Artificial Intelligence and Extended Reality in the Training of Vascular Surgeons: A Narrative Review
Abstract
1. Introduction
2. Terminology
3. Cognitive Theories: The Scientific Basis for Why VR Training Works Effectively
4. Insights from Other Surgical Fields
4.1. General Surgery
4.2. Neurosurgery
4.3. Orthopedic Surgery
4.4. Systematic Reviews of Immersive VR in Surgical Training
5. VR Training in Vascular Surgery
5.1. Fundamental Endovascular Skills: Early Simulation and Structured Curricula
5.2. Carotid Artery Stenting
5.3. Aneurysm Repair
5.4. Ruptured Abdominal Aortic Aneurysm Management
5.5. Peripheral Arterial Disease
6. Other Applications in Vascular Surgery
6.1. AI as an Objective Evaluator
6.2. Technical Novelty
6.3. Patient-Specific Rehearsal
7. Official Guidelines on VR-Based Vascular Surgical Education
8. Challenges, Limitations, and Cost-Effectiveness: Future Directions
9. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trenner, M.; Haller, B.; Storck, M.; Reutersberg, B.; Kallmayer, M.A.; Eckstein, H.H. Trends in Patient Safety of Intact Abdominal Aortic Aneurysm Repair: German Registry Data on 36,594 Procedures. Eur. J. Vasc. Endovasc. Surg. 2017, 53, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Scali, S.T.; Beck, A.; Sedrakyan, A.; Mao, J.; Behrendt, C.-A.; Boyle, J.R.; Venermo, M.; Faizer, R.; Schermerhorn, M.; Beiles, B.; et al. Editor’s Choice—Optimal Threshold for the Volume-Outcome Relationship After Open AAA Repair in the Endovascular Era: Analysis of the International Consortium of Vascular Registries. Eur. J. Vasc. Endovasc. Surg. 2021, 61, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Suckow, B.D.; Goodney, P.P.; Columbo, J.A.; Kang, R.; Stone, D.H.; Sedrakyan, A.; Cronenwett, J.L.; Fillinger, M.F. National trends in open surgical, endovascular, and branched-fenestrated endovascular aortic aneurysm repair in Medicare patients. J. Vasc. Surg. 2018, 67, 1690–1697.e1. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chakfé, N.; Diener, H.; Lejay, A.; Assadian, O.; Berard, X.; Caillon, J.; Fourneau, I.; Glaudemans, A.W.; Koncar, I.; Lindholt, J.; et al. Editor’s Choice—European Society for Vascular Surgery (ESVS) 2020 Clinical Practice Guidelines on the Management of Vascular Graft and Endograft Infections. Eur. J. Vasc. Endovasc. Surg. 2020, 59, 339–384, Erratum in Eur. J. Vasc. Endovasc. Surg. 2020, 60, 958. https://doi.org/10.1016/j.ejvs.2020.07.080. [Google Scholar] [CrossRef] [PubMed]
- Sigounas, V.Y.; Callas, P.W.; Nicholas, C.; Adams, J.E.; Bertges, D.J.; Stanley, A.C.; Steinthorsson, G.; Ricci, M.A. Evaluation of simulation-based training model on vascular anastomotic skills for surgical residents. Simul. Healthc. 2012, 7, 334–338. [Google Scholar] [CrossRef] [PubMed]
- Mao, R.Q.; Lan, L.; Kay, J.; Lohre, R.; Ayeni, O.R.; Goel, D.P.; Sa, D. Immersive Virtual Reality for Surgical Training: A Systematic Review. J. Surg. Res. 2021, 268, 40–58. [Google Scholar] [CrossRef] [PubMed]
- Van Herzeele, I.; Aggarwal, R.; Neequaye, S.; Darzi, A.; Vermassen, F.; Cheshire, N.J. Cognitive training improves clinically relevant outcomes during simulated endovascular procedures. J. Vasc. Surg. 2008, 48, 1223–1230.e1. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, A.G.; Seymour, N.E.; Jordan-Black, J.A.; Bunting, B.P.; McGlade, K.; Satava, R.M. Prospective, randomized assessment of transfer of training (ToT) and transfer effectiveness ratio (TER) of virtual reality simulation training for laparoscopic skill acquisition. Ann. Surg. 2013, 257, 1025–1031. [Google Scholar] [CrossRef] [PubMed]
- Cates, C.U.; Lönn, L.; Gallagher, A.G. Prospective, randomised and blinded comparison of proficiency-based progression full-physics virtual reality simulator training versus invasive vascular experience for learning carotid artery angiography by very experienced operators. BMJ Simul. Technol. Enhanc. Learn. 2016, 2, 1–5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Saricilar, E.C.; Burgess, A.; Freeman, A. A pilot study of the use of artificial intelligence with high-fidelity simulations in assessing endovascular procedural competence independent of a human examiner. ANZ J. Surg. 2023, 93, 1525–1531. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.; Hellström, M.; Göthlin, J.; Reznick, R.; Lönn, L. Endovascular training with animals versus virtual reality systems: An economic analysis. J. Vasc. Interv. Radiol. 2008, 19 Pt 1, 233–238, Erratum in J. Vasc. Interv. Radiol. 2008, 19, 959. [Google Scholar] [CrossRef] [PubMed]
- Berry, M.; Lystig, T.; Beard, J.; Klingestierna, H.; Reznick, R.; Lönn, L. Porcine transfer study: Virtual reality simulator training compared with porcine training in endovascular novices. Cardiovasc. Interv. Radiol. 2007, 30, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Curran, V.R.; Xu, X.; Aydin, M.Y.; Meruvia-Pastor, O. Use of Extended Reality in Medical Education: An Integrative Review. Med. Sci. Educ. 2022, 33, 275–286. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sadeghi, A.H.; Mathari, S.E.; Abjigitova, D.; Maat, A.P.W.M.; Taverne, Y.J.H.J.; Bogers, A.J.J.C.; Mahtab, E.A.F. Current and Future Applications of Virtual, Augmented, and Mixed Reality in Cardiothoracic Surgery. Ann. Thorac. Surg. 2022, 113, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Keeling, A.N.; Fakhry, M.; Ashrafian, H.; Aggarwal, R.; Naughton, P.A.; Darzi, A.; Cheshire, N.; Athanasiou, T.; Hamady, M. Role of virtual reality simulation in teaching and assessing technical skills in endovascular intervention. J. Vasc. Interv. Radiol. 2010, 21, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.; Mesnard, T.; Vacirca, A.; George, M.; Goel, V.; Sulzer, T.A.L.; Huang, Y.; Tenorio, E.R.; Skibber, M.; Maximus, S.; et al. Intraoperative position system guided with augmented reality improves the learning curve of endovascular navigation in endovascular-naïve operators. J. Vasc. Surg. 2025, 81, 759–763. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Margallo, J.A.; Plaza de Miguel, C.; Fernández Anzules, R.A.; Sánchez-Margallo, F.M. Application of mixed reality in medical training and surgical planning focused on minimally invasive surgery. Front. Virtual Real. 2021, 2, 692641. [Google Scholar] [CrossRef]
- Javidan, A.P.; Li, A.; Lee, M.H.; Forbes, T.L.; Naji, F. A Systematic Review and Bibliometric Analysis of Applications of Artificial Intelligence and Machine Learning in Vascular Surgery. Ann. Vasc. Surg. 2022, 85, 395–405. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.M.; Shireman, P.K.; Lin, J.C. Current applications of artificial intelligence in vascular surgery. Semin. Vasc. Surg. 2021, 34, 268–271. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R. Artificial Intelligence in Surgery: Promises and Perils. Ann. Surg. 2018, 268, 70–76. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mir, M.M.; Mir, G.M.; Raina, N.T.; Mir, S.M.; Mir, S.M.; Miskeen, E.; Alharthi, M.H.; Alamri, M.M.S. Application of Artificial Intelligence in Medical Education: Current Scenario and Future Perspectives. J. Adv. Med. Educ. Prof. 2023, 11, 133–140. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kolb, D.A. Experiential Learning: Experience as the Source of Learning and Development; Prentice Hall: Englewood Cliffs, NJ, USA, 1984. [Google Scholar]
- Lave, J.; Wenger, E. Situated Learning: Legitimate Peripheral Participation; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Sweller, J. Cognitive load during problem solving: Effects on learning. Cogn. Sci. 1988, 12, 257–285. [Google Scholar] [CrossRef]
- Frederiksen, J.G.; Sørensen, S.M.; Konge, L.; Svendsen, M.B.; Nobel-Jørgensen, M.; Bjerrum, F.; Andersen, S.A. Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: A randomized trial. Surg. Endosc. 2020, 34, 3874–3882. [Google Scholar] [CrossRef]
- Ericsson, K.A.; Krampe, R.T.; Tesch-Römer, C. The role of deliberate practice in the acquisition of expert performance. Psychol. Rev. 1993, 100, 363–406. [Google Scholar] [CrossRef]
- Fitts, P.M.; Posner, M.I. Human Performance; Cole: Belmont, CA, USA, 1967; Volume 5, pp. 7–16. [Google Scholar]
- Schmidt, R.A. A schema theory of discrete motor skill learning. Psychol. Rev. 1975, 82, 225–260. [Google Scholar] [CrossRef]
- McGaghie, W.C.; Harris, I.B. Learning Theory Foundations of Simulation-Based Mastery Learning. Simul. Healthc. 2018, 13 (Suppl. S1), S15–S20. [Google Scholar] [CrossRef] [PubMed]
- Ayub, S.M. “See one, do one, teach one”: Balancing patient safety and surgical training. J. Glob. Health 2022, 12, 03051. [Google Scholar] [CrossRef] [PubMed]
- Seymour, N.E.; Gallagher, A.G.; Roman, S.A.; O’bRien, M.K.; Bansal, V.K.; Andersen, D.K.; Satava, R.M. Virtual reality training improves operating room performance: Results of a randomized, double-blinded study. Ann. Surg. 2002, 236, 458–463. [Google Scholar] [CrossRef]
- Palter, V.N.; Orzech, N.; Reznick, R.K.; Grantcharov, T.P. Validation of a Structured Training and Assessment Curriculum for Technical Skill Acquisition in Minimally Invasive Surgery. Ann. Surg. 2013, 257, 224–230. [Google Scholar] [CrossRef]
- Mirchi, N.; Bissonnette, V.; Yilmaz, R.; Ledwos, N.; Winkler-Schwartz, A.; Del Maestro, R.F.; Pławiak, P. The Virtual Operative Assistant: An explainable AI tool for simulation-based training in surgery. PLoS ONE 2020, 15, e0229596. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, R.; Bakhaidar, M.; Alsayegh, A.; Hamdan, N.A.; Fazlollahi, A.M.; Tee, T.; Langleben, I.; Winkler-Schwartz, A.; Laroche, D.; Santaguida, C.; et al. Real-time multifaceted AI vs in-person instruction in teaching surgical skills: A randomized controlled trial. Sci. Rep. 2024, 14, 15130. [Google Scholar] [CrossRef]
- Fazlollahi, A.M.; Yilmaz, R.; Winkler-Schwartz, A.; Mirchi, N.; Ledwos, N.; Bakhaidar, M.; Alsayegh, A.; Del Maestro, R.F. AI in Surgical Curriculum Design and Unintended Outcomes in Simulation Training. JAMA Netw. Open 2023, 6, e2334658. [Google Scholar] [CrossRef]
- Lohre, R.; Bois, A.J.; Pollock, J.W.; Lapner, P.; McIlquham, K.; Athwal, G.S.; Goel, D.P. Effectiveness of Immersive VR on Orthopedic Skills Among Residents: A Randomized Trial. JAMA Netw. Open 2020, 3, e2031217. [Google Scholar] [CrossRef]
- Logishetty, K.; Gofton, W.T.; Rudran, B.; Beaulé, P.E.; Cobb, J.P. Fully Immersive VR for Total Hip Arthroplasty: Objective Measurement of Skills. J. Bone Jt. Surg. 2020, 102, e27. [Google Scholar] [CrossRef]
- Sheik-Ali, S.; Edgcombe, H.; Paton, C. Next-generation Virtual and Augmented Reality in Surgical Education: A Narrative Review. Surg. Technol. Int. 2019, 33. [Google Scholar] [CrossRef] [PubMed]
- Woodall, W.J.; Chang, E.H.; Toy, S.; Lee, D.R.; Sherman, J.H. Does Extended Reality Simulation Improve Surgical Procedural Learning and Patient Outcomes Compared With Standard Training Methods? A Systematic Review. Simul. Healthc. 2024, 19, S98–S111. [Google Scholar] [CrossRef] [PubMed]
- Mergen, M.; Meyerheim, M.; Graf, N. Reviewing the current state of virtual reality integration in medical education—A scoping review protocol. Syst. Rev. 2023, 12, 97. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nassar, A.K.; Al-Manaseer, F.; Knowlton, L.M.; Tuma, F. Virtual Reality as a Simulation Modality for Technical Skills Acquisition. Ann. Med. Surg. 2021, 68, 102945. [Google Scholar] [CrossRef]
- Aeckersberg, G.; Gkremoutis, A.; Schmitz-Rixen, T.; Kaiser, E. The relevance of low-fidelity virtual reality simulators compared with other learning methods in basic endovascular skills training. J. Vasc. Surg. 2019, 69, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Soenens, G.; Lawaetz, J.; Bamelis, A.S.; Nayahangan, L.J.; Konge, L.; Eiberg, J.; Van Herzeele, I. International Implementation of a PROficiency based StePwise Endovascular Curricular Training (PROSPECT) in Daily Practice. Eur. J. Vasc. Endovasc. Surg. 2021, 62, 992–998. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Guo, S.; Tamiya, T.; Hirata, H.; Ishihara, H.; Yin, X. A virtual-reality simulator and force sensation combined catheter operation training system and its preliminary evaluation. Int. J. Med. Robot. Comput. Assist. Surg. 2016, 13, e1769. [Google Scholar] [CrossRef] [PubMed]
- Moglia, A.; Piazza, R.; Mocellin, D.M.; Ferrari, V.; Campanelli, G.; Ferrari, M.; Berchiolli, R. Definition of Proficiency Level by a Virtual Simulator as a First Step Toward a Curriculum on Fundamental Skills for Endovascular Aneurysm Repair (EVAR). J. Surg. Educ. 2020, 77, 1592–1597.e3. [Google Scholar] [CrossRef] [PubMed]
- Rudarakanchana, N.; Van Herzeele, I.; Bicknell, C.D.; Riga, C.V.; Rolls, A.; Cheshire, N.J.; Hamady, M.S. Endovascular repair of ruptured abdominal aortic aneurysm: Technical and team training in an immersive virtual reality environment. Cardiovasc. Interv. Radiol. 2014, 37, 920–927. [Google Scholar] [CrossRef] [PubMed]
- Torres, I.O.; Inforsato, N.; Wipper, S.; da Silva, E.S.; Puech-Leão, P.; De Luccia, N. Benefits of lower limb angioplasty training using a virtual reality simulator among vascular surgical residents. JVS Vasc. Insights 2024, 2, 100043. [Google Scholar] [CrossRef]
- Duran, C.; Estrada, S.; O’Malley, M.; Sheahan, M.G.; Shames, M.L.; Lee, J.T.; Bismuth, J. The model for Fundamentals of Endovascular Surgery (FEVS) successfully defines the competent endovascular surgeon. J. Vasc. Surg. 2015, 62, 1660–1666.e3. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Xu, B.; Zhang, X.; Fang, D.; Zhang, J. Design and development of a personalized virtual reality-based training system for vascular intervention surgery. Comput. Methods Programs Biomed. 2024, 249, 108142. [Google Scholar] [CrossRef] [PubMed]
- Lareyre, F.; Mialhe, C.; Nasr, B.; Poggi, E.; Di Lorenzo, G.; Rajhi, K.; Chaudhuri, A.; Raffort, J. Extended and augmented reality in vascular surgery: Opportunities and challenges. Semin. Vasc. Surg. 2024, 37, 321–325. [Google Scholar] [CrossRef] [PubMed]
- Nayahangan, L.J.; Van Herzeele, I.; Konge, L.; Koncar, I.; Cieri, E.; Mansilha, A.; Debus, S.; Eiberg, J.P. Achieving Consensus to Define Curricular Content for Simulation Based Education in Vascular Surgery: A Europe Wide Needs Assessment Initiative. Eur. J. Vasc. Endovasc. Surg. 2019, 58, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Rosenfield, K.; Babb, J.D.; Cates, C.U.; Cowley, M.J.; Feldman, T.; Gallagher, A.; Gray, W.; Green, R.; Jaff, M.R.; Kent, K.C.; et al. Clinical competence statement on carotid stenting: Training and credentialing for carotid stenting–multispecialty consensus recommendations: A report of the SCAI/SVMB/SVS Writing Committee to develop a clinical competence statement on carotid interventions. J. Am. Coll. Cardiol. 2005, 45, 165–174. [Google Scholar] [CrossRef]
- Alonso, A.; Siracuse, J.J. Protecting patient safety and privacy in the era of artificial intelligence. Semin. Vasc. Surg. 2023, 36, 426–429. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Nascimento, D.; Dantas, G.G.; Fonseca, K.; Hespanhol, L.; Rego, A.; Araújo-Filho, I. Impact of artificial intelligence on the training of general surgeons of the future: A scoping review of the advances and challenges. Acta Cirúrgica Bras. 2024, 39, e396224. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Collins, J.W.; Marcus, H.J.; Ghazi, A.; Sridhar, A.; Hashimoto, D.; Hager, G.; Arezzo, A.; Jannin, P.; Maier-Hein, L.; Marz, K.; et al. Ethical implications of AI in robotic surgical training: A Delphi consensus statement. Eur. Urol. Focus 2022, 8, 613–622. [Google Scholar] [CrossRef] [PubMed]
- Scali, S.T.; Stone, D.H. The role of big data, risk prediction, simulation, and centralization for emergency vascular problems: Lessons learned and future directions. Semin. Vasc. Surg. 2023, 36, 380–391. [Google Scholar] [CrossRef] [PubMed]
Theory | Core Idea | What to Do in VR |
---|---|---|
Kolb’s Learning Cycle [15,22] | Learning happens in four stages: do, reflect, learn, retry | Use real cases, give time to reflect, and repeat practice |
Situated Learning [7,23] | People learn best in real-life, relevant situations | Use realistic VR scenarios with patient-specific cases |
Cognitive Load Theory (CLT) [24,25] | The brain has limits (too much information slows learning) | Simplify tasks, give feedback, and avoid unnecessary visual clutter |
Deliberate Practice/Schema [15,27] | Practice with goals and variation builds flexible skills | Offer feedback-rich, varied VR cases that build motor memory |
Fitts–Posner Model [27,28] | Skills go from slow to automatic through stages | Provide repeated, structured practice to reach the “automatic” stage |
Mastery Learning [29] | Everyone can master skills with time, feedback, and support | Let learners train at their own pace until they reach a set standard |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halman, J.; Tencer, S.; Siemiński, M. Artificial Intelligence and Extended Reality in the Training of Vascular Surgeons: A Narrative Review. Med. Sci. 2025, 13, 126. https://doi.org/10.3390/medsci13030126
Halman J, Tencer S, Siemiński M. Artificial Intelligence and Extended Reality in the Training of Vascular Surgeons: A Narrative Review. Medical Sciences. 2025; 13(3):126. https://doi.org/10.3390/medsci13030126
Chicago/Turabian StyleHalman, Joanna, Sonia Tencer, and Mariusz Siemiński. 2025. "Artificial Intelligence and Extended Reality in the Training of Vascular Surgeons: A Narrative Review" Medical Sciences 13, no. 3: 126. https://doi.org/10.3390/medsci13030126
APA StyleHalman, J., Tencer, S., & Siemiński, M. (2025). Artificial Intelligence and Extended Reality in the Training of Vascular Surgeons: A Narrative Review. Medical Sciences, 13(3), 126. https://doi.org/10.3390/medsci13030126