Unmasking Left Ventricular Diastolic Dysfunction: Pathophysiology, Diagnosis, and Treatment Strategies
Abstract
1. Introduction
2. Physiology of Diastole
2.1. Isovolumic Relaxation
2.2. Rapid Filling
2.3. Diastasis
2.4. Atrial Systole
3. Pathophysiology of Left Ventricular Diastolic Dysfunction
3.1. Impaired Relaxation
3.2. Increased Ventricular Stiffness
4. Diagnosis of Left Ventricular Diastolic Dysfunction
4.1. Invasive Assessment of LVDD
4.2. Echocardiographic Assessment of LVDD
4.3. Left Ventricular Diastolic Strain Imaging
4.4. Diastolic Exercise Stress Echocardiography
4.5. LVDD Assessment in Special Populations
4.6. Assessment of LVDD by Cardiac Magnetic Resonance
5. Progression to HFpEF
6. Treatment Strategies
6.1. LVDD Treatment
6.2. HFpEF Treatment
6.2.1. Pharmacological Therapy
6.2.2. Non-Pharmacological Therapy and Management of Comorbidities
6.2.3. Emerging and Investigational Strategies
7. Future Perspectives
8. Take-Home Messages—Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagueh, S.F.; Smiseth, O.A.; Appleton, C.P.; Byrd, B.F.; Dokainish, H.; Edvardsen, T.; Flachskampf, F.A.; Gillebert, T.C.; Klein, A.L.; Lancellotti, P.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography: An Update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 1321–1360. [Google Scholar] [CrossRef] [PubMed]
- Zile, M.R.; Baicu, C.F.; Gaasch, W.H. Diastolic Heart Failure—Abnormalities in Active Relaxation and Passive Stiffness of the Left Ventricle. N. Engl. J. Med. 2004, 350, 1953–1959. [Google Scholar] [CrossRef] [PubMed]
- Abhayaratna, W.P. Characteristics of Left Ventricular Diastolic Dysfunction in the Community: An Echocardiographic Survey. Heart 2006, 92, 1259–1264. [Google Scholar] [CrossRef] [PubMed]
- Mureddu, G.F.; Agabiti, N.; Rizzello, V.; Forastiere, F.; Latini, R.; Cesaroni, G.; Masson, S.; Cacciatore, G.; Colivicchi, F.; Uguccioni, M.; et al. Prevalence of Preclinical and Clinical Heart Failure in the Elderly. A Population-based Study in Central Italy. Eur. J. Heart Fail. 2012, 14, 718–729. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, E895–E1032. [Google Scholar] [CrossRef]
- Bozkurt, B.; Coats, A.J.; Tsutsui, H.; Abdelhamid, M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; et al. Universal Definition and Classification of Heart Failure. J. Card. Fail. 2021, 27, 387–413. [Google Scholar] [CrossRef]
- Storrow, A.B.; Jenkins, C.A.; Self, W.H.; Alexander, P.T.; Barrett, T.W.; Han, J.H.; McNaughton, C.D.; Heavrin, B.S.; Gheorghiade, M.; Collins, S.P. The Burden of Acute Heart Failure on U.S. Emergency Departments. JACC Heart Fail. 2014, 2, 269–277. [Google Scholar] [CrossRef]
- Owan, T.E.; Hodge, D.O.; Herges, R.M.; Jacobsen, S.J.; Roger, V.L.; Redfield, M.M. Trends in Prevalence and Outcome of Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2006, 355, 251–259. [Google Scholar] [CrossRef]
- Ladeiras-Lopes, R.; Araújo, M.; Sampaio, F.; Leite-Moreira, A.; Fontes-Carvalho, R. The Impact of Diastolic Dysfunction as a Predictor of Cardiovascular Events: A Systematic Review and Meta-Analysis. Rev. Port. Cardiol. 2019, 38, 789–804. [Google Scholar] [CrossRef]
- Zanchetti, A.; Cuspidi, C.; Comarella, L.; Rosei, E.A.; Ambrosioni, E.; Chiariello, M.; Leonetti, G.; Mancia, G.; Pessina, A.C.; Salvetti, A.; et al. Left Ventricular Diastolic Dysfunction in Elderly Hypertensives: Results of the APROS-Diadys Study. J. Hypertens. 2007, 25, 2158–2167. [Google Scholar] [CrossRef]
- Nadruz, W.; Shah, A.M.; Solomon, S.D. Diastolic Dysfunction and Hypertension. Med. Clin. North Am. 2017, 101, 7–17. [Google Scholar] [CrossRef]
- Hoek, A.G.; Dal Canto, E.; Wenker, E.; Bindraban, N.; Handoko, M.L.; Elders, P.J.M.; Beulens, J.W.J. Epidemiology of Heart Failure in Diabetes: A Disease in Disguise. Diabetologia 2024, 67, 574–601. [Google Scholar] [CrossRef] [PubMed]
- Bouthoorn, S.; Valstar, G.B.; Gohar, A.; den Ruijter, H.M.; Reitsma, H.B.; Hoes, A.W.; Rutten, F.H. The Prevalence of Left Ventricular Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction in Men and Women with Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diab Vasc. Dis. Res. 2018, 15, 477–493. [Google Scholar] [CrossRef] [PubMed]
- Pascual, M. Effects of Isolated Obesity on Systolic and Diastolic Left Ventricular Function. Heart 2003, 89, 1152–1156. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, Y.; Wang, Y.; Shi, S.; Li, Y.; Zhang, B.; Wu, H.; Song, Q. Linking Abnormal Fat Distribution with HFpEF and Diastolic Dysfunction: A Systematic Review, Meta-Analysis, and Meta-Regression of Observational Studies. Lipids Health Dis. 2024, 23, 277. [Google Scholar] [CrossRef]
- Sartipy, U.; Dahlström, U.; Fu, M.; Lund, L.H. Atrial Fibrillation in Heart Failure with Preserved, Mid-Range, and Reduced Ejection Fraction. JACC Heart Fail. 2017, 5, 565–574. [Google Scholar] [CrossRef]
- Bajaj, N.S.; Singh, A.; Zhou, W.; Gupta, A.; Fujikura, K.; Byrne, C.; Harms, H.J.; Osborne, M.T.; Bravo, P.; Andrikopolou, E.; et al. Coronary Microvascular Dysfunction, Left Ventricular Remodeling, and Clinical Outcomes in Patients with Chronic Kidney Impairment. Circulation 2020, 141, 21–33. [Google Scholar] [CrossRef]
- van Riet, E.E.S.; Hoes, A.W.; Wagenaar, K.P.; Limburg, A.; Landman, M.A.J.; Rutten, F.H. Epidemiology of Heart Failure: The Prevalence of Heart Failure and Ventricular Dysfunction in Older Adults over Time. A Systematic Review. Eur. J. Heart Fail. 2016, 18, 242–252. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Sanborn, D.Y.; Oh, J.K.; Anderson, B.; Billick, K.; Derumeaux, G.; Klein, A.; Koulogiannis, K.; Mitchell, C.; Shah, A.; et al. Recommendations for the Evaluation of Left Ventricular Diastolic Function by Echocardiography and for Heart Failure with Preserved Ejection Fraction Diagnosis: An Update from the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2025, 38, 537–569. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2023 Focused Update of the 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2023, 44, 3627–3639. [Google Scholar] [CrossRef]
- Robinson, S.; Ring, L.; Oxborough, D.; Harkness, A.; Bennett, S.; Rana, B.; Sutaria, N.; Lo Giudice, F.; Shun-Shin, M.; Paton, M.; et al. The Assessment of Left Ventricular Diastolic Function: Guidance and Recommendations from the British Society of Echocardiography. Echo Res. Pract. 2024, 11, 16. [Google Scholar] [CrossRef]
- Nagueh, S.F. Left Ventricular Diastolic Function. JACC Cardiovasc. Imaging 2020, 13, 228–244. [Google Scholar] [CrossRef] [PubMed]
- Notomi, Y.; Popović, Z.B.; Yamada, H.; Wallick, D.W.; Martin, M.G.; Oryszak, S.J.; Shiota, T.; Greenberg, N.L.; Thomas, J.D. Ventricular Untwisting: A Temporal Link between Left Ventricular Relaxation and Suction. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H505–H513. [Google Scholar] [CrossRef] [PubMed]
- Firstenberg, M.S.; Smedira, N.G.; Greenberg, N.L.; Prior, D.L.; McCarthy, P.M.; Garcia, M.J.; Thomas, J.D. Relationship Between Early Diastolic Intraventricular Pressure Gradients, an Index of Elastic Recoil, and Improvements in Systolic and Diastolic Function. Circulation 2001, 104, I-330–I-335. [Google Scholar] [CrossRef] [PubMed]
- Silbiger, J.J. Pathophysiology and Echocardiographic Diagnosis of Left Ventricular Diastolic Dysfunction. J. Am. Soc. Echocardiogr. 2019, 32, 216–232.e2. [Google Scholar] [CrossRef]
- Kass, D.A.; Bronzwaer, J.G.F.; Paulus, W.J. What Mechanisms Underlie Diastolic Dysfunction in Heart Failure? Circ. Res. 2004, 94, 1533–1542. [Google Scholar] [CrossRef]
- Zile, M.R.; Brutsaert, D.L. New Concepts in Diastolic Dysfunction and Diastolic Heart Failure: Part II. Circulation 2002, 105, 1503–1508. [Google Scholar] [CrossRef]
- Hay, I.; Rich, J.; Ferber, P.; Burkhoff, D.; Maurer, M.S. Role of Impaired Myocardial Relaxation in the Production of Elevated Left Ventricular Filling Pressure. Am. J. Physiol. Heart Circ. Physiol. 2005, 288, H1203–H1208. [Google Scholar] [CrossRef]
- Little, S.C.; Biesiadecki, B.J.; Kilic, A.; Higgins, R.S.D.; Janssen, P.M.L.; Davis, J.P. The Rates of Ca2+ Dissociation and Cross-Bridge Detachment from Ventricular Myofibrils as Reported by a Fluorescent Cardiac Troponin C. J. Biol. Chem. 2012, 287, 27930–27940. [Google Scholar] [CrossRef]
- Luo, M.; Anderson, M.E. Mechanisms of Altered Ca2+ Handling in Heart Failure. Circ. Res. 2013, 113, 690–708. [Google Scholar] [CrossRef] [PubMed]
- Hamdani, N.; Bishu, K.G.; von Frieling-Salewsky, M.; Redfield, M.M.; Linke, W.A. Deranged Myofilament Phosphorylation and Function in Experimental Heart Failure with Preserved Ejection Fraction. Cardiovasc. Res. 2013, 97, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.H.; Lindsey, M.L. Titin Phosphorylation. Circ. Res. 2009, 105, 611–613. [Google Scholar] [CrossRef] [PubMed]
- Hamdani, N.; Paulus, W.J. Myocardial Titin and Collagen in Cardiac Diastolic Dysfunction. Circulation 2013, 128, 5–8. [Google Scholar] [CrossRef]
- Deswal, A. Diastolic Dysfunction and Diastolic Heart Failure: Mechanisms and Epidemiology. Curr. Cardiol. Rep. 2005, 7, 178–183. [Google Scholar] [CrossRef]
- Zile, M.R.; Baicu, C.F.; Ikonomidis, J.S.; Stroud, R.E.; Nietert, P.J.; Bradshaw, A.D.; Slater, R.; Palmer, B.M.; Van Buren, P.; Meyer, M.; et al. Myocardial Stiffness in Patients with Heart Failure and a Preserved Ejection Fraction. Circulation 2015, 131, 1247–1259. [Google Scholar] [CrossRef]
- Caporizzo, M.A.; Chen, C.Y.; Bedi, K.; Margulies, K.B.; Prosser, B.L. Microtubules Increase Diastolic Stiffness in Failing Human Cardiomyocytes and Myocardium. Circulation 2020, 141, 902–915. [Google Scholar] [CrossRef]
- Malik, M.K.; Kinno, M.; Liebo, M.; Yu, M.D.; Syed, M. Evolving Role of Myocardial Fibrosis in Heart Failure with Preserved Ejection Fraction. Front. Cardiovasc. Med. 2025, 12, 1573346. [Google Scholar] [CrossRef]
- Kottam, A.; Hanneman, K.; Schenone, A.; Daubert, M.A.; Sidhu, G.D.; Gropler, R.J.; Garcia, M.J. State-of-the-Art Imaging of Infiltrative Cardiomyopathies: A Scientific Statement from the American Heart Association. Circ. Cardiovasc. Imaging 2023, 16, E000081. [Google Scholar] [CrossRef]
- Flachskampf, F.A.; Biering-Sørensen, T.; Solomon, S.D.; Duvernoy, O.; Bjerner, T.; Smiseth, O.A. Cardiac Imaging to Evaluate Left Ventricular Diastolic Function. JACC Cardiovasc. Imaging 2015, 8, 1071–1093. [Google Scholar] [CrossRef]
- Pieske, B.; Tschöpe, C.; de Boer, R.A.; Fraser, A.G.; Anker, S.D.; Donal, E.; Edelmann, F.; Fu, M.; Guazzi, M.; Lam, C.S.P.; et al. How to Diagnose Heart Failure with Preserved Ejection Fraction: The HFA–PEFF Diagnostic Algorithm: A Consensus Recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC). Eur. Heart J. 2019, 40, 3297–3317. [Google Scholar] [CrossRef]
- Jones, R.; Varian, F.; Alabed, S.; Morris, P.; Rothman, A.; Swift, A.J.; Lewis, N.; Kyriacou, A.; Wild, J.M.; Al-Mohammad, A.; et al. Meta-analysis of Echocardiographic Quantification of Left Ventricular Filling Pressure. ESC Heart Fail. 2021, 8, 566–576. [Google Scholar] [CrossRef]
- Andersen, O.S.; Smiseth, O.A.; Dokainish, H.; Abudiab, M.M.; Schutt, R.C.; Kumar, A.; Sato, K.; Harb, S.; Gude, E.; Remme, E.W.; et al. Estimating Left Ventricular Filling Pressure by Echocardiography. J. Am. Coll. Cardiol. 2017, 69, 1937–1948. [Google Scholar] [CrossRef]
- Yeung, D.F.; Jiang, R.; Behnami, D.; Jue, J.; Sharma, R.; Turaga, M.; Luong, C.L.; Tsang, M.Y.C.; Gin, K.G.; Girgis, H.; et al. Impact of the Updated Diastolic Function Guidelines in the Real World. Int. J. Cardiol. 2021, 326, 124–130. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Sun, H.; Kopelen, H.A.; Middleton, K.J.; Khoury, D.S. Hemodynamic Determinants of the Mitral Annulus Diastolic Velocities by Tissue Doppler. J. Am. Coll. Cardiol. 2001, 37, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, H.; Little, W.C.; Ohno, M.; Brucks, S.; Morimoto, A.; Cheng, H.-J.; Cheng, C.-P. Diastolic Mitral Annular Velocity during the Development of Heart Failure. J. Am. Coll. Cardiol. 2003, 41, 1590–1597. [Google Scholar] [CrossRef]
- Ariza, J.; Casanova, M.A.; Esteban, F.; Ciudad, M.M.; Trapiello, L.; Herrera, N. Peak Early Diastolic Mitral Annulus Velocity by Tissue Doppler Imaging for the Assessment of Left Ventricular Relaxation in Subjects with Mitral Annulus Calcification. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 804–811. [Google Scholar] [CrossRef] [PubMed]
- Reuss, C.S.; Wilansky, S.M.; Lester, S.J.; Lusk, J.L.; Grill, D.E.; Oh, J.K.; Tajik, A.J. Using Mitral “annulus Reversus” to Diagnose Constrictive Pericarditis. Eur. J. Echocardiogr. 2009, 10, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Kasner, M.; Westermann, D.; Steendijk, P.; Gaub, R.; Wilkenshoff, U.; Weitmann, K.; Hoffmann, W.; Poller, W.; Schultheiss, H.-P.; Pauschinger, M.; et al. Utility of Doppler Echocardiography and Tissue Doppler Imaging in the Estimation of Diastolic Function in Heart Failure with Normal Ejection Fraction. Circulation 2007, 116, 637–647. [Google Scholar] [CrossRef]
- Rivas-Gotz, C.; Manolios, M.; Thohan, V.; Nagueh, S.F. Impact of Left Ventricular Ejection Fraction on Estimation of Left Ventricular Filling Pressures Using Tissue Doppler and Flow Propagation Velocity. Am. J. Cardiol. 2003, 91, 780–784. [Google Scholar] [CrossRef]
- Wu, V.C.-C.; Huang, Y.-C.; Wang, C.-L.; Huang, Y.-C.; Lin, Y.-S.; Kuo, C.-F.; Chen, S.-W.; Wu, M.; Wen, M.-S.; Huang, Y.-T.; et al. Association of Echocardiographic Parameter E/e′ with Cardiovascular Events in a Diverse Population of Inpatients and Outpatients with and Without Cardiac Diseases and Risk Factors. J. Am. Soc. Echocardiogr. 2023, 36, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Abudiab, M.M.; Chebrolu, L.H.; Schutt, R.C.; Nagueh, S.F.; Zoghbi, W.A. Doppler Echocardiography for the Estimation of LV Filling Pressure in Patients with Mitral Annular Calcification. JACC Cardiovasc. Imaging 2017, 10, 1411–1420. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, K.A.; Mooney, D.J.; Russell, A.E.; MacIsaac, A.I.; Aylward, P.E.; Prior, D.L. Abnormal Septal Motion Affects Early Diastolic Velocities at the Septal and Lateral Mitral Annulus, and Impacts on Estimation of the Pulmonary Capillary Wedge Pressure. J. Am. Soc. Echocardiogr. 2005, 18, 445–453. [Google Scholar] [CrossRef]
- Cameli, M.; Sparla, S.; Losito, M.; Righini, F.M.; Menci, D.; Lisi, M.; D’Ascenzi, F.; Focardi, M.; Favilli, R.; Pierli, C.; et al. Correlation of Left Atrial Strain and Doppler Measurements with Invasive Measurement of Left Ventricular End-Diastolic Pressure in Patients Stratified for Different Values of Ejection Fraction. Echocardiography 2016, 33, 398–405. [Google Scholar] [CrossRef]
- Kurt, M.; Tanboga, I.H.; Aksakal, E.; Kaya, A.; Isik, T.; Ekinci, M.; Bilen, E. Relation of Left Ventricular End-Diastolic Pressure and N-Terminal pro-Brain Natriuretic Peptide Level with Left Atrial Deformation Parameters. Eur. Heart J. Cardiovasc. Imaging 2012, 13, 524–530. [Google Scholar] [CrossRef]
- Brecht, A.; Oertelt-Prigione, S.; Seeland, U.; Rücke, M.; Hättasch, R.; Wagelöhner, T.; Regitz-Zagrosek, V.; Baumann, G.; Knebel, F.; Stangl, V. Left Atrial Function in Preclinical Diastolic Dysfunction: Two-Dimensional Speckle-Tracking Echocardiography–Derived Results from the BEFRI Trial. J. Am. Soc. Echocardiogr. 2016, 29, 750–758. [Google Scholar] [CrossRef]
- Dal Canto, E.; Remmelzwaal, S.; van Ballegooijen, A.J.; Handoko, M.L.; Heymans, S.; van Empel, V.; Paulus, W.J.; Nijpels, G.; Elders, P.; Beulens, J.W. Diagnostic Value of Echocardiographic Markers for Diastolic Dysfunction and Heart Failure with Preserved Ejection Fraction. Heart Fail. Rev. 2022, 27, 207–218. [Google Scholar] [CrossRef]
- Wakami, K.; Ohte, N.; Asada, K.; Fukuta, H.; Goto, T.; Mukai, S.; Narita, H.; Kimura, G. Correlation between Left Ventricular End-Diastolic Pressure and Peak Left Atrial Wall Strain during Left Ventricular Systole. J. Am. Soc. Echocardiogr. 2009, 22, 847–851. [Google Scholar] [CrossRef]
- Smiseth, O.A.; Morris, D.A.; Cardim, N.; Cikes, M.; Delgado, V.; Donal, E.; Flachskampf, F.A.; Galderisi, M.; Gerber, B.L.; Gimelli, A.; et al. Multimodality Imaging in Patients with Heart Failure and Preserved Ejection Fraction: An Expert Consensus Document of the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2022, 23, e34–e61. [Google Scholar] [CrossRef]
- Nagueh, S.F.; Khan, S.U. Left Atrial Strain for Assessment of Left Ventricular Diastolic Function. JACC Cardiovasc. Imaging 2023, 16, 691–707. [Google Scholar] [CrossRef]
- Singh, A.; Medvedofsky, D.; Mediratta, A.; Balaney, B.; Kruse, E.; Ciszek, B.; Shah, A.P.; Blair, J.E.; Maffessanti, F.; Addetia, K.; et al. Peak Left Atrial Strain as a Single Measure for the Non-Invasive Assessment of Left Ventricular Filling Pressures. Int. J. Cardiovasc. Imaging 2019, 35, 23–32. [Google Scholar] [CrossRef]
- Singh, A.; Addetia, K.; Maffessanti, F.; Mor-Avi, V.; Lang, R.M. LA Strain for Categorization of LV Diastolic Dysfunction. JACC Cardiovasc. Imaging 2017, 10, 735–743. [Google Scholar] [CrossRef]
- Morris, D.A.; Belyavskiy, E.; Aravind-Kumar, R.; Kropf, M.; Frydas, A.; Braunauer, K.; Marquez, E.; Krisper, M.; Lindhorst, R.; Osmanoglou, E.; et al. Potential Usefulness and Clinical Relevance of Adding Left Atrial Strain to Left Atrial Volume Index in the Detection of Left Ventricular Diastolic Dysfunction. JACC Cardiovasc. Imaging 2018, 11, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- Shin, S.; Claggett, B.; Inciardi, R.M.; Santos, A.B.S.; Shah, S.J.; Zile, M.R.; Pfeffer, M.A.; Shah, A.M.; Solomon, S.D. Prognostic Value of Minimal Left Atrial Volume in Heart Failure with Preserved Ejection Fraction. J. Am. Heart Assoc. 2021, 10, e019545. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Nishimura, R.A.; Chaliki, H.P.; Appleton, C.P.; Holmes, D.R.; Redfield, M.M. Determination of Left Ventricular Filling Pressure by Doppler Echocardiography in Patients with Coronary Artery Disease: Critical Role of Left Ventricular Systolic Function. J. Am. Coll. Cardiol. 1997, 30, 1819–1826. [Google Scholar] [CrossRef]
- HA, J.; AHN, J.; MOON, J.; SUH, H.; KANG, S.; RIM, S.; JANG, Y.; CHUNG, N.; SHIM, W.; CHO, S. Triphasic Mitral Inflow Velocity with Mid-Diastolic Flow: The Presence of Mid-Diastolic Mitral Annular Velocity Indicates Advanced Diastolic Dysfunction. Eur. J. Echocardiogr. 2006, 7, 16–21. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Kraigher-Krainer, E.; Shah, A.M.; Gupta, D.K.; Santos, A.; Claggett, B.; Pieske, B.; Zile, M.R.; Voors, A.A.; Lefkowitz, M.P.; Packer, M.; et al. Impaired Systolic Function by Strain Imaging in Heart Failure with Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2014, 63, 447–456. [Google Scholar] [CrossRef]
- Wang, J.; Khoury, D.S.; Thohan, V.; Torre-Amione, G.; Nagueh, S.F. Global Diastolic Strain Rate for the Assessment of Left Ventricular Relaxation and Filling Pressures. Circulation 2007, 115, 1376–1383. [Google Scholar] [CrossRef]
- Park, T.-H.; Nagueh, S.F.; Khoury, D.S.; Kopelen, H.A.; Akrivakis, S.; Nasser, K.; Ren, G.; Frangogiannis, N.G. Impact of Myocardial Structure and Function Postinfarction on Diastolic Strain Measurements: Implications for Assessment of Myocardial Viability. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H724–H731. [Google Scholar] [CrossRef][Green Version]
- Dokainish, H.; Sengupta, R.; Pillai, M.; Bobek, J.; Lakkis, N. Usefulness of New Diastolic Strain and Strain Rate Indexes for the Estimation of Left Ventricular Filling Pressure. Am. J. Cardiol. 2008, 101, 1504–1509. [Google Scholar] [CrossRef]
- Ersbøll, M.; Andersen, M.J.; Valeur, N.; Mogensen, U.M.; Fakhri, Y.; Thune, J.J.; Møller, J.E.; Hassager, C.; Søgaard, P.; Køber, L. Early Diastolic Strain Rate in Relation to Systolic and Diastolic Function and Prognosis in Acute Myocardial Infarction: A Two-Dimensional Speckle-Tracking Study. Eur. Heart J. 2014, 35, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Obokata, M.; Kane, G.C.; Reddy, Y.N.V.; Olson, T.P.; Melenovsky, V.; Borlaug, B.A. Role of Diastolic Stress Testing in the Evaluation for Heart Failure with Preserved Ejection Fraction. Circulation 2017, 135, 825–838. [Google Scholar] [CrossRef] [PubMed]
- Gibby, C.; Wiktor, D.M.; Burgess, M.; Kusunose, K.; Marwick, T.H. Quantitation of the Diastolic Stress Test: Filling Pressure vs. Diastolic Reserve. Eur. Heart J. Cardiovasc. Imaging 2013, 14, 223–227. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lancellotti, P.; Pellikka, P.A.; Budts, W.; Chaudhry, F.A.; Donal, E.; Dulgheru, R.; Edvardsen, T.; Garbi, M.; Ha, J.W.; Kane, G.C.; et al. The Clinical Use of Stress Echocardiography in Non-Ischaemic Heart Disease: Recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J. Am. Soc. Echocardiogr. 2017, 30, 101–138. [Google Scholar] [CrossRef]
- Choi, E.-Y.; Shim, C.Y.; Kim, S.-A.; Rhee, S.J.; Choi, D.; Rim, S.-J.; Jang, Y.; Chung, N.; Cho, S.-Y.; Ha, J.-W. Passive Leg-Raise Is Helpful to Identify Impaired Diastolic Functional Reserve During Exercise in Patients with Abnormal Myocardial Relaxation. J. Am. Soc. Echocardiogr. 2010, 23, 523–530. [Google Scholar] [CrossRef]
- Merli, E.; Ciampi, Q.; Scali, M.C.; Zagatina, A.; Merlo, P.M.; Arbucci, R.; Daros, C.B.; de Castro e Silva Pretto, J.L.; Amor, M.; Salamè, M.F.; et al. Pulmonary Congestion During Exercise Stress Echocardiography in Ischemic and Heart Failure Patients. Circ. Cardiovasc. Imaging 2022, 15, 304–313. [Google Scholar] [CrossRef]
- Ritzema, J.L.; Richards, A.M.; Crozier, I.G.; Frampton, C.F.; Melton, I.C.; Doughty, R.N.; Stewart, J.T.; Eigler, N.; Whiting, J.; Abraham, W.T.; et al. Serial Doppler Echocardiography and Tissue Doppler Imaging in the Detection of Elevated Directly Measured Left Atrial Pressure in Ambulant Subjects with Chronic Heart Failure. JACC Cardiovasc. Imaging 2011, 4, 927–934. [Google Scholar] [CrossRef]
- Burgess, M.I.; Jenkins, C.; Sharman, J.E.; Marwick, T.H. Diastolic Stress Echocardiography: Hemodynamic Validation and Clinical Significance of Estimation of Ventricular Filling Pressure with Exercise. J. Am. Coll. Cardiol. 2006, 47, 1891–1900. [Google Scholar] [CrossRef]
- Talreja, D.R.; Nishimura, R.A.; Oh, J.K. Estimation of Left Ventricular Filling Pressure with Exercise by Doppler Echocardiography in Patients with Normal Systolic Function: A Simultaneous Echocardiographic–Cardiac Catheterization Study. J. Am. Soc. Echocardiogr. 2007, 20, 477–479. [Google Scholar] [CrossRef]
- Holland, D.J.; Prasad, S.B.; Marwick, T.H. Prognostic Implications of Left Ventricular Filling Pressure with Exercise. Circ. Cardiovasc. Imaging 2010, 3, 149–156. [Google Scholar] [CrossRef]
- Shim, C.Y.; Kim, S.-A.; Choi, D.; Yang, W.-I.; Kim, J.-M.; Moon, S.-H.; Lee, H.-J.; Park, S.; Choi, E.-Y.; Chung, N.; et al. Clinical Outcomes of Exercise-Induced Pulmonary Hypertension in Subjects with Preserved Left Ventricular Ejection Fraction: Implication of an Increase in Left Ventricular Filling Pressure during Exercise. Heart 2011, 97, 1417–1424. [Google Scholar] [CrossRef]
- Luong, C.L.; Anand, V.; Padang, R.; Oh, J.K.; Arruda-Olson, A.M.; Bird, J.G.; Pislaru, C.; Thaden, J.J.; Pislaru, S.V.; Pellikka, P.A.; et al. Prognostic Significance of Elevated Left Ventricular Filling Pressures with Exercise: Insights from a Cohort of 14,338 Patients. J. Am. Soc. Echocardiogr. 2024, 37, 382–393.e1. [Google Scholar] [CrossRef]
- Ye, Z.; Miranda, W.R.; Yeung, D.F.; Kane, G.C.; Oh, J.K. Left Atrial Strain in Evaluation of Heart Failure with Preserved Ejection Fraction. J. Am. Soc. Echocardiogr. 2020, 33, 1490–1499. [Google Scholar] [CrossRef]
- Kagami, K.; Harada, T.; Yuasa, N.; Tani, Y.; Murakami, F.; Saito, Y.; Naito, A.; Okuno, T.; Kato, T.; Takama, N.; et al. A Scoring System for Diagnosing Heart Failure with Preserved Ejection Fraction Based on Exercise Echocardiography. Eur. Heart J. Cardiovasc. Imaging 2025, 26, 866–875. [Google Scholar] [CrossRef] [PubMed]
- Dorfs, S.; Zeh, W.; Hochholzer, W.; Jander, N.; Kienzle, R.-P.; Pieske, B.; Neumann, F.J. Pulmonary Capillary Wedge Pressure during Exercise and Long-Term Mortality in Patients with Suspected Heart Failure with Preserved Ejection Fraction. Eur. Heart J. 2014, 35, 3103–3112. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.H.; Zhao, D.; Ha, J.-W.; Nagueh, S.F.; Voigt, J.-U.; Klein, A.L.; Gude, E.; Broch, K.; Chan, N.; Quill, G.M.; et al. Evaluation of Left Ventricular Filling Pressure by Echocardiography in Patients with Atrial Fibrillation. Echo Res. Pract. 2024, 11, 14. [Google Scholar] [CrossRef] [PubMed]
- Kusunose, K.; Yamada, H.; Nishio, S.; Tomita, N.; Niki, T.; Yamaguchi, K.; Koshiba, K.; Yagi, S.; Taketani, Y.; Iwase, T.; et al. Clinical Utility of Single-Beat E/E′ Obtained by Simultaneous Recording of Flow and Tissue Doppler Velocities in Atrial Fibrillation with Preserved Systolic Function. JACC Cardiovasc. Imaging 2009, 2, 1147–1156. [Google Scholar] [CrossRef]
- Wada, Y.; Murata, K.; Tanaka, T.; Nose, Y.; Kihara, C.; Uchida, K.; Okuda, S.; Susa, T.; Kishida, Y.; Matsuzaki, M. Simultaneous Doppler Tracing of Transmitral Inflow and Mitral Annular Velocity as an Estimate of Elevated Left Ventricular Filling Pressure in Patients with Atrial Fibrillation. Circ. J. 2012, 76, 675–681. [Google Scholar] [CrossRef]
- Chen, E.W.; Bashir, Z.; Churchill, J.L.; Has, P.; Klas, B.; Aurigemma, G.P.; Bisaillon, J.; Dickey, J.B.; Haines, P. Evaluating Left Atrial Strain and Left Ventricular Diastolic Strain Rate as Markers for Diastolic Dysfunction in Patients with Mitral Annular Calcification. Int. J. Cardiovasc. Imaging 2024, 40, 733–743. [Google Scholar] [CrossRef]
- Chamsi-Pasha, M.A.; Zhan, Y.; Debs, D.; Shah, D.J. CMR in the Evaluation of Diastolic Dysfunction and Phenotyping of HFpEF. JACC Cardiovasc. Imaging 2020, 13, 283–296. [Google Scholar] [CrossRef]
- Posina, K.; McLaughlin, J.; Rhee, P.; Li, L.; Cheng, J.; Schapiro, W.; Gulotta, R.J.; Berke, A.D.; Petrossian, G.A.; Reichek, N.; et al. Relationship of Phasic Left Atrial Volume and Emptying Function to Left Ventricular Filling Pressure: A Cardiovascular Magnetic Resonance Study. J. Cardiovasc. Magn. Reson. 2013, 15, 99. [Google Scholar] [CrossRef]
- Habibi, M.; Chahal, H.; Opdahl, A.; Gjesdal, O.; Helle-Valle, T.M.; Heckbert, S.R.; McClelland, R.; Wu, C.; Shea, S.; Hundley, G.; et al. Association of CMR-Measured LA Function with Heart Failure Development. JACC Cardiovasc. Imaging 2014, 7, 570–579. [Google Scholar] [CrossRef]
- Ambale-Venkatesh, B.; Armstrong, A.C.; Liu, C.-Y.; Donekal, S.; Yoneyama, K.; Wu, C.O.; Gomes, A.S.; Hundley, G.W.; Bluemke, D.A.; Lima, J.A. Diastolic Function Assessed from Tagged MRI Predicts Heart Failure and Atrial Fibrillation over an 8-Year Follow-up Period: The Multi-Ethnic Study of Atherosclerosis. Eur. Heart J. Cardiovasc. Imaging 2014, 15, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, D.; Yang, E.Y.; Nguyen, D.T.; Khan, M.A.; Malahfji, M.; El Tallawi, C.; Chamsi Pasha, M.A.; Graviss, E.A.; Shah, D.J.; Nagueh, S.F. Relation of Left Ventricular Diastolic Function to Global Fibrosis Burden. JACC Cardiovasc. Imaging 2023, 16, 783–796. [Google Scholar] [CrossRef] [PubMed]
- Rommel, K.-P.; von Roeder, M.; Latuscynski, K.; Oberueck, C.; Blazek, S.; Fengler, K.; Besler, C.; Sandri, M.; Lücke, C.; Gutberlet, M.; et al. Extracellular Volume Fraction for Characterization of Patients with Heart Failure and Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2016, 67, 1815–1825. [Google Scholar] [CrossRef]
- Moon, J.C.; Messroghli, D.R.; Kellman, P.; Piechnik, S.K.; Robson, M.D.; Ugander, M.; Gatehouse, P.D.; Arai, A.E.; Friedrich, M.G.; Neubauer, S.; et al. Myocardial T1 Mapping and Extracellular Volume Quantification: A Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology Consensus Statement. J. Cardiovasc. Magn. Reson. 2013, 15, 92. [Google Scholar] [CrossRef]
- Su, M.-Y.M.; Lin, L.-Y.; Tseng, Y.-H.E.; Chang, C.-C.; Wu, C.-K.; Lin, J.-L.; Tseng, W.-Y.I. CMR-Verified Diffuse Myocardial Fibrosis Is Associated with Diastolic Dysfunction in HFpEF. JACC Cardiovasc. Imaging 2014, 7, 991–997. [Google Scholar] [CrossRef]
- Duca, F.; Kammerlander, A.A.; Zotter-Tufaro, C.; Aschauer, S.; Schwaiger, M.L.; Marzluf, B.A.; Bonderman, D.; Mascherbauer, J. Interstitial Fibrosis, Functional Status, and Outcomes in Heart Failure with Preserved Ejection Fraction. Circ. Cardiovasc. Imaging 2016, 9, e005277. [Google Scholar] [CrossRef]
- Mascherbauer, J.; Marzluf, B.A.; Tufaro, C.; Pfaffenberger, S.; Graf, A.; Wexberg, P.; Panzenböck, A.; Jakowitsch, J.; Bangert, C.; Laimer, D.; et al. Cardiac Magnetic Resonance Postcontrast T1 Time Is Associated with Outcome in Patients with Heart Failure and Preserved Ejection Fraction. Circ. Cardiovasc. Imaging 2013, 6, 1056–1065. [Google Scholar] [CrossRef]
- Buss, S.J.; Krautz, B.; Schnackenburg, B.; Abdel-Aty, H.; Santos, M.F.B.; Andre, F.; Maertens, M.J.; Mereles, D.; Korosoglou, G.; Giannitsis, E.; et al. Classification of Diastolic Function with Phase-Contrast Cardiac Magnetic Resonance Imaging: Validation with Echocardiography and Age-Related Reference Values. Clin. Res. Cardiol. 2014, 103, 441–450. [Google Scholar] [CrossRef]
- AlJaroudi, W.; Alraies, M.C.; Halley, C.; Rodriguez, L.; Grimm, R.A.; Thomas, J.D.; Jaber, W.A. Impact of Progression of Diastolic Dysfunction on Mortality in Patients with Normal Ejection Fraction. Circulation 2012, 125, 782–788. [Google Scholar] [CrossRef]
- Halley, C.M.; Houghtaling, P.L.; Khalil, M.K.; Thomas, J.D.; Jaber, W.A. Mortality Rate in Patients with Diastolic Dysfunction and Normal Systolic Function. Arch. Intern. Med. 2011, 171, 1082–1087. [Google Scholar] [CrossRef]
- Vogel, M.W.; Slusser, J.P.; Hodge, D.O.; Chen, H.H. The Natural History of Preclinical Diastolic Dysfunction. Circ. Heart Fail. 2012, 5, 144–151. [Google Scholar] [CrossRef]
- From, A.M.; Scott, C.G.; Chen, H.H. The Development of Heart Failure in Patients with Diabetes Mellitus and Pre-Clinical Diastolic Dysfunction. J. Am. Coll. Cardiol. 2010, 55, 300–305, Erratum in J. Am. Coll. Cardiol. 2010, 56, 1612. https://doi.org/10.1016/j.jacc.2010.09.011. [Google Scholar] [CrossRef] [PubMed]
- Kosmala, W.; Marwick, T.H. Asymptomatic Left Ventricular Diastolic Dysfunction. JACC Cardiovasc. Imaging 2020, 13, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.M.; Cikes, M.; Prasad, N.; Li, G.; Getchevski, S.; Claggett, B.; Rizkala, A.; Lukashevich, I.; O’Meara, E.; Ryan, J.J.; et al. Echocardiographic Features of Patients with Heart Failure and Preserved Left Ventricular Ejection Fraction. J. Am. Coll. Cardiol. 2019, 74, 2858–2873. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Negishi, K.; Wang, Y.; Nolan, M.; Saito, M.; Marwick, T.H. Echocardiographic Screening for Non-Ischaemic Stage B Heart Failure in the Community. Eur. J. Heart Fail. 2016, 18, 1331–1339. [Google Scholar] [CrossRef]
- Reddy, Y.N.V.; Obokata, M.; Egbe, A.; Yang, J.H.; Pislaru, S.; Lin, G.; Carter, R.; Borlaug, B.A. Left Atrial Strain and Compliance in the Diagnostic Evaluation of Heart Failure with Preserved Ejection Fraction. Eur. J. Heart Fail. 2019, 21, 891–900. [Google Scholar] [CrossRef]
- Kim, D.; Seo, J.H.; Choi, K.H.; Lee, S.H.; Choi, J.-O.; Jeon, E.-S.; Yang, J.H. Prognostic Implications of Left Atrial Stiffness Index in Heart Failure Patients with Preserved Ejection Fraction. JACC Cardiovasc. Imaging 2023, 16, 435–445. [Google Scholar] [CrossRef]
- Nagueh, S.F. Noninvasive Measurement of Left Atrial Stiffness in Patients with Heart Failure and Preserved Ejection Fraction. JACC Cardiovasc. Imaging 2023, 16, 446–449. [Google Scholar] [CrossRef]
- Nuzzi, V.; Raafs, A.; Manca, P.; Henkens, M.T.H.M.; Gregorio, C.; Boscutti, A.; Verdonschot, J.; Hazebroek, M.; Knackstedt, C.; Merlo, M.; et al. Left Atrial Reverse Remodeling in Dilated Cardiomyopathy. J. Am. Soc. Echocardiogr. 2023, 36, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.V.; Carter, R.E.; Obokata, M.; Redfield, M.M.; Borlaug, B.A. A Simple, Evidence-Based Approach to Help Guide Diagnosis of Heart Failure with Preserved Ejection Fraction. Circulation 2018, 138, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Janardhanan, R.; Verma, A.; Bourgoun, M.; Daley, W.L.; Purkayastha, D.; Lacourcière, Y.; Hippler, S.E.; Fields, H.; Naqvi, T.Z.; et al. Effect of Angiotensin Receptor Blockade and Antihypertensive Drugs on Diastolic Function in Patients with Hypertension and Diastolic Dysfunction: A Randomised Trial. Lancet 2007, 369, 2079–2087. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.D.; Verma, A.; Desai, A.; Hassanein, A.; Izzo, J.; Oparil, S.; Lacourciere, Y.; Lee, J.; Seifu, Y.; Hilkert, R.J.; et al. Effect of Intensive Versus Standard Blood Pressure Lowering on Diastolic Function in Patients with Uncontrolled Hypertension and Diastolic Dysfunction. Hypertension 2010, 55, 241–248. [Google Scholar] [CrossRef]
- Edelmann, F.; Wachter, R.; Schmidt, A.G.; Kraigher-Krainer, E.; Colantonio, C.; Kamke, W.; Duvinage, A.; Stahrenberg, R.; Durstewitz, K.; Löffler, M.; et al. Effect of Spironolactone on Diastolic Function and Exercise Capacity in Patients with Heart Failure with Preserved Ejection Fraction. JAMA 2013, 309, 781. [Google Scholar] [CrossRef]
- Pitt, B.; Pfeffer, M.A.; Assmann, S.F.; Boineau, R.; Anand, I.S.; Claggett, B.; Clausell, N.; Desai, A.S.; Diaz, R.; Fleg, J.L.; et al. Spironolactone for Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2014, 370, 1383–1392. [Google Scholar] [CrossRef]
- Cleland, J.G.F.; Tendera, M.; Adamus, J.; Freemantle, N.; Gray, C.S.; Lye, M.; O’Mahony, D.; Polonski, L.; Taylor, J. Perindopril for Elderly People with Chronic Heart Failure: The PEP-CHF Study. Eur. J. Heart Fail. 1999, 1, 211–217. [Google Scholar] [CrossRef]
- Massie, B.M.; Carson, P.E.; McMurray, J.J.; Komajda, M.; McKelvie, R.; Zile, M.R.; Anderson, S.; Donovan, M.; Iverson, E.; Staiger, C.; et al. Irbesartan in Patients with Heart Failure and Preserved Ejection Fraction. N. Engl. J. Med. 2008, 359, 2456–2467. [Google Scholar] [CrossRef]
- Yusuf, S.; Pfeffer, M.A.; Swedberg, K.; Granger, C.B.; Held, P.; McMurray, J.J.; Michelson, E.L.; Olofsson, B.; Östergren, J. Effects of Candesartan in Patients with Chronic Heart Failure and Preserved Left-Ventricular Ejection Fraction: The CHARM-Preserved Trial. Lancet 2003, 362, 777–781. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Anand, I.S.; Ge, J.; Lam, C.S.P.; Maggioni, A.P.; Martinez, F.; Packer, M.; Pfeffer, M.A.; Pieske, B.; et al. Angiotensin–Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction. N. Engl. J. Med. 2019, 381, 1609–1620. [Google Scholar] [CrossRef]
- Solomon, S.D.; Vaduganathan, M.; Claggett, B.L.; Packer, M.; Zile, M.; Swedberg, K.; Rouleau, J.; Pfeffer, M.A.; Desai, A.; Lund, L.H.; et al. Sacubitril/Valsartan Across the Spectrum of Ejection Fraction in Heart Failure. Circulation 2020, 141, 352–361. [Google Scholar] [CrossRef]
- Conraads, V.M.; Metra, M.; Kamp, O.; De Keulenaer, G.W.; Pieske, B.; Zamorano, J.; Vardas, P.E.; Böhm, M.; Dei Cas, L. Effects of the Long-term Administration of Nebivolol on the Clinical Symptoms, Exercise Capacity, and Left Ventricular Function of Patients with Diastolic Dysfunction: Results of the ELANDD Study. Eur. J. Heart Fail. 2012, 14, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, K.; Origasa, H.; Hori, M. Effects of Carvedilol on Heart Failure with Preserved Ejection Fraction: The Japanese Diastolic Heart Failure Study (J-DHF). Eur. J. Heart Fail. 2013, 15, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Flather, M.D.; Shibata, M.C.; Coats, A.J.S.; Van Veldhuisen, D.J.; Parkhomenko, A.; Borbola, J.; Cohen-Solal, A.; Dumitrascu, D.; Ferrari, R.; Lechat, P.; et al. Randomized Trial to Determine the Effect of Nebivolol on Mortality and Cardiovascular Hospital Admission in Elderly Patients with Heart Failure (SENIORS). Eur. Heart J. 2005, 26, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Anker, S.D.; Butler, J.; Filippatos, G.; Ferreira, J.P.; Bocchi, E.; Böhm, M.; Brunner–La Rocca, H.-P.; Choi, D.-J.; Chopra, V.; Chuquiure-Valenzuela, E.; et al. Empagliflozin in Heart Failure with a Preserved Ejection Fraction. N. Engl. J. Med. 2021, 385, 1451–1461. [Google Scholar] [CrossRef]
- Solomon, S.D.; McMurray, J.J.V.; Claggett, B.; de Boer, R.A.; DeMets, D.; Hernandez, A.F.; Inzucchi, S.E.; Kosiborod, M.N.; Lam, C.S.P.; Martinez, F.; et al. Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. N. Engl. J. Med. 2022, 387, 1089–1098. [Google Scholar] [CrossRef]
- Packer, M.; Butler, J.; Zannad, F.; Filippatos, G.; Ferreira, J.P.; Pocock, S.J.; Carson, P.; Anand, I.; Doehner, W.; Haass, M.; et al. Effect of Empagliflozin on Worsening Heart Failure Events in Patients with Heart Failure and Preserved Ejection Fraction: EMPEROR-Preserved Trial. Circulation 2021, 144, 1284–1294. [Google Scholar] [CrossRef]
- Vardeny, O.; Fang, J.C.; Desai, A.S.; Jhund, P.S.; Claggett, B.; Vaduganathan, M.; de Boer, R.A.; Hernandez, A.F.; Lam, C.S.P.; Inzucchi, S.E.; et al. Dapagliflozin in Heart Failure with Improved Ejection Fraction: A Prespecified Analysis of the DELIVER Trial. Nat. Med. 2022, 28, 2504–2511. [Google Scholar] [CrossRef]
- Jhund, P.S.; Kondo, T.; Butt, J.H.; Docherty, K.F.; Claggett, B.L.; Desai, A.S.; Vaduganathan, M.; Gasparyan, S.B.; Bengtsson, O.; Lindholm, D.; et al. Dapagliflozin across the Range of Ejection Fraction in Patients with Heart Failure: A Patient-Level, Pooled Meta-Analysis of DAPA-HF and DELIVER. Nat. Med. 2022, 28, 1956–1964. [Google Scholar] [CrossRef]
- Pandey, A.K.; Dhingra, N.K.; Hibino, M.; Gupta, V.; Verma, S. Sodium-glucose Cotransporter 2 Inhibitors in Heart Failure with Reduced or Preserved Ejection Fraction: A Meta-analysis. ESC Heart Fail. 2022, 9, 942–946. [Google Scholar] [CrossRef]
- Ji, P.; Zhang, Z.; Yan, Q.; Cao, H.; Zhao, Y.; Yang, B.; Li, J. The Cardiovascular Effects of SGLT2 Inhibitors, RAS Inhibitors, and ARN Inhibitors in Heart Failure. ESC Heart Fail. 2023, 10, 1314–1325. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, T.; Meng, C.; Li, S.; Bi, L.; Geng, Y.; Zhang, P. Sodium-Glucose Co-Transporter 2 Inhibitors in Heart Failure with Mildly Reduced or Preserved Ejection Fraction: An Updated Systematic Review and Meta-Analysis. Eur. J. Med. Res. 2022, 27, 314. [Google Scholar] [CrossRef] [PubMed]
- Hamid, A.K.; Tayem, A.A.; Al-Aish, S.T.; Al Sakini, A.S.; Hadi, D.D.; Al-Aish, R.T. Empagliflozin and Other SGLT2 Inhibitors in Patients with Heart Failure and Preserved Ejection Fraction: A Systematic Review and Meta-Analysis. Ther. Adv. Cardiovasc. Dis. 2024, 18, 17539447241289067. [Google Scholar] [CrossRef] [PubMed]
- Pascual-Figal, D.A.; Zamorano, J.L.; Domingo, M.; Morillas, H.; Nuñez, J.; Cobo Marcos, M.; Riquelme-Pérez, A.; Teis, A.; Santas, E.; Caro-Martinez, C.; et al. Impact of Dapagliflozin on Cardiac Remodelling in Patients with Chronic Heart Failure: The DAPA-MODA Study. Eur. J. Heart Fail. 2023, 25, 1352–1360. [Google Scholar] [CrossRef]
- Omar, W.; Pandey, A.; Haykowsky, M.J.; Berry, J.D.; Lavie, C.J. The Evolving Role of Cardiorespiratory Fitness and Exercise in Prevention and Management of Heart Failure. Curr. Heart Fail. Rep. 2018, 15, 75–80. [Google Scholar] [CrossRef]
- Brubaker, P.H.; Nicklas, B.J.; Houston, D.K.; Hundley, W.G.; Chen, H.; Molina, A.J.A.; Lyles, W.M.; Nelson, B.; Upadhya, B.; Newland, R.; et al. A Randomized, Controlled Trial of Resistance Training Added to Caloric Restriction Plus Aerobic Exercise Training in Obese Heart Failure with Preserved Ejection Fraction. Circ. Heart Fail. 2023, 16, E010161. [Google Scholar] [CrossRef]
- Gevaert, A.B.; Lemmens, K.; Vrints, C.J.; Van Craenenbroeck, E.M. Targeting Endothelial Function to Treat Heart Failure with Preserved Ejection Fraction: The Promise of Exercise Training. Oxid. Med. Cell Longev. 2017, 2017, 4865756. [Google Scholar] [CrossRef]
- Kitzman, D.W.; Brubaker, P.; Morgan, T.; Haykowsky, M.; Hundley, G.; Kraus, W.E.; Eggebeen, J.; Nicklas, B.J. Effect of Caloric Restriction or Aerobic Exercise Training on Peak Oxygen Consumption and Quality of Life in Obese Older Patients with Heart Failure with Preserved Ejection Fraction. JAMA 2016, 315, 36. [Google Scholar] [CrossRef]
- Edelmann, F.; Gelbrich, G.; Düngen, H.-D.; Fröhling, S.; Wachter, R.; Stahrenberg, R.; Binder, L.; Töpper, A.; Lashki, D.J.; Schwarz, S.; et al. Exercise Training Improves Exercise Capacity and Diastolic Function in Patients with Heart Failure with Preserved Ejection Fraction. J. Am. Coll. Cardiol. 2011, 58, 1780–1791. [Google Scholar] [CrossRef]
- Keteyian, S.J.; Leifer, E.S.; Houston-Miller, N.; Kraus, W.E.; Brawner, C.A.; O’Connor, C.M.; Whellan, D.J.; Cooper, L.S.; Fleg, J.L.; Kitzman, D.W.; et al. Relation Between Volume of Exercise and Clinical Outcomes in Patients with Heart Failure. J. Am. Coll. Cardiol. 2012, 60, 1899–1905. [Google Scholar] [CrossRef]
- Borlaug, B.A.; Jensen, M.D.; Kitzman, D.W.; Lam, C.S.P.; Obokata, M.; Rider, O.J. Obesity and Heart Failure with Preserved Ejection Fraction: New Insights and Pathophysiological Targets. Cardiovasc. Res. 2023, 118, 3434–3450. [Google Scholar] [CrossRef]
- Mikhalkova, D.; Holman, S.R.; Jiang, H.; Saghir, M.; Novak, E.; Coggan, A.R.; O’Connor, R.; Bashir, A.; Jamal, A.; Ory, D.S.; et al. Bariatric Surgery–Induced Cardiac and Lipidomic Changes in Obesity-Related Heart Failure with Preserved Ejection Fraction. Obesity 2018, 26, 284–290. [Google Scholar] [CrossRef]
- McCarthy, C.P.; Bruno, R.M.; Brouwers, S.; Canavan, M.D.; Ceconi, C.; Christodorescu, R.M.; Daskalopoulou, S.S.; Ferro, C.J.; Gerdts, E.; Hanssen, H.; et al. 2024 ESC Guidelines for the Management of Elevated Blood Pressure and Hypertension. Eur. Heart J. 2024, 45, 3912–4018. [Google Scholar] [CrossRef]
- Jones, D.W.; Ferdinand, K.C.; Taler, S.J.; Johnson, H.M.; Shimbo, D.; Abdalla, M.; Altieri, M.M.; Bansal, N.; Bello, N.A.; Bress, A.P.; et al. 2025 AHA/ACC/AANP/AAPA/ABC/ACCP/ACPM/AGS/AMA/ASPC/NMA/PCNA/SGIM Guideline for the Prevention, Detection, Evaluation and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2025, 152, e114–e218. [Google Scholar] [CrossRef] [PubMed]
- ElSayed, N.A.; McCoy, R.G.; Aleppo, G.; Balapattabi, K.; Beverly, E.A.; Briggs Early, K.; Bruemmer, D.; Das, S.R.; Echouffo-Tcheugui, J.B.; Ekhlaspour, L.; et al. 10. Cardiovascular Disease and Risk Management: Standards of Care in Diabetes—2025. Diabetes Care 2025, 48, S207–S238. [Google Scholar] [CrossRef]
- Stevens, P.E.; Ahmed, S.B.; Carrero, J.J.; Foster, B.; Francis, A.; Hall, R.K.; Herrington, W.G.; Hill, G.; Inker, L.A.; Kazancıoğlu, R.; et al. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef] [PubMed]
- Baigent, C.; Emberson, J.; Haynes, R.; Herrington, W.G.; Judge, P.; Landray, M.J.; Mayne, K.J.; Ng, S.Y.A.; Preiss, D.; Roddick, A.J.; et al. Impact of Diabetes on the Effects of Sodium Glucose Co-Transporter-2 Inhibitors on Kidney Outcomes: Collaborative Meta-Analysis of Large Placebo-Controlled Trials. Lancet 2022, 400, 1788–1801. [Google Scholar] [CrossRef]
- Bakris, G.L.; Agarwal, R.; Anker, S.D.; Pitt, B.; Ruilope, L.M.; Rossing, P.; Kolkhof, P.; Nowack, C.; Schloemer, P.; Joseph, A.; et al. Effect of Finerenone on Chronic Kidney Disease Outcomes in Type 2 Diabetes. N. Engl. J. Med. 2020, 383, 2219–2229. [Google Scholar] [CrossRef]
- Pitt, B.; Filippatos, G.; Agarwal, R.; Anker, S.D.; Bakris, G.L.; Rossing, P.; Joseph, A.; Kolkhof, P.; Nowack, C.; Schloemer, P.; et al. Cardiovascular Events with Finerenone in Kidney Disease and Type 2 Diabetes. N. Engl. J. Med. 2021, 385, 2252–2263. [Google Scholar] [CrossRef]
- Sweeney, M.; Corden, B.; Cook, S.A. Targeting Cardiac Fibrosis in Heart Failure with Preserved Ejection Fraction: Mirage or Miracle? EMBO Mol. Med. 2020, 12, e10865. [Google Scholar] [CrossRef]
- Patel, R.B.; Silvestry, F.E.; Komtebedde, J.; Solomon, S.D.; Hasenfuß, G.; Litwin, S.E.; Borlaug, B.A.; Price, M.J.; Kawash, R.; Hummel, S.L.; et al. Atrial Shunt Device Effects on Cardiac Structure and Function in Heart Failure with Preserved Ejection Fraction. JAMA Cardiol. 2024, 9, 507. [Google Scholar] [CrossRef]
- Gustafsson, F.; Petrie, M.C.; Komtebedde, J.; Swarup, V.; Winkler, S.; Hasenfuß, G.; Borlaug, B.A.; Mohan, R.C.; Flaherty, J.D.; Sverdlov, A.L.; et al. 2-Year Outcomes of an Atrial Shunt Device in HFpEF/HFmrEF: Results from REDUCE LAP-HF II. JACC Heart Fail. 2024, 12, 1425–1438. [Google Scholar] [CrossRef] [PubMed]
- Tromp, J.; Seekings, P.J.; Hung, C.-L.; Iversen, M.B.; Frost, M.J.; Ouwerkerk, W.; Jiang, Z.; Eisenhaber, F.; Goh, R.S.M.; Zhao, H.; et al. Automated Interpretation of Systolic and Diastolic Function on the Echocardiogram: A Multicohort Study. Lancet Digit. Health 2022, 4, e46–e54. [Google Scholar] [CrossRef] [PubMed]
- Carluccio, E.; Cameli, M.; Rossi, A.; Dini, F.L.; Biagioli, P.; Mengoni, A.; Jacoangeli, F.; Mandoli, G.E.; Pastore, M.C.; Maffeis, C.; et al. Left Atrial Strain in the Assessment of Diastolic Function in Heart Failure: A Machine Learning Approach. Circ. Cardiovasc. Imaging 2023, 16, E014605. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Kagiyama, N.; Yanamala, N.; Segar, M.W.; Cho, J.S.; Tokodi, M.; Sengupta, P.P. Deep-Learning Models for the Echocardiographic Assessment of Diastolic Dysfunction. JACC Cardiovasc. Imaging 2021, 14, 1887–1900. [Google Scholar] [CrossRef]
- Jiang, R.; Yeung, D.F.; Behnami, D.; Luong, C.; Tsang, M.Y.C.; Jue, J.; Gin, K.; Nair, P.; Abolmaesumi, P.; Tsang, T.S.M. A Novel Continuous Left Ventricular Diastolic Function Score Using Machine Learning. J. Am. Soc. Echocardiogr. 2022, 35, 1247–1255. [Google Scholar] [CrossRef]
- Chao, C.-J.; Kato, N.; Scott, C.G.; Lopez-Jimenez, F.; Lin, G.; Kane, G.C.; Pellikka, P.A. Unsupervised Machine Learning for Assessment of Left Ventricular Diastolic Function and Risk Stratification. J. Am. Soc. Echocardiogr. 2022, 35, 1214–1225.e8. [Google Scholar] [CrossRef]
Parameters | Abnormal Cut-Off Values |
---|---|
e′ velocity | septal ≤ 6 cm/s or lateral ≤ 7 cm/s or average ≤ 6.5 cm/s * |
E/e′ ratio | septal ≥ 15 or lateral ≥ 13 or average ≥ 14 |
E/A ratio | ≤0.8 or ≥2 * |
LARS | ≤18% |
LAVi | >34 mL/m2 # |
LV mass index | women >95 g/m2 men >115 g/m2 § |
Additional Parameters | Abnormal Cut-Off Values |
LARS | ≤18% |
LAVi | >34 mL/m2 |
Pulmonary vein S/D ratio | ≤0.67 |
IVRT | ≤70 ms |
Supplementary parameters | |
PR end-diastolic velocity | ≥2 m/s * |
PAEDP | ≥16 mmHg |
Mitral inflow L-wave velocity | ≥50 cm/s |
Diastolic MR | Present # |
Ar velocity | >35 cm/s |
Ar-A duration | >30 ms |
E/A ratio with Valsalva maneuver | Decrease of ≥50% |
Parameters | Abnormal Cut-Off Values |
---|---|
E velocity | ≥100 cm/s |
Septal E/e′ ratio | >11 |
LARS | <18% |
Pulmonary vein S/D ratio | <1 |
BMI | >30 kg/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vlasopoulou, K.; Synetos, A.; Ktenopoulos, N.; Katsaros, O.; Koliastasis, L.; Apostolos, A.; Drakopoulou, M.; Toutouzas, K.; Tsioufis, C. Unmasking Left Ventricular Diastolic Dysfunction: Pathophysiology, Diagnosis, and Treatment Strategies. Med. Sci. 2025, 13, 204. https://doi.org/10.3390/medsci13030204
Vlasopoulou K, Synetos A, Ktenopoulos N, Katsaros O, Koliastasis L, Apostolos A, Drakopoulou M, Toutouzas K, Tsioufis C. Unmasking Left Ventricular Diastolic Dysfunction: Pathophysiology, Diagnosis, and Treatment Strategies. Medical Sciences. 2025; 13(3):204. https://doi.org/10.3390/medsci13030204
Chicago/Turabian StyleVlasopoulou, Konstantina, Andreas Synetos, Nikolaos Ktenopoulos, Odysseas Katsaros, Leonidas Koliastasis, Anastasios Apostolos, Maria Drakopoulou, Konstantinos Toutouzas, and Constantinos Tsioufis. 2025. "Unmasking Left Ventricular Diastolic Dysfunction: Pathophysiology, Diagnosis, and Treatment Strategies" Medical Sciences 13, no. 3: 204. https://doi.org/10.3390/medsci13030204
APA StyleVlasopoulou, K., Synetos, A., Ktenopoulos, N., Katsaros, O., Koliastasis, L., Apostolos, A., Drakopoulou, M., Toutouzas, K., & Tsioufis, C. (2025). Unmasking Left Ventricular Diastolic Dysfunction: Pathophysiology, Diagnosis, and Treatment Strategies. Medical Sciences, 13(3), 204. https://doi.org/10.3390/medsci13030204