Diagnostic Accuracy of Anthropometric and Metabolic Indicators for Predicting MASLD: Evidence from a Large Cohort of Spanish Workers Using FLI and LAP
Abstract
1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Inclusion and Exclusion Criteria
- (1)
- Age outside the 18–69-year range;
- (2)
- Missing data for any of the variables required to calculate BMI, WtHR, TyG, WTI, FLI, or LAP;
- (3)
- Previously diagnosed chronic liver, cardiovascular, or metabolic disease;
- (4)
- Excessive alcohol consumption (>30 g/day for men or >20 g/day for women);
- (5)
- Pregnancy at the time of examination.
2.3. Anthropometric and Biochemical Measurements
- Body Mass Index (BMI): Calculated as weight divided by height squared (kg/m2).
- Waist-to-Height Ratio (WtHR): Determined as waist circumference divided by height.
- Triglyceride–Glucose (TyG) Index [25]:
- Waist–Triglyceride Index (WTI) [26]:
2.4. Definition of MASLDRisk
- Fatty Liver Index (FLI): based on BMI, waist circumference, triglycerides, and GGT, calculated using the formula proposed by Bedogni et al. [27]. Participants were classified into low (<30), intermediate (30–59), or high (≥60) risk of hepatic steatosis.
2.5. Lifestyle and Sociodemographic Variables
2.6. Statistical Analysis
2.7. Flowchart Description
3. Results
4. Discussion
4.1. Strengths and Limitations
4.2. Study Contributions and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Devarbhavi, H.; Asrani, S.K.; Arab, J.P.; Nartey, Y.A.; Pose, E.; Kamath, P.S. Global burden of liver disease: 2023 update. J. Hepatol. 2023, 79, 516–537. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Golabi, P.; de Avila, L.; Paik, J.M.; Srishord, M.; Fukui, N.; Qiu, Y.; Burns, L.; Afendy, A.; Nader, F. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J. Hepatol. 2019, 71, 793–801. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Wang, L.; Evans, P.C.; Xu, S. NAFLD and NASH: Etiology, targets and emerging therapies. Drug Discov. Today 2024, 29, 103910. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Su, Y.; Duan, C.; Wang, S.; He, W.; Zhang, Y.; An, X.; He, M. Emerging role of aging in the progression of NAFLD to HCC. Ageing Res. Rev. 2023, 84, 101833. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Almoyna Rifá, E.; Tomás-Gil, P.; Coll Villalonga, J.L.; Ramírez-Manent, J.I.; Martí-Lliteras, P.; López-González, A.A. Relationship between nonalcoholic fatty liver disease and liver fibrosis risk scales and various cardiometabolic risk scales in 219,477 Spanish workers. Acad. J. Health Sci. 2023, 38, 138–145. [Google Scholar] [CrossRef]
- Tanase, D.M.; Gosav, E.M.; Costea, C.F.; Ciocoiu, M.; Lacatusu, C.M.; Maranduca, M.A.; Ouatu, A.; Floria, M. The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). J. Diabetes Res. 2020, 2020, 3920196. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Targher, G.; Byrne, C.D.; Tilg, H. NAFLD and increased risk of cardiovascular disease: Clinical associations, pathophysiological mechanisms and pharmacological implications. Gut 2020, 69, 1691–1705. [Google Scholar] [CrossRef] [PubMed]
- Bilson, J.; Mantovani, A.; Byrne, C.D.; Targher, G. Steatotic liver disease, MASLD and risk of chronic kidney disease. Diabetes Metab. 2024, 50, 101506. [Google Scholar] [CrossRef] [PubMed]
- Riazi, K.; Azhari, H.; Charette, J.H.; E Underwood, F.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.-A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Benedé-Ubieto, R.; Cubero, F.J.; Nevzorova, Y.A. Breaking the barriers: The role of gut homeostasis in Metabolic-Associated Steatotic Liver Disease (MASLD). Gut Microbes 2024, 16, 2331460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, H.; Fang, D.; Wang, H.; Wang, J.; Yuan, Y.; Huang, S.; Ma, H.; Gu, T.; Bi, Y. The association between visceral adipocyte hypertrophy and NAFLD in subjects with different degrees of adiposity. Hepatol. Int. 2023, 17, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.B.; Mehta, K.J. Liver biopsy for assessment of chronic liver diseases: A synopsis. Clin. Exp. Med. 2023, 23, 273–285. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martínez-Almoyna Rifá, E.; Tomás-Gil, P.; Coll Villalonga, J.L.; Ramírez-Manent, J.I.; Martí-Lliteras, P.; López-González, A.A. Relationship between nonalcoholic fatty liver disease and liver fibrosis risk scales with overweight and obesity scales in 219,477 spanish workers. Acad. J. Health Sci. 2023, 38, 92–100. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Seyedi, S.A.; Nabipoorashrafi, S.A.; Rabizadeh, S.; Sarzaeim, M.; Yadegar, A.; Mohammadi, F.; Bahri, R.A.; Pakravan, P.; Shafiekhani, P.; et al. Lipid accumulation product (LAP) index for the diagnosis of nonalcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis. Lipids Health Dis. 2023, 22, 41. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martínez-Almoyna Rifá, E.; López González, Á.A.; Tárraga López, P.J.; Paublini, H.; Vallejos, D.; Ramírez Manent, J.I. Relación entre la diabesidad y valores elevados de las escalas de riesgo de esteatosis hepática metabólica en trabajadores españoles utilizando el índice de masa corporal y los criterios estimadores de la grasa corporal de la Clínica de Navarra. Nutr. Hosp. 2025, 43, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Manent, J.I.; Martínez-Almoyna, E.; López, C.; Busquets-Cortés, C.; González San Miguel, H.; López-González, Á.A. Relationship between Insulin Resistance Risk Scales and Non-Alcoholic Fatty Liver Disease and Liver Fibrosis Scales in 219,477 Spanish Workers. Metabolites 2022, 12, 1093. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sweatt, K.; Garvey, W.T.; Martins, C. Strengths and Limitations of BMI in the Diagnosis of Obesity: What is the Path Forward? Curr. Obes. Rep. 2024, 13, 584–595. [Google Scholar] [CrossRef]
- Jabłonowska-Lietz, B.; Wrzosek, M.; Włodarczyk, M.; Nowicka, G. New indexes of body fat distribution, visceral adiposity index, body adiposity index, waist-to-height ratio, and metabolic disturbances in the obese. Kardiol. Pol. 2017, 75, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Vicente-Herrero, M.T.; Egea-Sancho, M.; Ramírez Iñiguez de la Torre, M.V.; López-González, A.A. Relación de los índices de adiposidad visceral (VAI) y adiposidad disfuncional (DAI) con las escalas de riesgo de resistencia a la insulina y prediabetes. Acad. J. Health Sci. 2024, 39, 25–31. [Google Scholar] [CrossRef]
- Sun, Q.; Ren, Q.; Du, L.; Chen, S.; Wu, S.; Zhang, B.; Wang, B. Cardiometabolic Index (CMI), Lipid Accumulation Products (LAP), Waist Triglyceride Index (WTI) and the risk of acute pancreatitis: A prospective study in adults of North China. Lipids Health Dis. 2023, 22, 190. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tahapary, D.L.; Pratisthita, L.B.; Fitri, N.A.; Marcella, C.; Wafa, S.; Kurniawan, F.; Rizka, A.; Tarigan, T.J.E.; Harbuwono, D.S.; Purnamasari, D.; et al. Challenges in the diagnosis of insulin resistance: Focusing on the role of HOMA-IR and Tryglyceride/glucose index. Diabetes Metab. Syndr. 2022, 16, 102581. [Google Scholar] [CrossRef] [PubMed]
- Son, D.H.; Lee, H.S.; Lee, Y.J.; Lee, J.H.; Han, J.H. Comparison of triglyceride-glucose index and HOMA-IR for predicting prevalence and incidence of metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Pokharel, D.R.; Maskey, A.; Kafle, R.; Kathayat, G.; Manandhar, B.; Manandhar, K.D. Diagnostic potential of waist–triglyceride index, triglyceride–glucose index and related indices for the detection of metabolic syndrome in Nepali adults: A cross-sectional study. Human Nutr. Metab. 2025, 41, 200324. [Google Scholar] [CrossRef]
- Liu, P.J.; Lou, H.P.; Zhu, Y.N. Screening for Metabolic Syndrome Using an Integrated Continuous Index Consisting of Waist Circumference and Triglyceride: A Preliminary Cross-sectional Study. Diabetes Metab. Syndr. Obes. 2020, 13, 2899–2907. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramdas Nayak, V.K.; Satheesh, P.; Shenoy, M.T.; Kalra, S. Triglyceride Glucose (TyG) Index: A surrogate biomarker of insulin resistance. J. Pak. Med. Assoc. 2022, 72, 986–988. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Chen, Z.; Zhang, Y. Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome. Lipids Health Dis. 2024, 23, 306. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martínez-Almoyna Rifá, E.; Tomás-Gil, P.; Coll Villalonga, J.L.; Ramírez-Manent, J.I.; Riera Routon, K.; López-González, A.A. Variables that influence the values of 7 scales that determine the risk of nonalcoholic fatty liver disease and liver fibrosis in 219,477 spanish workers. Acad. J. Health Sci. 2023, 38, 9–16. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Luo, H.; Lin, R. The lipid accumulation product is a powerful tool to diagnose metabolic dysfunction-associated fatty liver disease in the United States adults. Front. Endocrinol. 2022, 13, 977625. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Witarto, B.S.; Witarto, A.P.; Visuddho, V.; Wungu, C.D.K.; Maimunah, U.; Rejeki, P.S.; Oceandy, D. Gender-specific accuracy of lipid accumulation product index for the screening of metabolic syndrome in general adults: A meta-analysis and comparative analysis with other adiposity indicators. Lipids Health Dis. 2024, 23, 198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Martínez-Almoyna Rifá, E.; Tomás-Gil, P.; Coll Villalonga, J.L.; Ramírez-Manent, J.I.; Martí-Lliteras, P.; López-González, A.A. Relationship between values of 7 NAFLD scales and different RCV scales in 219,477 Spanish workers. Acad. J. Health Sci. 2023, 38, 52–59. [Google Scholar] [CrossRef]
- Meh, K.; Jurak, G.; Sorić, M.; Rocha, P.; Sember, V. Validity and Reliability of IPAQ-SF and GPAQ for Assessing Sedentary Behaviour in Adults in the European Union: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 4602. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mestre Font, M.; Busquets-Cortés, C.; Ramírez-Manent, J.I.; Vallejos, D.; Sastre Alzamora, T.; López-González, A.A. Influence of sociodemographic variables and healthy habits on the values of cardiometabolic risk scales in 386924 spanish workers. Acad. J. Health Sci. 2024, 39, 112–121. [Google Scholar] [CrossRef]
- Bekar, C.; Goktas, Z. Validation of the 14-item mediterranean diet adherence screener. Clin. Nutr. ESPEN 2023, 53, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, M.A.; Montero, P.; Ruiz-Canela, M.; Toledo, E.; Estruch, R.; Gómez-Gracia, E.; Li, J.; Ros, E.; Arós, F.; Hernáez, A.; et al. Yearly attained adherence to Mediterranean diet and incidence of diabetes in a large randomized trial. Cardiovasc. Diabetol. 2023, 22, 262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Aguiló Juanola, M.C.; López-González, A.A.; Tomás-Gil, P.; Paublini, H.; Tárraga-López, P.J.; Ramírez-Manent, J.I. Influence of tobacco consumption on the values of different insulin resistance risk scales and non-alcoholic fatty liver disease and hepatic fibrosis scales in 418,343 spanish people. Acad. J. Health Sci. 2024, 39, 9–15. [Google Scholar] [CrossRef]
- Jialal, I.; Adams-Huet, B. Comparison of the triglyceride-waist circumference and the C-reactive protein-waist circumference indices in nascent metabolic syndrome. Int. J. Physiol. Pathophysiol. Pharmacol. 2021, 13, 126–131. [Google Scholar] [PubMed] [PubMed Central]
- Jialal, I.; Remaley, A.T.; Adams-Huet, B. The triglyceride-waist circumference index is a valid biomarker of metabolic syndrome in African Americans. Am. J. Med. Sci. 2023, 365, 184–188. [Google Scholar] [CrossRef] [PubMed]
- Okosun, I.S.; Okosun, B.; Lyn, R.; Airhihenbuwa, C. Surrogate indexes of insulin resistance and risk of metabolic syndrome in non-Hispanic White, non-Hispanic Black and Mexican American. Diabetes Metab. Syndr. 2020, 14, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-J.; Duan, J.-H.; Chen, Y.-Y.; Gu, S.-L.; He, Y.-H.; Xue, M.-M.; Yue, J.-Y. Unraveling the triglyceride-glucose index: A key predictor of liver fat content and the amplifying role of BMI: Evidence from a large physical examination data. Front. Endocrinol. 2025, 16, 1555300. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zou, H.; Xie, J.; Ma, X.; Xie, Y. The Value of TyG-Related Indices in Evaluating MASLD and Significant Liver Fibrosis in MASLD. Can. J. Gastroenterol. Hepatol. 2025, 2025, 5871321. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nayak, S.S.; Kuriyakose, D.; Polisetty, L.D.; Patil, A.A.; Ameen, D.; Bonu, R.; Shetty, S.P.; Biswas, P.; Ulrich, M.T.; Letafatkar, N.; et al. Diagnostic and prognostic value of triglyceride glucose index: A comprehensive evaluation of meta-analysis. Cardiovasc. Diabetol. 2024, 23, 310. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Beran, A.; Ayesh, H.; Mhanna, M.; Wahood, W.; Ghazaleh, S.; Abuhelwa, Z.; Sayeh, W.; Aladamat, N.; Musallam, R.; Matar, R.; et al. Triglyceride-Glucose Index for Early Prediction of Nonalcoholic Fatty Liver Disease: A Meta-Analysis of 121,975 Individuals. J. Clin. Med. 2022, 11, 2666. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, Y.; Li, D.; Vermund, S.H. Advantages and Limitations of the Body Mass Index (BMI) to Assess Adult Obesity. Int. J. Environ. Res. Public Health 2024, 21, 757. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benz, E.; Pinel, A.; Guillet, C.; Capel, F.; Pereira, B.; De Antonio, M.; Pouget, M.; Cruz-Jentoft, A.J.; Eglseer, D.; Topinkova, E.; et al. Sarcopenia and Sarcopenic Obesity and Mortality Among Older People. JAMA Netw. Open. 2024, 7, e243604. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Sheng, G.; Xie, Q.; Wang, R.; Hu, C.; Zhong, M.; Zou, Y. Waist-to-height ratio and non-alcoholic fatty liver disease in adults. BMC Gastroenterol. 2021, 21, 239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cao, H.; Huang, X.; Luo, B.; Shi, W.; Li, H.; Shi, R. Gender Differences of Visceral Fat Area to Hip Circumference Ratio for Insulin Resistance. Diabetes Metab. Syndr. Obes. 2024, 17, 3935–3942. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yu, P.; Yang, H.; Qi, X.; Bai, R.; Zhang, S.; Gong, J.; Mei, Y.; Hu, P. Gender differences in the ideal cutoffs of visceral fat area for predicting MAFLD in China. Lipids Health Dis. 2022, 21, 148. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bredella, M.A. Sex Differences in Body Composition. Adv. Exp. Med. Biol. 2017, 1043, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Gado, M.; Tsaousidou, E.; Bornstein, S.R.; Perakakis, N. Sex-based differences in insulin resistance. J. Endocrinol. 2024, 261, e230245. [Google Scholar] [CrossRef] [PubMed]
- De Paoli, M.; Zakharia, A.; Werstuck, G.H. The Role of Estrogen in Insulin Resistance: A Review of Clinical and Preclinical Data. Am. J. Pathol. 2021, 191, 1490–1498. [Google Scholar] [CrossRef] [PubMed]
- Kaneva, A.M.; Bojko, E.R. Fatty liver index (FLI): More than a marker of hepatic steatosis. J. Physiol. Biochem. 2024, 80, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-L.; Wu, F.-Z.; Lin, K.-H.; Chen, Y.-H.; Wu, P.-C.; Chen, Y.-H.; Chen, C.-S.; Wang, W.-H.; Mar, G.-Y.; Yu, H.-C. Role of Fatty Liver Index and Metabolic Factors in the Prediction of Nonalcoholic Fatty Liver Disease in a Lean Population Receiving Health Checkup. Clin. Transl. Gastroenterol. 2019, 10, e00042. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hosseini, S.A.; Alipour, M.; Sarvandian, S.; Haghighat, N.; Bazyar, H.; Aghakhani, L. Assessment of the appropriate cutoff points for anthropometric indices and their relationship with cardio-metabolic indices to predict the risk of metabolic associated fatty liver disease. BMC Endocr. Disord. 2024, 24, 79. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, Q.; Tan, X.; Wu, Q.; Zhao, H.; Chen, H.; Yu, X.; Wang, J.; Huang, X.; Huang, Y.; Wei, J.; et al. Lipid accumulation product is a valid predictor of hepatic steatosis and nonalcoholic fatty liver disease. Biomark. Med. 2024, 18, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, D.; Al-Kuwari, M.; Naeim, J.; Al-Marri, A.; Al-Thani, N.; Al-Mohannadi, H.; Al-Suliati, H.; Al-Ali, A.; Doi, S.A. Lipid Accumulation Product Outperforms BMI and Waist Circumference in Metabolic Disorders. Metab. Syndr. Relat. Disord. 2025, 23, 166–174. [Google Scholar] [CrossRef]
- Demirci, S.; Sezer, S. Fatty Liver Index vs. Biochemical-Anthropometric Indices: Diagnosing Metabolic Dysfunction-Associated Steatotic Liver Disease with Non-Invasive Tools. Diagnostics 2025, 15, 565. [Google Scholar] [CrossRef]
- Lau, P.P.; Wei, C.Y.; Lin, M.R.; Chou, W.H.; Wan, Y.Y.; Chang, W.C. Genome-wide association study of the fatty liver index in the Taiwanese population reveals shared and population-specific genetic risk factors across ethnicities. Cell Biosci. 2025, 15, 19. [Google Scholar] [CrossRef]
Men n = 232.814 | Women n = 154.110 | ||
---|---|---|---|
Mean (SD) | Mean (SD) | p-value | |
Age (years) | 39.8 (10.3) | 39.2 (10.2) | <0.001 |
Height (cm) | 173.9 (7.0) | 161.2 (6.6) | <0.001 |
Weight (kg) | 81.1 (13.9) | 65.3 (13.2) | <0.001 |
Waist circumference (cm) | 87.7 (9.1) | 73.9 (7.9) | <0.001 |
Hip circumference (cm) | 100.0 (8.4) | 97.2 (8.9) | <0.001 |
Systolic blood pressure (mmHg) | 124.4 (15.1) | 114.4 (14.8) | <0.001 |
Diastolic blood pressure (mmHg) | 75.4 (10.6) | 69.7 (10.3) | <0.001 |
Total cholesterol (mg/dL) | 195.9 (38.9) | 193.6 (36.4) | <0.001 |
HDL-c (mg/dL) | 51.0 (7.0) | 53.7 (7.6) | <0.001 |
LDL-c (mg/dL) | 120.5 (37.6) | 122.3 (37.0) | <0.001 |
Triglycerides (mg/dL) | 123.8 (88.0) | 88.1 (46.2) | <0.001 |
Glycaemia (mg/dL) | 88.1 (12.9) | 84.1 (11.5) | <0.001 |
% | % | p-value | |
20–29 years | 17.9 | 19.5 | <0.001 |
30–39 years | 33.1 | 33.3 | |
40–49 years | 29.7 | 29.4 | |
50–59 years | 16.3 | 15.3 | |
60–69 years | 3.0 | 2.5 | |
Elementary school | 61.2 | 51.8 | <0.001 |
High school | 34.0 | 40.7 | |
University | 4.8 | 7.5 | |
Social class I | 5.3 | 7.2 | <0.001 |
Social class II | 17.4 | 33.2 | |
Social class III | 77.3 | 59.8 | |
No physical activity | 54.5 | 47.8 | <0.001 |
Yes to physical activity | 45.5 | 52.2 | |
Non-Mediterranean diet | 59.0 | 48.6 | <0.001 |
Yes to Mediterranean diet | 41.0 | 51.4 | |
Non smokers | 62.9 | 67.0 | <0.001 |
Smokers | 37.1 | 33.0 |
FLI Low | FLI Medium | FLI High | LAP Normal | LAP High | |||
---|---|---|---|---|---|---|---|
n = 114,596 | n = 61,884 | n = 56,334 | n = 147,914 | n = 84,900 | |||
Men | Mean (SD) | Mean (SD) | Mean (SD) | p-value | Mean (SD) | Mean (SD) | p-value |
BMI | 23.6 (2.5) | 27.3 (2.3) | 32.0 (4.2) | <0.001 | 24.8 (3.2) | 29.9 (4.5) | <0.001 |
WtHR | 0.45 (0.04( | 0.50 (0.04) | 0.56 (0.05) | <0.001 | 0.47 (0.05) | 0.54 (0.05) | <0.001 |
TyG | 8.2 (0.4) | 8.6 (0.5) | 9.0 (0.6) | <0.001 | 8.2 (0.4) | 9.0 (0.5) | <0.001 |
WTI | 8.0 (0.4) | 8.6 (0.4) | 9.0 (0.5) | <0.001 | 8.1 (0.4) | 9.0 (0.4) | <0.001 |
n = 124,065 | n = 18,134 | n = 11,911 | n = 94,959 | n = 59,141 | |||
Women | Mean (SD) | Mean (SD) | Mean (SD) | p-value | Mean (SD) | Mean (SD) | p-value |
BMI | 23.5 (3.2) | 30.6 (2.9) | 36.7 (4.8) | <0.001 | 23.5 (3.4) | 30.9 (5.5) | <0.001 |
WtHR | 0.44 (0.04) | 0.52 (0.04) | 0.59 (0.06) | <0.001 | 0.44 (0.04) | 0.54 (0.06) | <0.001 |
TyG | 8.1 (0.4) | 8.5 (0.5) | 8.7 (0.5) | <0.001 | 8.0 (0.4) | 8.6 (0.4) | <0.001 |
WTI | 7.9 (0.4) | 8.4 (0.4) | 8.7 (0.4) | <0.001 | 7.8 (0.3) | 8.6 (0.4) | <0.001 |
FLI low | FLI medium | FLI high | LAP normal | LAP high | |||
n = 114,596 | n = 61,884 | n = 56,334 | n = 147,914 | n = 84,900 | |||
Men | % | % | % | p-value | % | % | p-value |
BMI obesity | 0.4 | 12.2 | 66.5 | <0.001 | 5.9 | 43.5 | <0.001 |
WtHR high | 9.7 | 50.8 | 88.9 | <0.001 | 20.4 | 78.3 | <0.001 |
TyG high | 7.3 | 32.0 | 63.3 | <0.001 | 8.3 | 60.4 | <0.001 |
WTI high | 1.7 | 17.4 | 56.4 | <0.001 | 1.7 | 49.8 | <0.001 |
n = 124,065 | n = 18,134 | n = 11,911 | n = 94,959 | n = 59,141 | |||
Women | % | % | p-value | % | % | p-value | |
BMI obesity | 2.7 | 60.6 | 96.1 | <0.001 | 4.4 | 53.2 | <0.001 |
WtHR high | 6.8 | 69.9 | 97.0 | <0.001 | 6.7 | 67.2 | <0.001 |
TyG high | 7.2 | 31.9 | 47.4 | <0.001 | 4.0 | 38.5 | <0.001 |
WTI high | 2.1 | 22.1 | 48.3 | <0.001 | 0.6 | 30.3 | <0.001 |
Men | Women | |||
---|---|---|---|---|
FLI High | AUC (95% CI) | Cut-off-Sensibility-Specificity-Youden | AUC (95% CI) | Cut-off-Sensibility-Specificity-Youden |
BMI | 0.863 (0.862–0.865) | 28.3-78.5-77.9-0.564 | 0.813 (0.809–0.817) | 26.2-74.1-73.5-0.476 |
WtHR | 0.814 (0.812–0.816) | 0.51-74.0-73.7-0.477 | 0.899 (0.896–0.901) | 0.53-81.0-80.6-0.616 |
TyG | 0.881 (0.880–0.883) | 8.64-82.3-79.1-0.614 | 0.963 (0.961–0.964) | 8.28-88.0-87.6-0.756 |
WTI | 0.911 (0.910–0.912) | 8.63-83.0-83.0-0.660 | 0.974 (0.972–0.975) | 8.38-91.2-91.1-0.823 |
LAP high | AUC (95% CI) | Cut-off-sensibility-specificity-Youden | AUC (95% CI) | Cut-off-sensibility-specificity-Youden |
BMI | 0.838 (0.837–0.840) | 26.80-75.9-75.7-0.516 | 0.865 (0.863–0.867) | 26.2-78.7-78.1-0.568 |
WtHR | 0.876 (0.874–0.877) | 0.50-79.2-78.7-0.579 | 0.881 (0.879–0.883) | 0.50-80.0-79.9-0.599 |
TyG | 0.890 (0.888–0.891) | 8.55-80.7-80.5-0.612 | 0.918 (0.917–0.920) | 8.29-84.9-82.4-0.673 |
WTI | 0.952 (0.952–0.953) | 8.53-88.1-87.5-0.756 | 0.948 (0.947–0.949) | 8.20-87.8-86.9-0.747 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guarro Miguel, J.J.; Tárraga López, P.J.; Marzoa Jansana, M.D.; López-González, Á.A.; Riutord Sbert, P.; Busquets-Cortés, C.; Ramirez-Manent, J.I. Diagnostic Accuracy of Anthropometric and Metabolic Indicators for Predicting MASLD: Evidence from a Large Cohort of Spanish Workers Using FLI and LAP. Med. Sci. 2025, 13, 160. https://doi.org/10.3390/medsci13030160
Guarro Miguel JJ, Tárraga López PJ, Marzoa Jansana MD, López-González ÁA, Riutord Sbert P, Busquets-Cortés C, Ramirez-Manent JI. Diagnostic Accuracy of Anthropometric and Metabolic Indicators for Predicting MASLD: Evidence from a Large Cohort of Spanish Workers Using FLI and LAP. Medical Sciences. 2025; 13(3):160. https://doi.org/10.3390/medsci13030160
Chicago/Turabian StyleGuarro Miguel, Juan José, Pedro Juan Tárraga López, María Dolores Marzoa Jansana, Ángel Arturo López-González, Pere Riutord Sbert, Carla Busquets-Cortés, and José Ignacio Ramirez-Manent. 2025. "Diagnostic Accuracy of Anthropometric and Metabolic Indicators for Predicting MASLD: Evidence from a Large Cohort of Spanish Workers Using FLI and LAP" Medical Sciences 13, no. 3: 160. https://doi.org/10.3390/medsci13030160
APA StyleGuarro Miguel, J. J., Tárraga López, P. J., Marzoa Jansana, M. D., López-González, Á. A., Riutord Sbert, P., Busquets-Cortés, C., & Ramirez-Manent, J. I. (2025). Diagnostic Accuracy of Anthropometric and Metabolic Indicators for Predicting MASLD: Evidence from a Large Cohort of Spanish Workers Using FLI and LAP. Medical Sciences, 13(3), 160. https://doi.org/10.3390/medsci13030160