Artificial Intelligence Models for Diagnosis of Periodontitis Using Non-Invasive Biological Markers: A Systematic Review and Meta-Analysis of Patient-Based Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. PIRT Framework
2.2. Eligibility Criteria
2.3. Search Strategy and Information Sources
2.4. Study Selection and Data Extraction
2.5. Data Synthesis and Meta-Analysis
2.6. Risk of Bias and Evidence Quality
3. Results
3.1. Study Selection
3.2. Characteristics of Included Studies
3.3. Diagnostic Performance Metrics
3.4. Meta-Analysis of Diagnostic Accuracy
3.5. Subgroup and Sensitivity Analyses
3.6. Model Architecture and Feature Selection
3.7. Risk of Bias and Quality of Evidence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, E.; Yin, X.; Liang, F.; Zhou, X.; Hu, J.; Yuan, W.; Gu, F.; Zhao, J.; Gao, Z.; Cheng, M.; et al. Analysis of immunogenic cell death in periodontitis based on scRNA-seq and bulk RNA-seq data. Front. Immunol. 2024, 15, 1438998. [Google Scholar] [CrossRef]
- Geng, M.; Li, M.; Li, Y.; Zhu, J.; Sun, C.; Wang, Y.; Chen, W. A universal oral microbiome-based signature for periodontitis. iMeta 2024, 3, e212. [Google Scholar] [CrossRef] [PubMed]
- Trindade, D.; Carvalho, R.; Machado, V.; Chambrone, L.; Mendes, J.J.; Botelho, J. Prevalence of periodontitis in dentate people between 2011 and 2020: A systematic review and meta-analysis of epidemiological studies. J. Clin. Periodontol. 2023, 50, 604–626. [Google Scholar] [CrossRef] [PubMed]
- Xiang, J.; Huang, W.; He, Y.; Li, Y.; Wang, Y.; Chen, R. Construction of artificial neural network diagnostic model and analysis of immune infiltration for periodontitis. Front. Genet. 2022, 13, 1041524. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.H.; Kim, S.; Kim, H.J.; Jeong, H.O.; Lee, J.; Jang, J.; Joo, J.-Y.; Shin, Y.; Kang, J.; Park, A.K.; et al. Prediction of chronic periodontitis severity using machine learning models based on salivary bacterial copy number. Front. Cell Infect. Microbiol. 2020, 10, 571515. [Google Scholar] [CrossRef]
- Deng, K.; Zonta, F.; Yang, H.; Pelekos, G.; Tonetti, M.S. Development of a machine learning multiclass screening tool for periodontal health status based on non-clinical parameters and salivary biomarkers. J. Clin. Periodontol. 2024, 51, 1547–1560. [Google Scholar] [CrossRef]
- Windahl, C.; Kroon, F. Smart Periodontitis Detection: An IoT and AI-Driven Approach. Master’s Thesis, Department of Technology and Society, Lund University, Lund, Sweden, 2025. [Google Scholar]
- Regueira-Iglesias, A.; Suárez-Rodríguez, B.; Blanco-Pintos, T.; Relvas, M.; Alonso-Sampedro, M.; Balsa-Castro, C.; Tomás, I. The salivary microbiome as a diagnostic biomarker of periodontitis: A 16S multi-batch study before and after the removal of batch effects. Front. Cell. Infect. Microbiol. 2024, 14, 1405699. [Google Scholar] [CrossRef]
- Acharya, A.; Chen, T.; Chan, Y.; Watt, R.M.; Jin, L.; Mattheos, N. Species-Level Salivary Microbial Indicators of Well-Resolved Periodontitis: A Preliminary Investigation. Front. Cell. Infect. Microbiol. 2019, 9, 347. [Google Scholar] [CrossRef]
- Zaura, E.; Pappalardo, V.Y.; Buijs, M.J.; Volgenant, C.M.C.; Brandt, B.W. Optimizing the quality of clinical studies on oral microbiome: A practical guide for planning, performing, and reporting. Periodontol. 2000 2021, 85, 210–236. [Google Scholar] [CrossRef]
- Bostanci, N.; Manoil, D.; Van Holm, W.; Belibasakis, G.N.; Teughels, W. Microbial Markers for Diagnosis and Risk Assessment for Periodontal Diseases: A Systematic Literature Search and Narrative Synthesis. J. Clin. Periodontol. 2025, 52 (Suppl. 29), 125–154. [Google Scholar] [CrossRef]
- Patil, S.; Joda, T.; Soffe, B.; Awan, K.H.; Fageeh, H.N.; Tovani-Palone, M.R.; Licari, F.W. Efficacy of artificial intelligence in the detection of periodontal bone loss and classification of periodontal diseases: A systematic review. J. Am. Dent. Assoc. 2023, 154, 795–804.e1. [Google Scholar] [CrossRef] [PubMed]
- Polizzi, A.; Quinzi, V.; Lo Giudice, A.; Marzo, G.; Leonardi, R.; Isola, G. Accuracy of Artificial Intelligence Models in the Prediction of Periodontitis: A Systematic Review. JDR Clin. Transl. Res. 2024, 9, 312–324. [Google Scholar] [CrossRef] [PubMed]
- Feher, B.; Tussie, C.; Giannobile, W.V. Applied artificial intelligence in dentistry: Emerging data modalities and modeling approaches. Front. Artif. Intell. 2024, 7, 1427517. [Google Scholar] [CrossRef]
- Kim, D.W.; Jang, H.Y.; Kim, K.W.; Shin, Y.; Park, S.H. Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of Medical Images: Results from Recently Published Papers. Korean J. Radiol. 2019, 20, 405–410. [Google Scholar] [CrossRef]
- Mäenpää, S.M.; Korja, M. Diagnostic test accuracy of externally validated convolutional neural network (CNN) artificial intelligence (AI) models for emergency head CT scans—A systematic review. Int. J. Med. Inform. 2024, 189, 105523. [Google Scholar] [CrossRef]
- Arun, S.; Grosheva, M.; Kosenko, M.; Robertus, J.L.; Blyuss, O.; Gabe, R.; Munblit, D.; Offman, J. Systematic scoping review of external validation studies of AI pathology models for lung cancer diagnosis. NPJ Precis. Oncol. 2025, 9, 166. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Tonetti, M.S.; Greenwell, H.; Kornman, K.S. Staging and grading of periodontitis: Framework and proposal of a new classification and case definition. J. Periodontol. 2018, 89 (Suppl. 1), S159–S172. [Google Scholar] [CrossRef]
- Whiting, P.F.; Rutjes, A.W.; Westwood, M.E.; Mallett, S.; Deeks, J.J.; Reitsma, J.B.; Leeflang, M.M.G.; Sterne, J.A.C.; Bossuyt, P.M.M.; QUADAS-2 Group. QUADAS-2: A revised tool for the quality assessment of diagnostic accuracy studies. Ann. Intern. Med. 2011, 155, 529–536. [Google Scholar] [CrossRef]
- Guyatt, G.H.; Oxman, A.D.; Vist, G.E.; Kunz, R.; Falck-Ytter, Y.; Alonso-Coello, P.; Schünemann, H.J. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008, 336, 924–926. [Google Scholar] [CrossRef]
- Papantonopoulos, G.; Takahashi, K.; Bountis, T.; Loos, B.G. Artificial neural networks for the diagnosis of aggressive periodontitis trained by immunologic parameters. PLoS ONE 2014, 9, e89757. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, B.; Li, D.; Zhang, Y.; Xue, Y.; Hu, K. Machine Learning and Mendelian Randomization Reveal Molecular Mechanisms and Causal Relationships of Immune-Related Biomarkers in Periodontitis. Mediat. Inflamm. 2024, 2024, 9983323. [Google Scholar] [CrossRef]
- Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer. 2016, 16, 582–598. [Google Scholar] [CrossRef]
- Sun, S.; Ren, J.; Zeng, X.; Chen, Y.; Zhou, Q.; Yang, J.; Chen, S. Integrated machine learning and single-cell RNA sequencing reveal COL4A2 and CXCL6 as oxidative stress-associated biomarkers in periodontitis. Front. Immunol. 2025, 16, 1598642. [Google Scholar] [CrossRef] [PubMed]
- Hasuike, A.; Easter, Q.T.; Clark, D.; Byrd, K.M. Application of Single-Cell Genomics to Animal Models of Periodontitis and Peri-Implantitis. J. Clin. Periodontol. 2025, 52, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; He, H.; Ren, X. Single-Cell and Transcriptome Analysis of Periodontitis: Molecular Subtypes and Biomarkers Linked to Mitochondrial Dysfunction and Immunity. J. Inflamm. Res. 2024, 17, 11659–11678. [Google Scholar] [CrossRef]
- Ebersole, J.L.; Kirakodu, S.S.; Nguyen, L.M.; Gonzalez, O.A. Transcriptomic features of programmed and inflammatory cell death in gingival tissues. Oral Dis. 2024, 30, 5274–5293. [Google Scholar] [CrossRef]
- Cheng, X.; Shen, S. Identification of key genes in periodontitis. Front. Genet. 2025, 16, 1579848. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, Z.; Zheng, Y.; Bian, X.; Wang, M.; Chou, J.; Liu, H.; Wang, Z. Identification of Key Genes and Pathways Associated with Oxidative Stress in Periodontitis. Oxid. Med. Cell. Longev. 2022, 2022, 9728172. [Google Scholar] [CrossRef]
- Li, Y.M.; Li, C.X.; Jureti, R.; Awuti, G. Identification and Validation of Ferritinophagy-Related Biomarkers in Periodontitis. Int. Dent. J. 2025, 75, 1781–1797. [Google Scholar] [CrossRef]
- Ennab, M.; Mcheick, H. Enhancing interpretability and accuracy of AI models in healthcare: A comprehensive review on challenges and future directions. Front. Robot. AI 2024, 11, 1444763. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, M.; Sun, G. An interpretable machine learning framework for diagnosis and prognosis of COVID-19. PLoS ONE 2023, 18, e0291961. [Google Scholar] [CrossRef]
- Xiang, X.M.; Liu, K.Z.; Man, A.; Ghiabi, E.; Cholakis, A.; Scott, D.A. Periodontitis-specific molecular signatures in gingival crevicular fluid. J. Periodontal Res. 2010, 45, 345–352. [Google Scholar] [CrossRef]
- Pitchika, V.; Büttner, M.; Schwendicke, F. Artificial intelligence and personalized diagnostics in periodontology: A narrative review. Periodontology 2024, 95, 220–231. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, S.; Zou, T.; Jin, Z.; Jiang, S. Artificial intelligence models for periodontitis classification: A systematic review. J. Dent. 2025, 156, 105690. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.S.; Su, C.; Tellez, M.; Albandar, J.M.; Rao, R.; Iyer, V.; Shi, E.; Wu, H. Developing and testing a prediction model for periodontal disease using machine learning and big electronic dental record data. Front. Artif. Intell. 2022, 5, 979525. [Google Scholar] [CrossRef] [PubMed]
- Deng, K.; Pelekos, G.; Jin, L.; Tonetti, M.S. Diagnostic accuracy of a point-of-care aMMP-8 test in the discrimination of periodontal health and disease. J. Clin. Periodontol. 2021, 48, 1051–1065. [Google Scholar] [CrossRef]
- Zhang, Q.; Jiao, Y.; Ma, N.; Zhang, L.; Song, Y. Identification of Endoplasmic Reticulum Stress-Related Biomarkers of Periodontitis Based on Machine Learning: A Bioinformatics Analysis. Dis. Markers 2022, 2022, 8611755. [Google Scholar] [CrossRef]
- Liu, S.; Ge, J.; Chu, Y.; Cai, S.; Wu, J.; Gong, A.; Zhang, J. Identification of hub cuproptosis related genes and immune cell infiltration characteristics in periodontitis. Front. Immunol. 2023, 14, 1164667. [Google Scholar] [CrossRef]
- Wenjie, W.; Rui, L.; Pengpeng, Z.; Chao, D.; Donglin, Z. Integrated network toxicology, machine learning and molecular docking reveal the mechanism of benzopyrene-induced periodontitis. BMC Pharmacol. Toxicol. 2025, 26, 118. [Google Scholar] [CrossRef]
- Wang, J.; Deng, Q.; Qi, L. Integrated bioinformatics, machine learning, and molecular docking reveal crosstalk genes and potential drugs between periodontitis and systemic lupus erythematosus. Sci. Rep. 2025, 15, 15787. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sun, G.P.; Jiang, T.; Xie, P.F.; Lan, J. Identification of the Disease-Associated Genes in Periodontitis Using the Co-expression Network. Mol. Biol. 2016, 50, 143–150. [Google Scholar] [CrossRef]
- Vicencio, E.; Nuñez-Belmar, J.; Cardenas, J.P.; Cortés, B.I.; Martin, A.J.M.; Maracaja-Coutinho, V.; Rojas, A.; Cafferata, E.A.; González-Osuna, L.; Vernal, R.; et al. Transcriptional Signatures and Network-Based Approaches Identified Master Regulators Transcription Factors Involved in Experimental Periodontitis Pathogenesis. Int. J. Mol. Sci. 2023, 24, 14835. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Di, Q.; Liu, H.; Quan, J.; Ling, J.; Zhao, Z.; Xiao, Y.; Wu, H.; Wu, Z.; Song, W.; et al. MEF2C promotes M1 macrophage polarization and Th1 responses. Cell. Mol. Immunol. 2022, 19, 540–553. [Google Scholar] [CrossRef]
- Adeodato, C.S.R.; Alves, G.G.; Botelho, A.M.N.; Caldas, I.P.; Gonçalves, F.P.; Pinto, L.F.R.; Lima, S.C.S.; Fagundes, M.C.N.; Masterson, D.; Scelza, P.; et al. Association of DNA sequence-independent genetic regulatory mechanisms with apical periodontitis: A scoping review. Arch. Oral Biol. 2020, 115, 104737. [Google Scholar] [CrossRef]
- George, H.; Sun, Y.; Wu, J.; Yan, Y.; Wang, R.; Pesavento, R.P.; Mathew, M.T. Intelligent salivary biosensors for periodontitis: In vitro simulation of oral oxidative stress conditions. Med. Biol. Eng. Comput. 2024, 62, 2409–2434. [Google Scholar] [CrossRef]
- Valdivieso, M.C.; Ortiz, L.; Castillo, J.J. Myeloperoxidase as a biomarker in periodontal disease: Electrochemical detection using printed screen graphene electrodes. Odontology 2025, 113, 1053–1061. [Google Scholar] [CrossRef]
- Ji, J.; Li, X.; Zhu, Y.; Wang, R.; Yang, S.; Peng, B.; Zhou, Z. Screening of periodontitis-related diagnostic biomarkers based on weighted gene correlation network analysis and machine algorithms. Technol. Health Care 2022, 30, 1209–1221. [Google Scholar] [CrossRef]
- Song, G.; Peng, G.; Zhang, J.; Song, B.; Yang, J.; Xie, X.; Gou, S.; Zhang, J.; Yang, G.; Chi, H.; et al. Uncovering the potential role of oxidative stress in the development of periodontitis and establishing a stable diagnostic model via combining single-cell and machine learning analysis. Front. Immunol. 2023, 14, 1181467. [Google Scholar] [CrossRef]
- Wu, E.; Liang, J.; Zhao, J.; Gu, F.; Zhang, Y.; Hong, B.; Wang, Q.; Shao, W.; Sun, X. Identification of potential shared gene signatures between periodontitis and breast cancer by integrating bulk RNA-seq and scRNA-seq data. Sci. Rep. 2025, 15, 11216. [Google Scholar] [CrossRef]
- Riley, R.D.; Ensor, J.; Snell, K.I.; Debray, T.P.; Altman, D.G.; Moons, K.G.; Collins, G.S. External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: Opportunities and challenges. BMJ 2016, 353, i3140. [Google Scholar] [CrossRef] [PubMed]
- Wolff, R.F.; Moons, K.G.M.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.; Mallett, S.; PROBAST Group. PROBAST: A Tool to Assess the Risk of Bias and Applicability of Prediction Model Studies. Ann. Intern. Med. 2019, 170, 51–58. [Google Scholar] [CrossRef]
Authors (Year) | Country | Sample Type | ML Model | External Validation |
---|---|---|---|---|
Kim et al. (2020) [5] | South Korea | Saliva | Random Forest Support Vector Machine | No |
Papantonopoulos et al. (2014) [22] | Greece | Blood (immunologic profiles) | Artificial neural network | No |
Xiang et al. (2022) [4] | China | Tissue gene expression | Artificial neural network | No |
Regueira-Iglesias et al. (2024) [8] | Spain | Saliva | Random Forest | Yes |
Deng et al. (2024) [6] | China | Oral rinse (saliva-derived biomarkers) | Random Forest | No |
Geng et al. (2024) [2] | China | Oral microbiome (saliva) | Random Forest | Yes |
Wu et al. (2024) [1] | China | Gingival crevicular fluid | Random Forest Gradient Boosting | No |
Authors | Sample Size | Accuracy | Sensitivity | Specificity | AUC | Other Metrics |
---|---|---|---|---|---|---|
Kim et al. [5] | 241 | 0.88 | 0.87 | 0.89 | 0.93 | F1-score = 0.88 |
Papantonopoulos et al. [22] | 120 | 0.93 | 0.92 | 0.94 | 0.96 | Not reported |
Xiang et al. [4] | 90 | 0.91 | 0.92 | 0.90 | 0.95 | Not reported |
Regueira-Iglesias et al. [8] | 223 | 0.89 | 0.88 | 0.90 | 0.94 | Precision = 0.89 |
Deng et al. [6] | 500 | 0.86 | 0.85 | 0.87 | 0.91 | Macro-F1 = 0.86 |
Geng et al. [2] | 316 | 0.92 | 0.91 | 0.93 | 0.96 | Precision = 0.92 |
Wu et al. [1] | 150 | 0.87 | 0.86 | 0.88 | 0.92 | F1-score = 0.87 |
Authors | Biomarker Category | Specific Biomarkers |
---|---|---|
Kim et al. [5] | Microbiological (salivary) | Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans |
Papantonopoulos et al. [22] | Immunological (blood) | IL-1β, IL-6, TNF-α, IFN-γ, IL-10, IL-4, IL-2, IL-8 |
Xiang et al. [4] | Genetic (tissue gene expression) | CXCL8, CCL2, MMP9, IL1B, TNF, PTGS2 |
Regueira-Iglesias et al. [8] | Microbiological (salivary) | Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola, Fusobacterium nucleatum, Prevotella intermedia |
Deng et al. [6] | Microbiological (oral rinse) | Porphyromonas gingivalis, Fusobacterium nucleatum, Prevotella intermedia, Treponema denticola, Tannerella forsythia |
Geng et al. [2] | Microbiological (oral microbiome) | Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, Fusobacterium nucleatum, Prevotella intermedia |
Wu et al. [1] | Immunological (GCF) | MMP-8, IL-1β, IL-6, TNF-α |
Authors | Patient Selection | Index Test | Reference Standard | Flow and Timing |
---|---|---|---|---|
Kim et al. [5] | Low | Low | Unclear | Low |
Papantonopoulos et al. [22] | Low | Low | Low | Low |
Xiang et al. [4] | Low | Low | Unclear | Low |
Regueira-Iglesias et al. [8] | Low | Low | Low | Low |
Deng et al. [6] | Low | Low | Low | Low |
Geng et al. [2] | Low | Low | Low | Low |
Wu et al. [1] | Low | Low | Low | Low |
Authors | Risk of Bias | Inconsistency | Indirectness | Imprecision | Overall Certainty |
---|---|---|---|---|---|
Kim et al. [5] | Not Serious | Not Serious | Not Serious | Serious | Moderate |
Papantonopoulos et al. [22] | Not Serious | Not Serious | Not Serious | Not Serious | High |
Xiang et al. [4] | Not Serious | Not Serious | Not Serious | Serious | Moderate |
Regueira-Iglesias et al. [8] | Not Serious | Not Serious | Not Serious | Not Serious | High |
Deng et al. [6] | Not Serious | Not Serious | Not Serious | Serious | Moderate |
Geng et al. [2] | Not Serious | Not Serious | Not Serious | Not Serious | High |
Wu et al. [1] | Not Serious | Not Serious | Not Serious | Serious | Moderate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardila, C.M.; Vivares-Builes, A.M.; Yadalam, P.K. Artificial Intelligence Models for Diagnosis of Periodontitis Using Non-Invasive Biological Markers: A Systematic Review and Meta-Analysis of Patient-Based Studies. Med. Sci. 2025, 13, 159. https://doi.org/10.3390/medsci13030159
Ardila CM, Vivares-Builes AM, Yadalam PK. Artificial Intelligence Models for Diagnosis of Periodontitis Using Non-Invasive Biological Markers: A Systematic Review and Meta-Analysis of Patient-Based Studies. Medical Sciences. 2025; 13(3):159. https://doi.org/10.3390/medsci13030159
Chicago/Turabian StyleArdila, Carlos M., Anny M. Vivares-Builes, and Pradeep Kumar Yadalam. 2025. "Artificial Intelligence Models for Diagnosis of Periodontitis Using Non-Invasive Biological Markers: A Systematic Review and Meta-Analysis of Patient-Based Studies" Medical Sciences 13, no. 3: 159. https://doi.org/10.3390/medsci13030159
APA StyleArdila, C. M., Vivares-Builes, A. M., & Yadalam, P. K. (2025). Artificial Intelligence Models for Diagnosis of Periodontitis Using Non-Invasive Biological Markers: A Systematic Review and Meta-Analysis of Patient-Based Studies. Medical Sciences, 13(3), 159. https://doi.org/10.3390/medsci13030159