Eryptosis in Liver Diseases: Contribution to Anemia and Hypercoagulation
Abstract
1. Introduction
2. Eryptosis: Signaling and Functions
2.1. Eryptosis Signaling
2.2. Physiological Functions of Eryptosis
3. Eryptosis in Disease: Eryptosis as a Contributing Factor to Anemia and Thrombosis
4. Eryptosis and Liver-Derived Metabolites
5. Eryptosis and Liver Diseases
5.1. PS-Displaying Eryptotic Cells Are Cleared by Hepatic Kupffer Cells
5.2. Eryptosis Is Frequently Enhanced in Liver Diseases
5.3. Eryptosis in Liver Diseases Is Triggered by Bilirubin, Bile Acids, Cytokines, and ROS
5.4. Eryptosis in Liver Diseases Leads to Anemia
5.5. Eryptosis in Liver Diseases Promotes Blood Coagulation
5.6. Eryptotic Erythrocytes Trigger Ferroptosis in Hepatic Diseases
5.7. Erythrocytes Are Also Cleared by PS-Independent Pathways in Liver Diseases
5.8. Eryptosis Is an Important Factor in Hepatic Diseases
6. Eryptosis and Drugs Used for the Treatment of Liver Diseases
7. Concluding Remarks and Challenges
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALD | Alcohol-associated liver disease |
ANGPTL3 | Angiopoietin-like 3 |
ATP | Adenosine triphosphate |
CK1α | Casein kinase 1α |
CLD | Chronic liver disease |
CRP | C-reactive protein |
DAMP | Damage-associated molecular patterns |
FDA | Food and Drug Administration |
FGF21 | Fibroblast growth factor 21 |
HB-ACLF | Hepatitis B-related acute-on-chronic liver failure |
HBV | Hepatitis B virus |
HCV | Hepatitis C virus |
IL | Interleukin |
MASLD MCP-1 | Metabolic dysfunction-associated steatotic liver disease Monocyte chemoattractant protein-1 |
MLKL | Mixed lineage kinase domain-like pseudokinase |
NAFLD | Non-alcoholic fatty liver disease |
NASH | Non-alcoholic steatohepatitis |
NLRP3 | NLR Family Pyrin Domain-Containing 3 |
RBC | Red blood cell |
PGE2 | Prostaglandin E2 |
PS | Phosphatidylserine |
RCD | Regulated cell death |
RIPK1 | Receptor-interacting serine/threonine-protein kinase 1 |
RIPK3 | Receptor-interacting serine/threonine-protein kinase 3 |
PUFA | Polyunsaturated fatty acid |
RNS | Reactive nitrogen species |
ROS | Reactive oxygen species |
SHBG | Sex hormone-binding globulin |
SM | Sphingomyelin |
SMase | Sphingomyelinase |
TLR4 | Toll-like receptor 4 |
TNF | Tumor necrosis factor |
TRAIL | TNF-related apoptosis-induced ligand |
References
- Stanke, F.; Janciauskiene, S.; Olejnicka, B. Editorial: Acute phase proteins as biomarkers and therapeutics in acute and chronic inflammatory conditions. Front. Pharmacol. 2023, 14, 1145990. [Google Scholar] [CrossRef] [PubMed]
- Trefts, E.; Gannon, M.; Wasserman, D.H. The liver. Curr. Biol. 2017, 27, R1147–R1151. [Google Scholar] [CrossRef] [PubMed]
- Kalra, A.; Yetiskul, E.; Wehrle, C.J.; Tuma, F. Physiology, Liver. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Anderson, G.J.; Frazer, D.M. Current understanding of iron homeostasis. Am. J. Clin. Nutr. 2017, 106, 1559s–1566s. [Google Scholar] [CrossRef] [PubMed]
- Kubes, P.; Jenne, C. Immune Responses in the Liver. Annu. Rev. Immunol. 2018, 36, 247–277. [Google Scholar] [CrossRef]
- Roizen, J.D.; Levine, M.A. Chapter 67—The role of genetic variation in CYP2R1, the principal vitamin D 25-hydroxylase, and CYP3A4 in vitamin D homeostasis. In Feldman and Pike’s Vitamin D (Fifth Edition); Hewison, M., Bouillon, R., Giovannucci, E., Goltzman, D., Meyer, M., Welsh, J., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 341–357. [Google Scholar]
- Adamek, A.; Kasprzak, A. Insulin-Like Growth Factor (IGF) System in Liver Diseases. Int. J. Mol. Sci. 2018, 19, 1308. [Google Scholar] [CrossRef]
- Bruinstroop, E.; van der Spek, A.H.; Boelen, A. Role of hepatic deiodinases in thyroid hormone homeostasis and liver metabolism, inflammation, and fibrosis. Eur. Thyroid. J. 2023, 12, e220211. [Google Scholar] [CrossRef]
- Watt, M.J.; Miotto, P.M.; De Nardo, W.; Montgomery, M.K. The Liver as an Endocrine Organ-Linking NAFLD and Insulin Resistance. Endocr. Rev. 2019, 40, 1367–1393. [Google Scholar] [CrossRef]
- Stefan, N.; Schick, F.; Birkenfeld, A.L.; Häring, H.U.; White, M.F. The role of hepatokines in NAFLD. Cell Metab. 2023, 35, 236–252. [Google Scholar] [CrossRef]
- Rowe, M.M.; Kaestner, K.H. The Role of Non-Coding RNAs in Liver Disease, Injury, and Regeneration. Cells 2023, 12, 359. [Google Scholar] [CrossRef]
- Devarbhavi, H.; Asrani, S.K.; Arab, J.P.; Nartey, Y.A.; Pose, E.; Kamath, P.S. Global burden of liver disease: 2023 update. J. Hepatol. 2023, 79, 516–537. [Google Scholar] [CrossRef]
- Borrello, M.T.; Mann, D. Chronic liver diseases: From development to novel pharmacological therapies: IUPHAR Review 37. Br. J. Pharmacol. 2023, 180, 2880–2897. [Google Scholar] [CrossRef]
- Rinella, M.E.; Sookoian, S. From NAFLD to MASLD: Updated naming and diagnosis criteria for fatty liver disease. J. Lipid Res. 2024, 65, 100485. [Google Scholar] [CrossRef]
- Sharma, A.; Nagalli, S. Chronic Liver Disease. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2025. [Google Scholar]
- Gan, C.; Yuan, Y.; Shen, H.; Gao, J.; Kong, X.; Che, Z.; Guo, Y.; Wang, H.; Dong, E.; Xiao, J. Liver diseases: Epidemiology, causes, trends and predictions. Signal Transduct. Target. Ther. 2025, 10, 33. [Google Scholar] [CrossRef]
- Moon, A.M.; Singal, A.G.; Tapper, E.B. Contemporary Epidemiology of Chronic Liver Disease and Cirrhosis. Clin. Gastroenterol. Hepatol. 2020, 18, 2650–2666. [Google Scholar] [CrossRef]
- Ebel, N.H.; Horslen, S.P. Complications and Management of Chronic Liver Disease. In Diseases of the Liver and Biliary System in Children; Wiley Online Library: Hoboken, NJ, USA, 2017; pp. 341–365. [Google Scholar]
- Lingas, E.C. Hematological Abnormalities in Cirrhosis: A Narrative Review. Cureus 2023, 15, e39239. [Google Scholar] [CrossRef]
- McMurry, H.S.; Jou, J.; Shatzel, J. The hemostatic and thrombotic complications of liver disease. Eur. J. Haematol. 2021, 107, 383–392. [Google Scholar] [CrossRef]
- Gonzalez-Casas, R.; Jones, E.A.; Moreno-Otero, R. Spectrum of anemia associated with chronic liver disease. World J. Gastroenterol. 2009, 15, 4653–4658. [Google Scholar] [CrossRef]
- Marginean, C.M.; Pirscoveanu, D.; Popescu, M.; Docea, A.O.; Radu, A.; Popescu, A.I.S.; Vasile, C.M.; Mitrut, R.; Marginean, I.C.; Iacob, G.A.; et al. Diagnostic Approach and Pathophysiological Mechanisms of Anemia in Chronic Liver Disease—An Overview. Gastroenterol. Insights 2023, 14, 327–341. [Google Scholar] [CrossRef]
- Gkamprela, E.; Deutsch, M.; Pectasides, D. Iron deficiency anemia in chronic liver disease: Etiopathogenesis, diagnosis and treatment. Ann. Gastroenterol. 2017, 30, 405–413. [Google Scholar] [CrossRef]
- Buttler, L.; Tiede, A.; Griemsmann, M.; Rieland, H.; Mauz, J.; Kahlhöfer, J.; Wedemeyer, H.; Cornberg, M.; Tergast, T.L.; Maasoumy, B.; et al. Folic acid supplementation is associated with a decreased mortality and reduced hospital readmission in patients with decompensated alcohol-related liver cirrhosis. Clin. Nutr. 2024, 43, 1719–1727. [Google Scholar] [CrossRef]
- Sawada, K.; Takai, A.; Yamada, T.; Araki, O.; Yamauchi, Y.; Eso, Y.; Takahashi, K.; Shindo, T.; Sakurai, T.; Ueda, Y.; et al. Hepatitis-associated Aplastic Anemia with Rapid Progression of Liver Fibrosis Due to Repeated Hepatitis. Intern. Med. 2020, 59, 1035–1040. [Google Scholar] [CrossRef]
- Li, L.; Duan, M.; Chen, W.; Jiang, A.; Li, X.; Yang, J.; Li, Z. The spleen in liver cirrhosis: Revisiting an old enemy with novel targets. J. Transl. Med. 2017, 15, 111. [Google Scholar] [CrossRef]
- Gaur, K.; Puri, V.; Agarwal, K.; Suman, S.; Dhamija, R.K. Chronic Liver Disease Presenting as Immune Hemolytic Anemia: The Challenges of Diagnosis in the Critically Ill in a Resource-Limited Health Care Setting. Cureus 2021, 13, e14880. [Google Scholar] [CrossRef]
- DebRoy, S.; Kribs-Zaleta, C.; Mubayi, A.; Cardona-Meléndez, G.M.; Medina-Rios, L.; Kang, M.; Diaz, E. Evaluating treatment of hepatitis C for hemolytic anemia management. Math. Biosci. 2010, 225, 141–155. [Google Scholar] [CrossRef]
- Tkachenko, A. Hemocompatibility studies in nanotoxicology: Hemolysis or eryptosis? (A review). Toxicol. In Vitro 2024, 98, 105814. [Google Scholar] [CrossRef]
- Lang, K.S.; Lang, P.A.; Bauer, C.; Duranton, C.; Wieder, T.; Huber, S.M.; Lang, F. Mechanisms of suicidal erythrocyte death. Cell Physiol. Biochem. 2005, 15, 195–202. [Google Scholar] [CrossRef]
- Lang, F.; Qadri, S.M. Mechanisms and significance of eryptosis, the suicidal death of erythrocytes. Blood Purif. 2012, 33, 125–130. [Google Scholar] [CrossRef]
- Tkachenko, A.; Onishchenko, A. Casein kinase 1α mediates eryptosis: A review. Apoptosis 2023, 28, 1–19. [Google Scholar] [CrossRef]
- Tkachenko, A.; Havranek, O. Cell death signaling in human erythron: Erythrocytes lose the complexity of cell death machinery upon maturation. Apoptosis 2025, 30, 652–673. [Google Scholar] [CrossRef]
- Tkachenko, A.; Alfhili, M.A.; Alsughayyir, J.; Attanzio, A.; Al Mamun Bhuyan, A.; Bukowska, B.; Cilla, A.; Quintanar-Escorza, M.A.; Föller, M.; Havranek, O.; et al. Current understanding of eryptosis: Mechanisms, physiological functions, role in disease, pharmacological applications, and nomenclature recommendations. Cell Death Dis. 2025, 16, 467. [Google Scholar] [CrossRef]
- Tkachenko, A. Apoptosis and eryptosis: Similarities and differences. Apoptosis 2024, 29, 482–502. [Google Scholar] [CrossRef]
- Dreischer, P.; Duszenko, M.; Stein, J.; Wieder, T. Eryptosis: Programmed Death of Nucleus-Free, Iron-Filled Blood Cells. Cells 2022, 11, 503. [Google Scholar] [CrossRef]
- Bissinger, R.; Qadri, S.M.; Artunc, F. Eryptosis: A driver of anemia in chronic kidney disease. Curr. Opin. Nephrol. Hypertens. 2024, 33, 220–225. [Google Scholar] [CrossRef]
- Alghareeb, S.A.; Alfhili, M.A.; Fatima, S. Molecular Mechanisms and Pathophysiological Significance of Eryptosis. Int. J. Mol. Sci. 2023, 24, 5079. [Google Scholar] [CrossRef]
- Moreno-Amaral, A.N.; Dias, E.S.; Monte-Alegre, J.B.; Van Spitzenbergen, B.A.K.; Andrade, G.B.; Brugnolo-Santos, V.A.; Ozogovski, Y.D.; Ferreira Dias, G.; Grobe, N.; Kotanko, P.; et al. Exploring the Interplay of Inflammation, Eryptosis, and Anemia in ESKD: TH-PO878. J. Am. Soc. Nephrol. 2024, 35. [Google Scholar] [CrossRef]
- Virzì, G.M.; Mattiotti, M.; Clementi, A.; Milan Manani, S.; Battaglia, G.G.; Ronco, C.; Zanella, M. In Vitro Induction of Eryptosis by Uremic Toxins and Inflammation Mediators in Healthy Red Blood Cells. J. Clin. Med. 2022, 11, 5329. [Google Scholar] [CrossRef]
- Repsold, L.; Joubert, A.M. Eryptosis: An Erythrocyte’s Suicidal Type of Cell Death. Biomed. Res. Int. 2018, 2018, 9405617. [Google Scholar] [CrossRef]
- Tkachenko, A.; Kot, Y.; Prokopyuk, V.; Onishchenko, A.; Bondareva, A.; Kapustnik, V.; Chumachenko, T.; Perskiy, Y.; Butov, D.; Nakonechna, O. Food additive E407a stimulates eryptosis in a dose-dependent manner. Wien. Med. Wochenschr. 2021, 172, 135–143. [Google Scholar] [CrossRef]
- Hankins, H.M.; Baldridge, R.D.; Xu, P.; Graham, T.R. Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 2015, 16, 35–47. [Google Scholar] [CrossRef]
- Fraser, M.; Matuschewski, K.; Maier, A.G. Of membranes and malaria: Phospholipid asymmetry in Plasmodium falciparum-infected red blood cells. Cell Mol. Life Sci. 2021, 78, 4545–4561. [Google Scholar] [CrossRef]
- Sakuragi, T.; Nagata, S. Regulation of phospholipid distribution in the lipid bilayer by flippases and scramblases. Nat. Rev. Mol. Cell Biol. 2023, 24, 576–596. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.-H.; Kang, G.-H.; Hur, J.; Lee, J.; Jung, Y.; Hong, I.-S.; Lee, H.; Seo, S.-Y.; Lee, D.H.; Lee, C.S.; et al. Externalized phosphatidylinositides on apoptotic cells are eat-me signals recognized by CD14. Cell Death Differ. 2022, 29, 1423–1432. [Google Scholar] [CrossRef]
- Boulet, C.; Doerig, C.D.; Carvalho, T.G. Manipulating Eryptosis of Human Red Blood Cells: A Novel Antimalarial Strategy? Front. Cell Infect. Microbiol. 2018, 8, 419. [Google Scholar] [CrossRef] [PubMed]
- Jemaà, M.; Fezai, M.; Bissinger, R.; Lang, F. Methods Employed in Cytofluorometric Assessment of Eryptosis, the Suicidal Erythrocyte Death. Cell Physiol. Biochem. 2017, 43, 431–444. [Google Scholar] [CrossRef]
- Lang, F.; Gulbins, E.; Lang, P.A.; Zappulla, D.; Föller, M. Ceramide in suicidal death of erythrocytes. Cell Physiol. Biochem. 2010, 26, 21–28. [Google Scholar] [CrossRef]
- Lang, P.A.; Kempe, D.S.; Myssina, S.; Tanneur, V.; Birka, C.; Laufer, S.; Lang, F.; Wieder, T.; Huber, S.M. PGE2 in the regulation of programmed erythrocyte death. Cell Death Differ. 2005, 12, 415–428. [Google Scholar] [CrossRef]
- Tkachenko, A.; Havránek, O. Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis. Folia Biol. 2023, 69, 116–126. [Google Scholar] [CrossRef]
- Föller, M.; Huber, S.M.; Lang, F. Erythrocyte programmed cell death. IUBMB Life 2008, 60, 661–668. [Google Scholar] [CrossRef]
- Dinkla, S.; Wessels, K.; Verdurmen, W.P.R.; Tomelleri, C.; Cluitmans, J.C.A.; Fransen, J.; Fuchs, B.; Schiller, J.; Joosten, I.; Brock, R.; et al. Functional consequences of sphingomyelinase-induced changes in erythrocyte membrane structure. Cell Death Dis. 2012, 3, e410. [Google Scholar] [CrossRef] [PubMed]
- Restivo, I.; Attanzio, A.; Giardina, I.C.; Di Gaudio, F.; Tesoriere, L.; Allegra, M. Cigarette Smoke Extract Induces p38 MAPK-Initiated, Fas-Mediated Eryptosis. Int. J. Mol. Sci. 2022, 23, 14730. [Google Scholar] [CrossRef]
- Lang, E.; Lang, F. Triggers, inhibitors, mechanisms, and significance of eryptosis: The suicidal erythrocyte death. Biomed. Res. Int. 2015, 2015, 513518. [Google Scholar] [CrossRef] [PubMed]
- Föller, M.; Lang, F. Ion Transport in Eryptosis, the Suicidal Death of Erythrocytes. Front. Cell Dev. Biol. 2020, 8, 597. [Google Scholar] [CrossRef]
- Nader, E.; Romana, M.; Guillot, N.; Fort, R.; Stauffer, E.; Lemonne, N.; Garnier, Y.; Skinner, S.C.; Etienne-Julan, M.; Robert, M.; et al. Association Between Nitric Oxide, Oxidative Stress, Eryptosis, Red Blood Cell Microparticles, and Vascular Function in Sickle Cell Anemia. Front. Immunol. 2020, 11, 551441. [Google Scholar] [CrossRef]
- Bogdanova, A.; Makhro, A.; Wang, J.; Lipp, P.; Kaestner, L. Calcium in Red Blood Cells—A Perilous Balance. Int. J. Mol. Sci. 2013, 14, 9848–9872. [Google Scholar] [CrossRef]
- Ghashghaeinia, M.; Cluitmans, J.C.; Akel, A.; Dreischer, P.; Toulany, M.; Köberle, M.; Skabytska, Y.; Saki, M.; Biedermann, T.; Duszenko, M.; et al. The impact of erythrocyte age on eryptosis. Br. J. Haematol. 2012, 157, 606–614. [Google Scholar] [CrossRef]
- Mendonça, R.; Silveira, A.A.; Conran, N. Red cell DAMPs and inflammation. Inflamm. Res. 2016, 65, 665–678. [Google Scholar] [CrossRef]
- NaveenKumar, S.K.; Hemshekhar, M.; Sharathbabu, B.N.; Kemparaju, K.; Mugesh, G.; Girish, K.S. Platelet activation and ferroptosis mediated NETosis drives heme induced pulmonary thrombosis. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2023, 1869, 166688. [Google Scholar] [CrossRef] [PubMed]
- Dang, D.; Meng, Z.; Zhang, C.; Li, Z.; Wei, J.; Wu, H. Heme induces intestinal epithelial cell ferroptosis via mitochondrial dysfunction in transfusion-associated necrotizing enterocolitis. FASEB J. 2022, 36, e22649. [Google Scholar] [CrossRef]
- Chen, Y.; Fang, Z.-M.; Yi, X.; Wei, X.; Jiang, D.-S. The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 2023, 14, 205. [Google Scholar] [CrossRef]
- Fortes, G.B.; Alves, L.S.; de Oliveira, R.; Dutra, F.F.; Rodrigues, D.; Fernandez, P.L.; Souto-Padron, T.; De Rosa, M.J.; Kelliher, M.; Golenbock, D.; et al. Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood 2012, 119, 2368–2375. [Google Scholar] [CrossRef]
- Dhuriya, Y.K.; Sharma, D. Necroptosis: A regulated inflammatory mode of cell death. J. Neuroinflamm. 2018, 15, 199. [Google Scholar] [CrossRef]
- Scovino, A.M.; Totino, P.R.R.; Morrot, A. Eryptosis as a New Insight in Malaria Pathogenesis. Front. Immunol. 2022, 13, 855795. [Google Scholar] [CrossRef]
- Jin, Q.; Yao, C.; Bian, Y.; Pi, J. Pb-Induced Eryptosis May Provoke Thrombosis Prior to Hemolysis. Int. J. Mol. Sci. 2022, 23, 7008. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.; Towhid, S.T.; Schmid, E.; Hoffmann, S.M.; Abed, M.; Münzer, P.; Vogel, S.; Neis, F.; Brucker, S.; Gawaz, M.; et al. Dynamic adhesion of eryptotic erythrocytes to immobilized platelets via platelet phosphatidylserine receptors. Am. J. Physiol. Cell Physiol. 2014, 306, C291–C297. [Google Scholar] [CrossRef] [PubMed]
- Whelihan, M.F.; Zachary, V.; Orfeo, T.; Mann, K.G. Prothrombin activation in blood coagulation: The erythrocyte contribution to thrombin generation. Blood 2012, 120, 3837–3845. [Google Scholar] [CrossRef]
- Setty, B.N.Y.; Betal, S.G. Microvascular endothelial cells express a phosphatidylserine receptor: A functionally active receptor for phosphatidylserine-positive erythrocytes. Blood 2008, 111, 905–914. [Google Scholar] [CrossRef]
- Azer, S.A.; Hasanato, R. Use of bile acids as potential markers of liver dysfunction in humans: A systematic review. Medicine 2021, 100, e27464. [Google Scholar] [CrossRef]
- Thakur, S.; Kumar, V.; Das, R.; Sharma, V.; Mehta, D.K. Biomarkers of Hepatic Toxicity: An Overview. Curr. Ther. Res. Clin. Exp. 2024, 100, 100737. [Google Scholar] [CrossRef]
- Tamber, S.S.; Bansal, P.; Sharma, S.; Singh, R.B.; Sharma, R. Biomarkers of liver diseases. Mol. Biol. Rep. 2023, 50, 7815–7823. [Google Scholar] [CrossRef]
- Oelberg, D.G.; Dubinsky, W.P.; Sackman, J.W.; Wang, L.B.; Adcock, E.W.; Lester, R. Bile salts induce calcium uptake in vitro by human erythrocytes. Hepatology 1987, 7, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Lang, E.; Gatidis, S.; Freise, N.F.; Bock, H.; Kubitz, R.; Lauermann, C.; Orth, H.M.; Klindt, C.; Schuier, M.; Keitel, V.; et al. Conjugated bilirubin triggers anemia by inducing erythrocyte death. Hepatology 2015, 61, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Abed, M.; Thiel, C.; Towhid, S.T.; Alzoubi, K.; Honisch, S.; Lang, F.; Königsrainer, A. Stimulation of Erythrocyte Cell Membrane Scrambling by C-Reactive Protein. Cell Physiol. Biochem. 2017, 41, 806–818. [Google Scholar] [CrossRef]
- Lang, E.; Pozdeev, V.I.; Gatidis, S.; Qadri, S.M.; Häussinger, D.; Kubitz, R.; Herebian, D.; Mayatepek, E.; Lang, F.; Lang, K.S.; et al. Bile Acid-Induced Suicidal Erythrocyte Death. Cell Physiol. Biochem. 2016, 38, 1500–1509. [Google Scholar] [CrossRef]
- Alfhili, M.A.; Aljuraiban, G.S. Lauric Acid, a Dietary Saturated Medium-Chain Fatty Acid, Elicits Calcium-Dependent Eryptosis. Cells 2021, 10, 3388. [Google Scholar] [CrossRef]
- Brito, M.A.; Silva, R.F.M.; Brites, D. Bilirubin induces loss of membrane lipids and exposure of phosphatidylserine in human erythrocytes. Cell Biol. Toxicol. 2002, 18, 181–192. [Google Scholar] [CrossRef] [PubMed]
- Brito, M.A.; Brites, D. Effect of acidosis on bilirubin-induced toxicity to human erythrocytes. Mol. Cell. Biochem. 2003, 247, 155–162. [Google Scholar] [CrossRef]
- Ramírez-Mejía, M.M.; Castillo-Castañeda, S.M.; Pal, S.C.; Qi, X.; Méndez-Sánchez, N. The Multifaceted Role of Bilirubin in Liver Disease: A Literature Review. J. Clin. Transl. Hepatol. 2024, 12, 939–948. [Google Scholar] [CrossRef]
- Alexandra Brito, M.; Silva, R.F.; Brites, D. Bilirubin toxicity to human erythrocytes: A review. Clin. Chim. Acta 2006, 374, 46–56. [Google Scholar] [CrossRef]
- Evangelakos, I.; Heeren, J.; Verkade, E.; Kuipers, F. Role of bile acids in inflammatory liver diseases. Semin. Immunopathol. 2021, 43, 577–590. [Google Scholar] [CrossRef]
- Farooqui, N.; Elhence, A.; Shalimar. A Current Understanding of Bile Acids in Chronic Liver Disease. J. Clin. Exp. Hepatol. 2022, 12, 155–173. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Ismail, A.; Francis, H. Bile Acids in Autoimmune Liver Disease: Unveiling the Nexus of Inflammation, Inflammatory Cells, and Treatment Strategies. Cells 2023, 12, 2725. [Google Scholar] [CrossRef]
- Salvioli, G.; Gaetti, E.; Panini, R.; Lugli, R.; Pradelli, J.M. Different resistance of mammalian red blood cells to hemolysis by bile salts. Lipids 1993, 28, 999–1003. [Google Scholar] [CrossRef]
- Gentile, C.L.; Pagliassotti, M.J. The role of fatty acids in the development and progression of nonalcoholic fatty liver disease. J. Nutr. Biochem. 2008, 19, 567–576. [Google Scholar] [CrossRef]
- Keles, U.; Ow, J.R.; Kuentzel, K.B.; Zhao, L.N.; Kaldis, P. Liver-derived metabolites as signaling molecules in fatty liver disease. Cell Mol. Life Sci. 2022, 80, 4. [Google Scholar] [CrossRef]
- Zhou, H.H.; Tang, Y.L.; Xu, T.H.; Cheng, B. C-reactive protein: Structure, function, regulation, and role in clinical diseases. Front. Immunol. 2024, 15, 1425168. [Google Scholar] [CrossRef] [PubMed]
- Ross, Y.; Ballou, S. Reliability of C-reactive protein as an inflammatory marker in patients with immune-mediated inflammatory diseases and liver dysfunction. Rheumatol. Adv. Pract. 2023, 7, rkad045. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ye, J.; Chen, Y.; Sun, Y.; Gong, X.; Deng, H.; Dong, Z.; Xu, L.; Li, X.; Zhong, B. High sensitivity C-reactive protein implicates heterogeneous metabolic phenotypes and severity in metabolic dysfunction associated-steatotic liver disease. BMC Gastroenterol. 2025, 25, 231. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Wei, Y.; Peng, J.; Wang, S.; Chen, G.; Sun, J. The Potential Role of C-Reactive Protein in Metabolic-Dysfunction-Associated Fatty Liver Disease and Aging. Biomedicines 2023, 11, 2711. [Google Scholar] [CrossRef]
- Attanzio, A.; Frazzitta, A.; Vasto, S.; Tesoriere, L.; Pintaudi, A.M.; Livrea, M.A.; Cilla, A.; Allegra, M. Increased eryptosis in smokers is associated with the antioxidant status and C-reactive protein levels. Toxicology 2019, 411, 43–48. [Google Scholar] [CrossRef]
- Xu, W.; Peng, F.; Deng, Y.; Fan, X.; Li, N. The emerging roles of eryptosis in liver diseases. Transfus. Clin. Biol. 2019, 26, 336–340. [Google Scholar] [CrossRef]
- Otogawa, K.; Kinoshita, K.; Fujii, H.; Sakabe, M.; Shiga, R.; Nakatani, K.; Ikeda, K.; Nakajima, Y.; Ikura, Y.; Ueda, M.; et al. Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: Implications for the pathogenesis of human nonalcoholic steatohepatitis. Am. J. Pathol. 2007, 170, 967–980. [Google Scholar] [CrossRef]
- Lee, S.J.; Park, S.Y.; Jung, M.Y.; Bae, S.M.; Kim, I.S. Mechanism for phosphatidylserine-dependent erythrophagocytosis in mouse liver. Blood 2011, 117, 5215–5223. [Google Scholar] [CrossRef] [PubMed]
- Park, J.B.; Ko, K.; Baek, Y.H.; Kwon, W.Y.; Suh, S.; Han, S.H.; Kim, Y.H.; Kim, H.Y.; Yoo, Y.H. Pharmacological Prevention of Ectopic Erythrophagocytosis by Cilostazol Mitigates Ferroptosis in NASH. Int. J. Mol. Sci. 2023, 24, 12862. [Google Scholar] [CrossRef]
- Mei, C.; Peng, F.; Yin, W.; Xu, W.; Yao, R.; Li, B.; Zhou, R.; Fan, X.; Li, N. Increased suicidal erythrocyte death in patients with hepatitis B-related acute-on-chronic liver failure. Am. J. Physiol. Gastrointest. Liver Physiol. 2022, 323, G9–G20. [Google Scholar] [CrossRef]
- Wu, X.; Yao, Z.; Zhao, L.; Zhang, Y.; Cao, M.; Li, T.; Ding, W.; Liu, Y.; Deng, R.; Dong, Z.; et al. Phosphatidylserine on blood cells and endothelial cells contributes to the hypercoagulable state in cirrhosis. Liver Int. 2016, 36, 1800–1810. [Google Scholar] [CrossRef]
- Zheng, C.; Li, S.; Mueller, J.; Chen, C.; Lyu, H.; Yuan, G.; Zamalloa, A.; Adofina, L.; Srinivasan, P.; Menon, K.; et al. Evidence for alcohol-mediated hemolysis and erythrophagocytosis. Redox Biol. 2025, 85, 103742. [Google Scholar] [CrossRef] [PubMed]
- Lian, C.Y.; Zhai, Z.Z.; Li, Z.F.; Wang, L. High fat diet-triggered non-alcoholic fatty liver disease: A review of proposed mechanisms. Chem. Biol. Interact. 2020, 330, 109199. [Google Scholar] [CrossRef]
- Unruh, D.; Srinivasan, R.; Benson, T.; Haigh, S.; Coyle, D.; Batra, N.; Keil, R.; Sturm, R.; Blanco, V.; Palascak, M.; et al. Red Blood Cell Dysfunction Induced by High-Fat Diet: Potential Implications for Obesity-Related Atherosclerosis. Circulation 2015, 132, 1898–1908. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Tentes, I.; Anagnostopoulos, K. Red Blood Cell Dysfunction in Non-Alcoholic Fatty Liver Disease: Marker and Mediator of Molecular Mechanisms. Maedica 2020, 15, 513–516. [Google Scholar] [CrossRef]
- Allameh, A.; Niayesh-Mehr, R.; Aliarab, A.; Sebastiani, G.; Pantopoulos, K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants 2023, 12, 1653. [Google Scholar] [CrossRef]
- Pratim Das, P.; Medhi, S. Role of inflammasomes and cytokines in immune dysfunction of liver cirrhosis. Cytokine 2023, 170, 156347. [Google Scholar] [CrossRef]
- Niederreiter, L.; Tilg, H. Cytokines and fatty liver diseases. Liver Res. 2018, 2, 14–20. [Google Scholar] [CrossRef]
- Scarlata, G.G.M.; Colaci, C.; Scarcella, M.; Dallio, M.; Federico, A.; Boccuto, L.; Abenavoli, L. The Role of Cytokines in the Pathogenesis and Treatment of Alcoholic Liver Disease. Diseases 2024, 12, 69. [Google Scholar] [CrossRef]
- Pocino, K.; Stefanile, A.; Basile, V.; Napodano, C.; D'Ambrosio, F.; Di Santo, R.; Callà, C.A.M.; Gulli, F.; Saporito, R.; Ciasca, G.; et al. Cytokines and Hepatocellular Carcinoma: Biomarkers of a Deadly Embrace. J. Pers. Med. 2022, 13, 5. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shen, H.; Ma, S.; Nan, Y.; Liu, H. IL-1 and IL-6 induced phosphatidylserine exposure on erythrocyte membrane and related characteristics of eryptosis in mice. J. Clin. Emerg. 2019, 20, 889–894. [Google Scholar] [CrossRef]
- Bester, J.; Pretorius, E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci. Rep. 2016, 6, 32188. [Google Scholar] [CrossRef]
- Alfhili, M.A.; Basudan, A.M.; Aljaser, F.S.; Dera, A.; Alsughayyir, J. Bioymifi, a novel mimetic of TNF-related apoptosis-induced ligand (TRAIL), stimulates eryptosis. Med. Oncol. 2021, 38, 138. [Google Scholar] [CrossRef]
- Bonan, N.B.; Steiner, T.M.; Kuntsevich, V.; Virzì, G.M.; Azevedo, M.; Nakao, L.S.; Barreto, F.C.; Ronco, C.; Thijssen, S.; Kotanko, P.; et al. Uremic Toxicity-Induced Eryptosis and Monocyte Modulation: The Erythrophagocytosis as a Novel Pathway to Renal Anemia. Blood Purif. 2016, 41, 317–323. [Google Scholar] [CrossRef]
- Yu, M.; Zheng, C.; Wang, X.; Peng, R.; Lu, G.; Zhang, J. Phosphatidylserine induce thrombotic tendency and liver damage in obstructive jaundice. BMC Gastroenterol. 2025, 25, 146. [Google Scholar] [CrossRef]
- Youssef, L.A.; Rebbaa, A.; Pampou, S.; Weisberg, S.P.; Stockwell, B.R.; Hod, E.A.; Spitalnik, S.L. Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion. Blood 2018, 131, 2581–2593. [Google Scholar] [CrossRef]
- Papadopoulos, C. Molecular and Immunometabolic Landscape of Erythrophagocytosis-induced Ferroptosis. Cardiovasc. Hematol. Disord. Targets 2025, 25, 1–8. [Google Scholar] [CrossRef]
- Charalampos, P. The Molecular Determinants of Erythrocyte Removal Impact the Development of Metabolic Dysfunction-Associated Steatohepatitis. Endocrine, Metab. Immune Disord. Drug Targets 2024, 25, 1031–1034. [Google Scholar] [CrossRef]
- An, Y.; Xu, M.; Yan, M.; Zhang, H.; Li, C.; Wang, L.; Liu, C.; Dong, H.; Chen, L.; Zhang, L.; et al. Erythrophagocytosis-induced ferroptosis contributes to pulmonary microvascular thrombosis and thrombotic vascular remodeling in pulmonary arterial hypertension. J. Thromb. Haemost. 2025, 23, 158–170. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yan, M.; Wang, Z.; An, Y.; Wei, X.; Li, T.; Xu, M.; Xia, Y.; Wang, L.; Gao, C. Ferroptosis of Endothelial Cells Triggered by Erythrophagocytosis Contributes to Thrombogenesis in Uremia. Thromb. Haemost. 2023, 123, 1116–1128. [Google Scholar] [CrossRef] [PubMed]
- Puylaert, P.; Roth, L.; Van Praet, M.; Pintelon, I.; Dumitrascu, C.; van Nuijs, A.; Klejborowska, G.; Guns, P.J.; Berghe, T.V.; Augustyns, K.; et al. Effect of erythrophagocytosis-induced ferroptosis during angiogenesis in atherosclerotic plaques. Angiogenesis 2023, 26, 505–522. [Google Scholar] [CrossRef]
- Kyriakou, Z.; Mimidis, K.; Politis, N.; Veniamis, P.; Vlachos, D.; Anagnostopoulos, K.; Papadopoulos, C. Reduced Erythrocyte Opsonization by Calreticulin, Lactadherin, Mannose-binding Lectin, and Thrombospondin-1 in MAFLD Patients. Cardiovasc. Hematol. Disord. Targets 2025, 25, 1–5. [Google Scholar] [CrossRef]
- Lutz, H.U.; Bogdanova, A. Mechanisms tagging senescent red blood cells for clearance in healthy humans. Front. Physiol. 2013, 4, 387. [Google Scholar] [CrossRef]
- van Bruggen, R. CD47 functions as a removal marker on aged erythrocytes. ISBT Sci. Ser. 2013, 8, 153–156. [Google Scholar] [CrossRef]
- Bratosin, D.; Mazurier, J.; Debray, H.; Lecocq, M.; Boilly, B.; Alonso, C.; Moisei, M.; Motas, C.; Montreuil, J. Flow cytofluorimetric analysis of young and senescent human erythrocytes probed with lectins. Evidence that sialic acids control their life span. Glycoconj. J. 1995, 12, 258–267. [Google Scholar] [CrossRef]
- Dupuis, L.; Chauvet, M.; Bourdelier, E.; Dussiot, M.; Belmatoug, N.; Le Van Kim, C.; Chêne, A.; Franco, M. Phagocytosis of Erythrocytes from Gaucher Patients Induces Phenotypic Modifications in Macrophages, Driving Them toward Gaucher Cells. Int. J. Mol. Sci. 2022, 23, 7640. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Spourita, E.; Mimidis, K.; Kolios, G.; Tentes, L.; Anagnostopoulos, K. Nonalcoholic Fatty Liver Disease Patients Exhibit Reduced CD47 and Increased Sphingosine, Cholesterol, and Monocyte Chemoattractant Protein-1 Levels in the Erythrocyte Membranes. Metab. Syndr. Relat. Disord. 2022, 20, 377–383. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Mimidis, K.; Papazoglou, D.; Kolios, G.; Tentes, I.; Anagnostopoulos, K. Red Blood Cell-Conditioned Media from Non-Alcoholic Fatty Liver Disease Patients Contain Increased MCP1 and Induce TNF-α Release. Rep. Biochem. Mol. Biol. 2022, 11, 54–62. [Google Scholar] [CrossRef]
- Pfefferlé, M.; Ingoglia, G.; Schaer, C.A.; Yalamanoglu, A.; Buzzi, R.; Dubach, I.L.; Tan, G.; López-Cano, E.Y.; Schulthess, N.; Hansen, K.; et al. Hemolysis transforms liver macrophages into antiinflammatory erythrophagocytes. J. Clin. Investig. 2020, 130, 5576–5590. [Google Scholar] [CrossRef]
- Sharma, R.; Holman, C.J.; Brown, K.E. A thorny matter: Spur cell anemia. Ann. Hepatol. 2023, 28, 100771. [Google Scholar] [CrossRef]
- Allen, D.W.; Manning, N. Cholesterol-Loading of Membranes of Normal Erythrocytes Inhibits Phospholipid Repair and Arachidonoyl-CoA:l-Palmitoyl-sn-Glycero-3 Phosphocholine Acyl Transferase. A Model of Spur Cell Anemia. Blood 1996, 87, 3489–3493. [Google Scholar] [CrossRef] [PubMed]
- van Zwieten, R.; Bochem, A.E.; Hilarius, P.M.; van Bruggen, R.; Bergkamp, F.; Hovingh, G.K.; Verhoeven, A.J. The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure. Biochim. Biophys. Acta 2012, 1821, 1493–1500. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.; Rodge, G.; Goenka, M.K. Spur Cell Anaemia in Cirrhosis: A Narrative Review. J. Clin. Exp. Hepatol. 2023, 13, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Kot, Y.; Prokopiuk, V.; Klochkov, V.; Tryfonyuk, L.; Maksimchuk, P.; Aslanov, A.; Kot, K.; Avrunin, O.; Demchenko, L.; Kurmangaliyeva, S.; et al. Mn3O4 Nanocrystal-Induced Eryptosis Features Ca2+ Overload, ROS and RNS Accumulation, Calpain Activation, Recruitment of Caspases, and Changes in the Lipid Order of Cell Membranes. Int. J. Mol. Sci. 2025, 26, 3284. [Google Scholar] [CrossRef] [PubMed]
- Prokopiuk, V.; Onishchenko, A.; Tryfonyuk, L.; Posokhov, Y.; Gorbach, T.; Kot, Y.; Kot, K.; Maksimchuk, P.; Nakonechna, O.; Tkachenko, A. Marine Polysaccharides Carrageenans Enhance Eryptosis and Alter Lipid Order of Cell Membranes in Erythrocytes. Cell Biochem. Biophys. 2024, 82, 747–766. [Google Scholar] [CrossRef]
- Owen, J.S.; Bruckdorfer, K.R.; Day, R.C.; McIntyre, N. Decreased erythrocyte membrane fluidity and altered lipid composition in human liver disease. J. Lipid Res. 1982, 23, 124–132. [Google Scholar] [CrossRef]
- Shiraishi, K.; Matsuzaki, S.; Ishida, H.; Nakazawa, H. Impaired erythrocyte deformability and membrane fluidity in alcoholic liver disease: Participation in disturbed hepatic microcirculation. Alcohol Alcohol. 1993, 28, 59–64. [Google Scholar] [CrossRef]
- Gwoździński, L.; Krawczyk, P.; Dworniak, D.; Kowalczyk, E.; Błaszczyk, J. Alterations in the erythrocyte plasma membranes in patients with alcohol-induced liver cirrhosis—Preliminary results. Arch. Med. Sci. 2011, 7, 87–91. [Google Scholar] [CrossRef]
- Gottlieb, Y.; Topaz, O.; Cohen, L.A.; Yakov, L.D.; Haber, T.; Morgenstern, A.; Weiss, A.; Chait Berman, K.; Fibach, E.; Meyron-Holtz, E.G. Physiologically aged red blood cells undergo erythrophagocytosis in vivo but not in vitro. Haematologica 2012, 97, 994–1002. [Google Scholar] [CrossRef]
- Virzì, G.M.; Clementi, A.; Ronco, C.; Zanella, M. Red Cell Death in Renal Disease: The Role of Eryptosis in CKD and Dialysis Patients. Cells 2025, 14, 967. [Google Scholar] [CrossRef] [PubMed]
- Lupescu, A.; Shaik, N.; Jilani, K.; Zelenak, C.; Lang, E.; Pasham, V.; Zbidah, M.; Plate, A.; Bitzer, M.; Föller, M.; et al. Enhanced erythrocyte membrane exposure of phosphatidylserine following sorafenib treatment: An in vivo and in vitro study. Cell Physiol. Biochem. 2012, 30, 876–888. [Google Scholar] [CrossRef]
- Oswald, G.; Alzoubi, K.; Abed, M.; Lang, F. Stimulation of suicidal erythrocyte death by ribavirin. Basic. Clin. Pharmacol. Toxicol. 2014, 114, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Niemoeller, O.M.; Akel, A.; Lang, P.A.; Attanasio, P.; Kempe, D.S.; Hermle, T.; Sobiesiak, M.; Wieder, T.; Lang, F. Induction of eryptosis by cyclosporine. Naunyn Schmiedebergs Arch. Pharmacol. 2006, 374, 41–49. [Google Scholar] [CrossRef]
- Alharthy, F.H.; Alsughayyir, J.; Alfhili, M.A. Docosahexaenoic Acid Promotes Eryptosis and Haemolysis through Oxidative Stress/Calcium/Rac1 GTPase Signalling. Folia Biol. 2024, 70, 179–188. [Google Scholar] [CrossRef]
- Alharthy, F.H.; Alsughayyir, J.; Alfhili, M.A. Eicosapentaenoic Acid Triggers Phosphatidylserine Externalization in the Erythrocyte Membrane through Calcium Signaling and Anticholinesterase Activity. Physiol. Res. 2024, 73, 1075–1084. [Google Scholar] [CrossRef]
- Mischitelli, M.; Jemaà, M.; Almasry, M.; Faggio, C.; Lang, F. Triggering of Erythrocyte Cell Membrane Scrambling by Emodin. Cell Physiol. Biochem. 2016, 40, 91–103. [Google Scholar] [CrossRef]
- Alharthy, F.H.; Jawaher, A.; and Alfhili, M.A. Linolenic acid stimulates eryptosis and hemolysis through oxidative stress and CK1α/MLKL: Protective role of melatonin, urea, and polyethylene glycol. Drug Chem. Toxicol. 2024, 1–11. [Google Scholar] [CrossRef]
- Juárez-Hernández, E.; Chávez-Tapia, N.C.; Uribe, M.; Barbero-Becerra, V.J. Role of bioactive fatty acids in nonalcoholic fatty liver disease. Nutr. J. 2016, 15, 72. [Google Scholar] [CrossRef] [PubMed]
- Tkachenko, A.; Havranek, O. Erythronecroptosis: An overview of necroptosis or programmed necrosis in red blood cells. Mol. Cell. Biochem. 2024, 479, 3273–3291. [Google Scholar] [CrossRef]
- Tanaka, N.; Zhang, X.; Sugiyama, E.; Kono, H.; Horiuchi, A.; Nakajima, T.; Kanbe, H.; Tanaka, E.; Gonzalez, F.J.; Aoyama, T. Eicosapentaenoic acid improves hepatic steatosis independent of PPARα activation through inhibition of SREBP-1 maturation in mice. Biochem. Pharmacol. 2010, 80, 1601–1612. [Google Scholar] [CrossRef] [PubMed]
- Albracht-Schulte, K.; Gonzalez, S.; Jackson, A.; Wilson, S.; Ramalingam, L.; Kalupahana, N.S.; Moustaid-Moussa, N. Eicosapentaenoic Acid Improves Hepatic Metabolism and Reduces Inflammation Independent of Obesity in High-Fat-Fed Mice and in HepG2 Cells. Nutrients 2019, 11, 599. [Google Scholar] [CrossRef] [PubMed]
- Nobili, V.; Alisi, A.; Della Corte, C.; Risé, P.; Galli, C.; Agostoni, C.; Bedogni, G. Docosahexaenoic acid for the treatment of fatty liver: Randomised controlled trial in children. Nutr. Metab. Cardiovasc. Dis. 2013, 23, 1066–1070. [Google Scholar] [CrossRef]
- He, J.; Hong, B.; Bian, M.; Jin, H.; Chen, J.; Shao, J.; Zhang, F.; Zheng, S. Docosahexaenoic acid inhibits hepatic stellate cell activation to attenuate liver fibrosis in a PPARγ-dependent manner. Int. Immunopharmacol. 2019, 75, 105816. [Google Scholar] [CrossRef]
- Ruan, L.; Jiang, L.; Zhao, W.; Meng, H.; Zheng, Q.; Wang, J. Hepatotoxicity or hepatoprotection of emodin? Two sides of the same coin by (1)H-NMR metabolomics profiling. Toxicol. Appl. Pharmacol. 2021, 431, 115734. [Google Scholar] [CrossRef]
- Almohaimeed, H.M.; Aggad, W.S.; Assiri, R. Hepatoprotective role of emodin in chemical-induced liver injury histopathological study in mice model. Rend. Lincei. Sci. Fis. Nat. 2023, 34, 1231–1239. [Google Scholar] [CrossRef]
- Åberg, F.; Sallinen, V.; Tuominen, S.; Adam, R.; Karam, V.; Mirza, D.; Heneghan, M.A.; Line, P.-D.; Bennet, W.; Ericzon, B.-G.; et al. Cyclosporine vs. tacrolimus after liver transplantation for primary sclerosing cholangitis—A propensity score-matched intention-to-treat analysis. J. Hepatol. 2024, 80, 99–108. [Google Scholar] [CrossRef]
- Du, X.-S.; Li, H.-D.; Yang, X.-J.; Li, J.-J.; Xu, J.-J.; Chen, Y.; Xu, Q.-Q.; Yang, L.; He, C.-S.; Huang, C.; et al. Wogonin attenuates liver fibrosis via regulating hepatic stellate cell activation and apoptosis. Int. Immunopharmacol. 2019, 75, 105671. [Google Scholar] [CrossRef]
- Dai, J.M.; Guo, W.N.; Tan, Y.Z.; Niu, K.W.; Zhang, J.J.; Liu, C.L.; Yang, X.M.; Tao, K.S.; Chen, Z.N.; Dai, J.Y. Wogonin alleviates liver injury in sepsis through Nrf2-mediated NF-κB signalling suppression. J. Cell Mol. Med. 2021, 25, 5782–5798. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Luo, H.; Lin, Z.; Huang, L.; Pan, Z.; Chen, L.; Fan, L.; Yang, S.; Tan, H.; Zhong, C.; et al. Wogonin mitigates acetaminophen-induced liver injury in mice through inhibition of the PI3K/AKT signaling pathway. J. Ethnopharmacol. 2024, 332, 118364. [Google Scholar] [CrossRef] [PubMed]
- Alfhili, M.A.; Basudan, A.M.; Alsughayyir, J. Antiproliferative Wnt inhibitor wogonin prevents eryptosis following ionophoric challenge, hyperosmotic shock, oxidative stress, and metabolic deprivation. J. Food Biochem. 2021, 45, e13977. [Google Scholar] [CrossRef] [PubMed]
- Lang, E.; Qadri, S.M.; Lang, F. Killing me softly—Suicidal erythrocyte death. Int. J. Biochem. Cell Biol. 2012, 44, 1236–1243. [Google Scholar] [CrossRef]
- LaRocca, T.J.; Stivison, E.A.; Hod, E.A.; Spitalnik, S.L.; Cowan, P.J.; Randis, T.M.; Ratner, A.J. Human-specific bacterial pore-forming toxins induce programmed necrosis in erythrocytes. mBio 2014, 5, e01251-14. [Google Scholar] [CrossRef]
Metabolite | Description | Dose | Signaling and Cell Death Features | Reference |
---|---|---|---|---|
Chenodeoxycholic acid (unconjugated, taurine and glycine conjugates) | A bile acid | 0.3 mM | Ca2+ overload, hemolysis | [74] |
Cholic acid (unconjugated, taurine and glycine conjugates) | A bile acid | 0.3 mM | Ca2+ overload, hemolysis | [74] |
Conjugated bilirubin | A heme breakdown product conjugated with glucuronic acid | Above 3 mg/dL | Ca2+- and ceramide-dependent eryptosis | [75] |
CRP | An acute phase protein | 5 µg/mL and above | Ca2+-, caspase-3-, and ceramide-dependent eryptosis | [76] |
Deoxycholic acid (unconjugated, taurine and glycine conjugates) | A bile acid | 0.3 mM | Ca2+ overload, hemolysis | [74] |
Glycochenodesoxycholic acid | A bile acid | 500 µM and above | Ca2+- and ceramide-dependent eryptosis | [77] |
Lauric acid | A saturated fatty acid | 100 µM and above | Ca2+-, CK1α-, and oxidative stress-dependent eryptosis | [78] |
Lithocholic acid (unconjugated, taurine and glycine conjugates) | A bile acid | 0.3 mM | Ca2+ overload, hemolysis | [74] |
Taurochenodesoxycholic acid | A bile acid | 125 µM and above | Ca2+- and ceramide-dependent eryptosis | [77] |
Unconjugated bilirubin | A heme breakdown product non-conjugated with glucuronic acid | Bilirubin/albumin ratio of 1 and above | PS externalization, elution of phospholipid from cell membranes, formation of echinocytes, hemolysis | [79,80] |
Disease | Signaling | Reference | Notes |
---|---|---|---|
NASH | N/A | [95] | A rabbit model: Eryptotic erythrocytes are phagocyted by Kupffer cells |
NASH | Fas-dependent eryptosis | [97] | A murine model |
Unspecified liver diseases | N/A | [75] | A murine model of bile duct ligation: Eryptosis induction correlates with bilirubin levels |
Hepatitis B-related acute-on-chronic liver failure | ROS-dependent eryptosis | [98] | - |
Liver cirrhosis | N/A | [99] | Severity-dependent degree of PS exposure |
Drug | Description | Dose | Signaling | Reference |
---|---|---|---|---|
Ribavirin | A guanosine analogue approved by the FDA for the treatment of HCV infection | 8 µg/mL and above | Ca2+-dependent eryptosis | [140] |
Sorafenib | A multikinase inhibitor approved by the FDA for the treatment of hepatocellular carcinoma | 0.5 µM and above | Ca2+- and ROS-dependent eryptosis | [139] |
Cyclosporine | An immunosuppressive drug administered after liver transplantation | 5 µM and above | Ceramide-dependent eryptosis | [141] |
Docosahexaenoic acid | A polyunsaturated fatty acid used for the treatment of NAFLD | 80 µM and above | Ca2+-, ROS-, and Rac1 GTPase-dependent eryptosis | [142] |
Eicosapentaenoic acid | A polyunsaturated fatty acid used for the treatment of NAFLD | 20 µM and above | Ca2+-dependent eryptosis | [143] |
Emodin | A component of several Chinese herbs with hepatoprotective effects | 10 µM and above | Ca2+-, ceramide-, and ROS-dependent eryptosis | [144] |
Linolenic acid | A polyunsaturated fatty acid used for the treatment of NAFLD | 80 µM and above | Ca2+-, ROS-, CK1α-, and MLKL-dependent cell death | [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurmangaliyeva, S.; Baktikulova, K.; Tkachenko, A.; Seitkhanova, B.; Tryfonyuk, L.; Rakhimzhanova, F.; Yussupov, R.; Kurmangaliyev, K. Eryptosis in Liver Diseases: Contribution to Anemia and Hypercoagulation. Med. Sci. 2025, 13, 125. https://doi.org/10.3390/medsci13030125
Kurmangaliyeva S, Baktikulova K, Tkachenko A, Seitkhanova B, Tryfonyuk L, Rakhimzhanova F, Yussupov R, Kurmangaliyev K. Eryptosis in Liver Diseases: Contribution to Anemia and Hypercoagulation. Medical Sciences. 2025; 13(3):125. https://doi.org/10.3390/medsci13030125
Chicago/Turabian StyleKurmangaliyeva, Saulesh, Kristina Baktikulova, Anton Tkachenko, Bibigul Seitkhanova, Liliya Tryfonyuk, Farida Rakhimzhanova, Rustam Yussupov, and Kairat Kurmangaliyev. 2025. "Eryptosis in Liver Diseases: Contribution to Anemia and Hypercoagulation" Medical Sciences 13, no. 3: 125. https://doi.org/10.3390/medsci13030125
APA StyleKurmangaliyeva, S., Baktikulova, K., Tkachenko, A., Seitkhanova, B., Tryfonyuk, L., Rakhimzhanova, F., Yussupov, R., & Kurmangaliyev, K. (2025). Eryptosis in Liver Diseases: Contribution to Anemia and Hypercoagulation. Medical Sciences, 13(3), 125. https://doi.org/10.3390/medsci13030125