (2016) [70] | Transcriptomics/Gene Expression | 414 (training) + 855 (validation); GEO datasets | Expression of 8 genes (MYBL1, LMO2, BCL6, MME, IRF4, NFKBIZ, PDE4B, SLA) | SVM with ROC-derived cutoffs | Cell-of-origin subtype (GCB vs. non-GCB) | Concordance with GEP: 94.0% (train), 91.0%/94.4% (validation); significant OS difference by subtype | External validation in 2 independent GEO cohorts (total n = 855); multivariate analysis for IPI independence |
| Zhuang (2024) [71] | Transcriptomics (Gene Expression) | Training: 414 (GSE10846); Validation: GSE34171, GSE87371, GSE31312 | Expression of 7 genes (SERPING1, TIMP2, NME1, DCTPP1, RFC4, POLE2, SNRPD1); subtype (IME vs. CCE) | LASSO, Random Forest, Point-Biserial Correlation for feature selection; SVM for classification | Molecular subtype and OS prognosis | AUC = 0.973, Accuracy = 88.6% (GSE10846); HR > 1.4, p < 0.05 in validation datasets | External validation in 3 independent datasets (GSE34171, GSE87371, GSE31312); multivariate Cox regression applied |
| Tool Name (Author, Year) | Novel Feature |
|---|---|
| Modified Naïve Bayes (Albitar, 2022) [76] | A layered RNA-seq-based 4-group OS classifier, validated across 626 patients |
| 10-algorithm ML framework (Du, 2024) [72] | An assessment tool for TP53 mutation-aware risk model; it integrates VAF, structure, and mutation class |
| Lactylation RiskScore (Zhu, 2024) [73] | A prognostic model integrating lactylation genes and immune markers of the tumoral microenvironment |
| Mitochondria RiskScore (Zhou, 2025) [74] | An 18-gene signature linked to PD-L1, CD20, and therapy response |
| Multi-omics clustering (Liang, 2025) [75] | A tool documenting ODC1 expressors as an aggressive subgroup with immune suppression |
| First Author (Year) | Data Modality | Dataset Size/Source | Input Features | AI/ML Method | Outcome Predicted | Model Performance | Validation Strategy |
|---|---|---|---|---|---|---|---|
| Albitar (2022) [76] | RNA expression + mutations | 626 DLBCL patients (379 nodal, 247 extranodal) | Expression of 1408 genes (RNA-seq from FFPE) | Modified Naïve Bayes + 12-step CV | Survival group classification (4 levels) | HR = 0.237 (2-group model), HR = 0.174 (4-group model); validation: HR = 0.26 (2-group), HR = 0.53 (4-group), all p < 0.01 | Internal training on 379 nodal patients; external validation on 247 extranodal DLBCL; final test on 1/3 of pooled 626-patient set |
| Carreras (2021) [77] | Gene Expression + IHC | 414 patients (GSE10846) + independent Tokai cohort | 54,613 probes reduced to 16-gene signature + PD-L1, IKAROS, BCL2, MYC, CD163, TNFAIP8 | MLP, RBF ANN, logistic regression, Bayesian network, decision trees (CHAID, C&R, QUEST), GSEA | Overall survival, progression-free survival | Final model accuracy: 82.1%; high PD-L1 = poor OS/PFS; high IKAROS = good OS/PFS | Independent validation via IHC quantification and survival stratification |
| Carreras (2021b) [78] | IHC + Gene Expression | 97 DLBCL cases (Tokai Univ); validation: 414 LLMPP cases | Caspase-8 IHC (active p18), related markers (cCASP3, cPARP, E2F1, TP53, TNFAIP8, BCL2, MDM2, etc.) | CHAID tree, Bayesian network, discriminant analysis, C5 tree, logistic regression, MLP, RBF NN | OS, PFS, Caspase-8 expression modeling | >80% accuracy across multiple ML methods | Independent gene expression validation in LLMPP (n = 414); white-box explainability emphasized |
| Carreras (2021c) [79] | Gene Expression (nCounter) | 106 DLBCL cases; external validation on 414 GSE10846 | 730 immune-oncology genes | Multilayer perceptron, RBF neural network, SVM, LR, C5, CHAID, KNN, Bayesian network | OS, COO (GCB vs. ABC) | AUC = 0.98 (OS); AUC = 1 (subtype) | External validation on GSE10846 (414 cases); IHC correlation; multivariate analysis |
| Carreras (2021d) [80] | IHC + Transcriptomics | 198 DLBCL cases (Tokai Hospital) + GSE10846 | CSF1R expression patterns (TAMs vs. diffuse), 10 CSF1R-related markers, transcriptomic correlates | Multilayer perceptron, SVM, regression models | CSF1R pattern prediction; PFS correlation | ML models showed high accuracy; CSF1R-TAMs associated with poor PFS | Internal validation (Tokai cohort); GEO dataset correlation |
| Dai (2024) [87] | Transcriptomics + Functional Genomics | 47 DLBCL patients (TCGA); CRISPR in Raji and SLVL cell lines | COPS5 co-expression and survival; CRISPR knockout | Correlation analysis, survival modeling | Proliferation, overall survival | High COPS5 linked to poor OS (p = 0.0168); growth inhibition in KO models | Kaplan–Meier on TCGA; CRISPR-Cas9 in vitro validation |
| de Groen (2025) [88] | Genomics + Transcriptomics | 106 patients (PB-DLBCL n = 52; polyostotic-DLBCL n = 20; nodal GCB-DLBCL n = 34) | GEP, genomic aberrations, immune gene sets, TME composition | Unsupervised clustering, ssGSEA, CIBERSORTx | Immune TME subtype, survival | Immune-rich cluster associated with superior survival (p = 0.030); p < 0.001 for immune profiling | Transcriptomic profiles validated via IHC (CD3, FOXP3); immune subtypes correlated with clinical outcome |
| Du (2024) [72] | Genomic + Transcriptomic | 2637 public DLBCL pts + 108 JSPH pts; 21 CCLE cell lines | TP53 mutation types, functional class, CNV, VAF, RNA expression | 10 ML methods: LASSO, Ridge, CoxBoost, RSF, Enet, survival-SVM, GBM, plsRcox, SuperPC, stepwise Cox (150 combos) | PFS, OS stratification in TP53-mutated patients | Best models selected by C-index; high VAF, non-missense, LOF/DNE and multi-site mutations associated with poor survival | 5 public + 1 internal + 1 external JSPH cohort; 4:1 train-test split, 10-fold CV |
| Liang (2025) [75] | Multi-omics (genome, transcriptome, scRNA-seq) | 2133 patients (public datasets) | ODC1 expression, CNVs (8p23.1, 9p21.3), stemness/TME markers | ML-based clustering, risk stratification | High-risk subgroup identification, OS, PFS | 3y OS = 54.3% vs. 83.6%, p < 0.0001 | Internal validation, in vitro and single-cell experiments |
| Loeffler-Wirth (2019) [84] | Transcriptomic profiling | 873 B-cell lymphomas (MMML consortium) | Microarray gene expression data | Self-Organizing Map (SOM) clustering | Molecular subtyping; prognostic stratification | Modular PAT classification; phenotypic similarity trees | Unsupervised learning with clinical/pathologic correlation |
| Orgueira (2020) [82] | Transcriptomics + Clinical | 233 training (GSE10846), 64 test (GSE23501) | 4-gene cluster (TNFRSF9, BIRC3, BCL2L1, G3BP2), 50-gene RF signature, COO, clinical variables | Random Forest, Mclust clustering | Overall Survival | c-index = 0.84 (train), 0.79 (test) | External validation on independent GEO cohort |
| Peng (2024) [81] | Clinical + Molecular | 401 patients (single center) | 22 variables including MYC, LDH, AMC, PLT, extranodal sites | Random Survival Forest + Bi-LSTM + Logistic Hazard | OS, PFS | McPM: high C-index, low IBS; sMcPM outperformed IPI for PFS (p < 0.0001 vs. 0.44) | Internal validation (train/test split); model comparison with IPI |
| Stokes (2024) [83] | Transcriptomics + CNAs + Immune scores | 1208 training (MER, REMoDL-B, GOYA, Reddy replication cohorts) | RNA-seq expression, MSigDB pathways, immune cell type scores, CNAs | iClusterPlus (unsupervised clustering); SubLymE (multinomial GLM classifier) | Molecular subtyping and EFS/OS | A7 cluster had significantly inferior EFS (e.g., MER HR = 2.00, p = 0.006); validated across 4 cohorts | External validation in MER, REMoDL-B, GOYA, Reddy cohorts; multivariate Cox models |
| Tyryshkin (2023) [85] | Transcriptomics | Training: 121 (FFPE, KHSC); Validation: 569 (EGA RNA-seq) | 23 transcripts (TCF3-regulated + others) | k-Nearest Neighbors (kNN), clustering | Overall Survival | HR 2.29 (Group A vs. B), C-index 0.70 | External validation on 569 patients from public RNA-seq data |
| Xu-Monette (2020) [86] | Targeted RNA-Seq + clinical | 418 DLBCL patients | Transcriptomic + pathogenetic features | Deep learning (unspecified) | COO subtype, OS prediction | High concordance with Affymetrix and Lymph2Cx COO; NGS survival model stratified 30% as high-risk with poor survival | External validation in 2 independent cohorts |
| Zhang (2020) [4] | Targeted Genomics (NGS) | 342 DLBCL patients, single-center cohort | Mutations/translocations in 46 genes (e.g., MYC, BCL2, BCL6, MYD88, CD79B) | Random Forest | Molecular subgroups; OS stratification | MYC-trans signature: independent adverse factor; worse OS in 3+ sig. group | Internal comparison with Schmitz classification; multivariate survival analysis |
| Zhou (2025) [74] | Transcriptomics—Mitochondria-Related Genes | GSE10846 (n = 412, training); GSE11318 (n = 199); GSE53786 (n = 119) | 1136 MRGs from MitoCarta3.0; 18 prognostic genes (e.g., DNM1L, COX7A1, PDK3, CD20, PD-L1); clinical features (age, stage, LDH, ECOG) | Lasso–Cox regression; k-means clustering; nomogram construction; ROC analysis | OS; immune microenvironment; therapy response prediction | AUC (OS): GSE10846—0.787 (1y), 0.809 (3y), 0.792 (5y); GSE11318—0.715/0.754/0.768; GSE53786—0.815/0.781/0.724; Nomogram AUCs > 0.81 across all sets | External validation (GSE11318, GSE53786); KM analysis; multivariate Cox regression; time-dependent ROC |
| Zhu (2024) [73] | Transcriptomics (Lactylation genes) | TCGA (n = 47), GSE87371 (n = 221), GSE32918 (n = 244) | Expression of lactylation-related genes; clinical data (age, stage, ECOG, LDH); immune infiltration; CD20, PD-L1 expression | LASSO + Cox regression; RiskScore model | OS stratification | AUC (1y/3y/5y): 0.787/0.809/0.792 (train); 0.715–0.840 (val) | External validation in 2 GEO cohorts + TCGA |
| First Author (Year) | Data Modality | Dataset Size/Source | Input Features | AI/ML Method | Outcome Predicted | Model Performance | Validation Strategy |
|---|---|---|---|---|---|---|---|
| Minezaki (2020) [89] | microRNA profiling (vitreous/serum) | 14 VRL vs. 78 controls (uveitis, macular hole, ERM, healthy) | 17 differentially expressed miRNAs | Random Forest | VRL diagnosis vs. controls | Best AUC = 0.921 (miR-361-3p), Accuracy = 0.875 | Internal cross-validation |
| Nakamura (2023) [90] | Circulating miRNA | 152 DLBCL (128 responders/24 non-responders from GSE21848 and GSE40239) | 448 miRNAs analyzed; 36-miRNA panel via Boruta | 11 classifiers incl. RF, SVM, GBDT, LR, NB | R-CHOP response classification | Best AUC = 0.751 (Boruta + RF, 36 miRNAs) | Double cross-validation |
| First Author (Year) | Data Modality | Dataset Size/Source | Input Features | AI/ML Method | Outcome Predicted | Model Performance | Validation Strategy |
|---|---|---|---|---|---|---|---|
| Meriranta (2022) [91] | ctDNA | 101 patients with high-risk DLBCL (FINNISH trial) | ctDNA burden, mutation profile, fragmentation features | Regularized logistic regression | Survival (OS, PFS), MRD monitoring | AUROC 0.86 (2-year OS prediction) | Internal validation (training/test split) |
| Mutter (2022) [92] | ctDNA | 92 CNSL + 44 non-CNSL + 24 healthy controls (160 total) | ctDNA from CSF, plasma, tumor samples | Mutation profiling + ML (CAPP-Seq-based) | CNSL vs. non-CNSL classification | Sensitivity: 59% (CSF), 25% (plasma); High PPV | Internal validation |
| Zhao (2024) [93] | ctDNA (IgH VDJ rearrangement) | 55 DLBCL patients with ctDNA and/or tissue data from China | Dominant circulating/tissue-matched clonotype %, clinical features (e.g., extranodal involvement, IPI, LDH) | Decision Tree | Progression after R-CHOP | AUC = 0.85 (tissue-matched); sensitivity = 0.85; specificity = 0.78 | Internal (10-fold cross-validation) |
| First Author (Year) | Data Modality | Dataset Size/Source | Input Features | AI/ML Method | Outcome Predicted | Model Performance | Validation Strategy |
|---|---|---|---|---|---|---|---|
| Futschik (2003) [94] | Multi-omics (Gene expression + clinical) | 58 DLBCL patients (Affymetrix microarray + IPI) | Gene expression (Affymetrix), IPI score | EFuNN, SVM, kNN, weighted voting, Bayesian classifier | Treatment outcome/survival | Accuracy: 70.7–87.5% | Internal validation |
| Mosquera Orgueira (2022) [95] | Transcriptomics + Mutations + Clinical | 481 patients/UK HMRN cohort (GSE181063) | 17 gene expression features (LymForest-25), IPI, COO, MHG, mutational clusters | PCA, Random Forest, Cox regression | Overall survival (OS) | Best AUCs: 0.82 (5y), 0.81 (0.5–2y) in ≤70y subgroup (LymForest + IPI + COO + MHG) | Bootstrapped internal validation (500 cycles); subgroup analysis by age |
| Mosquera Orgueira (2023) [96] | Transcriptomics + Clinical | REMoDL-B trial (928 patients: 469 R-CHOP, 459 RB-CHOP) | 17-gene expression (modified LymForest-25), CD3 markers, clinical features | Random Forest | Progression-Free Survival (PFS) | C-index: 0.668 (R-CHOP), 0.631 (RB-CHOP); HR 0.70 in 50% high-risk (p = 0.03) | Internal validation; post hoc subgroup analysis |
| Goedhart (2025) [97] | CNV + Mutations + Clinical | 101 DLBCL patients (uniformly treated) | 67 CNVs, 69 mutations, 3 translocations, IPI | EB-coBART (Bayesian trees) | 2-year PFS (binary) | C-index = 0.714 | Internal validation (held-out split) |
| Ouyang (2025) [98] | Transcriptomics (lncRNA) | 831 (TCGA, GSE10846, GSE11318, GSE23501, GSE53786) | Cuproptosis-related lncRNAs (n = 126), selected by RF, LASSO, Boruta | Transformer-based model + Bagging Ensemble | Overall survival | Internal AUC: 0.79 (1y), 0.83 (3y), 0.82 (5y); External AUC: 0.66–0.69 | 5-fold cross-validation, external validation |
| No. | Parameter/Feature | Data Type | Representative Identified Source Studies | Endpoint(s) | Observed Particular Features |
|---|---|---|---|---|---|
| 1 | Age | Clinical | Biccler et al. (Nordic registries) [8]; Shen et al. [13]; Zhao et al. (SEER) [14] | OS, long-term mortality | Consistently retained in RSF, stacked Cox, and LASSO; baseline host factor that improved C-index from ~0.70 (IPI) to ~0.74–0.76 when combined with other vars. |
| 2 | LDH (serum) | Clinical | Shen et al. [13]; Zhu et al. (R/R cohort) [15]; Czibor et al. (PET + labs) [33] | OS, PFS | Proxy for tumor burden; repeatedly ranked among top features even in imaging-augmented models; present in high-AUC models (0.83 for 24-mo PFS in [33]). |
| 3 | ECOG performance status | Clinical | Biccler et al. [8]; Shen et al. [13] | OS | One of only two variables (age + ECOG) that could rival IPI in Biccler; included in stacked survival models with C-index 0.744–0.756. |
| 4 | Extranodal involvement/disease spread | Clinical | Zhao et al. (composite lymphomas) [14]; PET dissemination work (Girum et al.) [28,48] | OS, PFS, treatment failure | Clinical counterpart of radiomic dissemination; AI models tended to give weight to “spread” in both structured and image-derived form. |
| 5 | Baseline PET total metabolic tumor volume (TMTV)/surrogate TMTV | PET/CT radiomics | Capobianco et al. [23]; Girum et al. [48]; Ferrández et al. [27,43]; Jiang et al. [51] | PFS, OS | Core radiomic burden marker; LASSO–Cox models around TMTV reached C-index ~0.74 (OS) and ~0.72 (PFS) [23]; CNN/MIP approaches improved over IPI (AUC 0.66 vs. 0.60) [43]. |
| 6 | Lesion dissemination metrics (Dmax, spleen-referenced distance, SpreadSpleen) | PET/CT radiomics (spatial) | Girum et al. (REMARC, spleen-relative features) [28]; Girum et al. (MIP + AI) [48]; Zhao et al. (stacking) [37] | PFS, early events | Adding spleen-referenced spread improved model C-index over TMTV alone by ~0.05–0.07 and identified very high-risk groups (HR~11–12) [28,48]. |
| 7 | MTVrate/volumetric texture composite | PET/CT radiomics | Czibor et al. [33]; Chen et al. (DFR + AutoML) [26]; Jiang et al. [51] | 24-mo PFS, OS | The MTVrate alone gave AUC 0.74 [33], and the ML model combining it with clinical data reached AUC 0.83; deep-feature radiomics had C-index 0.739–0.784 for PFS [26]. |
| 8 | Multigene/transcriptomic risk signatures (CAF-related, SurvIAE latent features, immune-TME signatures) | Transcriptomics/multi-omics | Cui et al. (CAF 13-gene) [55]; Zaccaria et al. (SurvIAE) [57]; Merdan et al. (immune infiltration) [58]; Wang (mitochondrial) [59]; Zhou (mitochondria-related signature) [74] | OS (1–5 years) | These models frequently reported C-index/AUC in the 0.78–0.87 range, clearly above IPI (~0.60–0.70); they capture biology not present in clinical data. |
| 9 | TP53 mutation-aware composite (mutation class, VAF, multi-site) | Genomic | Du et al. [72] | OS, PFS (TP53-mutated subset) | 10-method ML pipeline showed that TP53 features separated truly high-risk cases within TP53-mutated DLBCL; best models selected by C-index added granularity to “genetic high risk.” |
| 10 | ctDNA burden/fragmentation profile | Liquid biopsy | Meriranta et al. [91] | OS, MRD-related outcomes | Regularized models using ~60 ctDNA-derived variables and reached AUROC 0.86 for 2-year OS—competitive with imaging/multi-omics. |
| 11 | MYC/FISH surrogates from WSI or IHC-derived COO | Digital/conventional pathology | Swiderska-Chadaj et al. (MYC from H&E) [17]; Da Costa et al. (IHC-based COO) [20] | Risk groups, OS | AI replaced expensive tests in triage; sensitivity 0.90–0.95 for MYC-positive cases [17]; IHC-fed decision tree had κ = 0.83 vs. GEP and was prognostic [20]. |
| 12 | Combined PET/CT deep features + NCCN-IPI | Multimodal | Chen et al. (deep-feature PET/CT + AutoML) [26] | OS, PFS | Fusion model: C-index 0.784 (PFS) and 0.831 (OS) train cohort, 0.739/0.782 validation cohort—better than NCCN-IPI alone (≈0.70–0.72). |
| 13 | Time to relapse/R/R setting variables (CD5+, albumin, β2-MG) | Clinical + PET (R/R) | Zhu et al. (R-ICE + ibrutinib) [15] | OS, PFS (1–3 years) | Gradient boosting and Cox-XGBoost reached OS AUC 0.863–0.898 and PFS AUC ~0.77–0.78; CD5+, LDH, albumin, β2-MG repeatedly selected. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, D.-C.; Găman, M.-A. Artificial Intelligence for Risk Stratification in Diffuse Large B-Cell Lymphoma: A Systematic Review of Classification Models and Predictive Performances. Med. Sci. 2025, 13, 280. https://doi.org/10.3390/medsci13040280
Popescu D-C, Găman M-A. Artificial Intelligence for Risk Stratification in Diffuse Large B-Cell Lymphoma: A Systematic Review of Classification Models and Predictive Performances. Medical Sciences. 2025; 13(4):280. https://doi.org/10.3390/medsci13040280
Chicago/Turabian StylePopescu, Dragoș-Claudiu, and Mihnea-Alexandru Găman. 2025. "Artificial Intelligence for Risk Stratification in Diffuse Large B-Cell Lymphoma: A Systematic Review of Classification Models and Predictive Performances" Medical Sciences 13, no. 4: 280. https://doi.org/10.3390/medsci13040280
APA StylePopescu, D.-C., & Găman, M.-A. (2025). Artificial Intelligence for Risk Stratification in Diffuse Large B-Cell Lymphoma: A Systematic Review of Classification Models and Predictive Performances. Medical Sciences, 13(4), 280. https://doi.org/10.3390/medsci13040280
