The Impact of Salt Tectonics on the Thermal Evolution and the Petroleum System of Confined Rift Basins: Insights from Basin Modeling of the Nordkapp Basin, Norwegian Barents Sea
Abstract
:1. Introduction
2. Geologic Evolution of the Nordkapp Basin
2.1. Late Paleozoic
2.2. Mesozoic
2.3. Late Cretaceous-Cenozoic
3. Methodology
4. Paleo-Geometries, Boundary Conditions, and Model Parameters
4.1. Paleogeometries
4.1.1. Section A, Central Sub-basin
4.1.2. Section B, Eastern Sub-basin
4.2. Thermal Boundary Conditions
4.3. Model Parameters
5. Results
5.1. Thermal Evolution
5.2. Source Rock Maturation
6. Discussion
6.1. Uncertainties
6.2. The Importance of Thermal Modeling in Confined Salt-bearing Basins
6.3. Implications for the Petroleum System
6.3.1. Source rocks
6.3.2. Reservoirs
6.3.3. Traps
6.3.4. Seal and migration
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hudec, M.R.; Jackson, M.P. Terra infirma: Understanding salt tectonics. Earth-Sci. Rev. 2007, 82, 1–28. [Google Scholar] [CrossRef]
- Jackson, M.P.; Hudec, M.R. Salt Tectonics: Principles and Practice; Cambridge University Press: Cambridge, UK, 2017; 498p. [Google Scholar]
- Matthews, W.J.; Hampson, G.J.; Trudgill, B.D.; Underhill, J.R. Controls on fluviolacustrine reservoir distribution and architecture in passive salt-diapir provinces: Insights from outcrop analogs. AAPG Bull. 2007, 91, 1367–1403. [Google Scholar] [CrossRef]
- Banham, S.G.; Mountney, N.P. Controls on fluvial sedimentary architecture and sediment-fill state in salt-walled mini-basins: Triassic Moenkopi Formation, Salt Anticline Region, SE Utah, USA. Basin Res. 2013, 25, 709–737. [Google Scholar] [CrossRef] [Green Version]
- Rojo, L.A.; Escalona, A. Controls on minibasin infill in the Nordkapp Basin: Evidence of complex Triassic synsedimentary deposition influenced by salt tectonics. AAPG Bull. 2018, 102, 1239–1272. [Google Scholar] [CrossRef]
- McBride, B.C.; Weimer, P.; Rowan, M.G. The effect of allochthonous salt on the petroleum systems of northern Green Canyon and Ewing Bank (offshore Louisiana), northern Gulf of Mexico. AAPG Bull. 1998, 82, 1083–1112. [Google Scholar]
- Rowan, M.G.; Lawton, T.F.; Giles, K.A. Anatomy of an exposed vertical salt weld and flanking strata, La Popa Basin, Mexico. In Salt Tectonics, Sediments and Prospectivity; Alsop, G.I., Archer, S.G., Hartley, A.J., Grant, N.T., Hodgkinson, R., Eds.; Geological Society: London, UK, 2012; Volume 363, pp. 33–57. [Google Scholar]
- Lerche, I.; O’brien, J.J. Dynamical Geology of Salt and Related Structures; Academic Press: San Diego, CA, USA, 1987; p. 832. [Google Scholar]
- Mello, U.T.; Karner, G.D.; Anderson, R.N. Role of salt in restraining the maturation of subsalt source rocks. Mar. Pet. Geol. 1995, 12, 697–716. [Google Scholar] [CrossRef]
- Yu, A.; Lerche, I. Thermal impact of salt: Simulation of thermal anomaly in the Gulf of Mexico. Pure Appl. Geophys. 1992, 2, 180–192. [Google Scholar] [CrossRef]
- Gabrielsen, R.; Kløvjan, O.; Rasmussen, A.; Stølan, T. Interaction between halokinesis and faulting: Structuring of the margins of the Nordkapp Basin, Barents Sea region. In Structural and Tectonic Modeling and Its Implication to Petroleum Geology; Larsen, B., Brekke, H., Larsen, B., Talleraas, E., Eds.; Norwegian Petroleum Society (NPF): Oslo, Norway, 1992; Volume 1, pp. 121–131. [Google Scholar]
- Jensen, L.N.; Sørensen, K. Tectonic framework and halokinesis of the Nordkapp Basin, Barents Sea. In Structural and Tectonic Modeling and Its Application to Petroleum Geology; Larsen, R.M., Brekke, H., Larsen, B.T., Talleraas, E., Eds.; Norwegian Petroleum Society (NPF), Special Publications: Oslo, Norway, 1992; Volume 1, pp. 109–120. [Google Scholar]
- Koyi, H.; Talbot, C.J.; Tørudbakken, B.O. Salt tectonics in the Northeastern Nordkapp basin, Southwestern Barents Sea. In Salt Tectonics: A Global Perspective; Jackson, M.P.A., Roberts, D.G., Snelson, S., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1995; AAPG Memoir 65; pp. 437–447. [Google Scholar]
- Nilsen, K.T.; Vendeville, B.C.; Johansen, J.-T. Influence of regional tectonics on halokinesis in the Nordkapp Basin, Barents Sea. In Salt Tectonics: A Global Perspective; Jackson, M.P.A., Roberts, D.G., Snelson, S., Eds.; American Association of Petroleum Geologists: Tulsa, OK, USA, 1995; AAPG Memoir 65; pp. 413–436. [Google Scholar]
- Stadtler, C.; Fichler, C.; Hokstad, K.; Myrlund, E.A.; Wienecke, S.; Fotland, B. Improved salt imaging in a basin context by high resolution potential field data: Nordkapp Basin, Barents Sea. Geophys. Prospect. 2014, 62, 615–630. [Google Scholar] [CrossRef]
- Ohm, S.E.; Karlsen, D.A.; Austin, T. Geochemically driven exploration models in uplifted areas: Examples from the Norwegian Barents Sea. AAPG Bull. 2008, 92, 1191–1223. [Google Scholar] [CrossRef]
- Henriksen, E.; Bjørnseth, H.; Hals, T.; Heide, T.; Kiryukhina, T.; Kløvjan, O.; Larssen, G.; Ryseth, A.; Rønning, K.; Sollid, K. Uplift and erosion of the greater Barents Sea: Impact on prospectivity and petroleum systems. In Arctic Petroleum Geology; Spencer, A.M., Embry, A.F., Gautier, D.L., Stoupakova, A.V., Sørensen, K., Eds.; Geological Society, London, Memoirs: Lodon, UK, 2011; Volume 35, pp. 271–281. [Google Scholar]
- Rojo, L.A.; Cardozo, N.; Escalona, A.; Koyi, H. Structural style and evolution of the Nordkapp Basin, Norwegian Barents Sea. AAPG Bull. 2019, in press. [Google Scholar] [CrossRef]
- Rowan, M.G.; Lindsø, S. Chapter 12—Salt Tectonics of the Norwegian Barents Sea and Northeast Greenland Shelf A2. In Permo-Triassic Salt Provinces of Europe, North Africa and the Atlantic Margins; Soto, J.I., Flinch, J.F., Tari, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 265–286. [Google Scholar]
- Dengo, C.; Røssland, K. Extensional tectonic history of the western Barents Sea. In Structural and Tectonic Modeling and Its Application to Petroleum Geology; Larsen, R.M., Brekke, H., Larsen, B.T., Talleraas, E., Eds.; Norwegian Petroleum Society (NPF): Oslo, Norway, 1992; Volume 1, pp. 91–108. [Google Scholar]
- Faleide, J.I.; Tsikalas, F.; Breivik, A.J.; Mjelde, R.; Ritzmann, O.; Engen, O.; Wilson, J.; Eldholm, O. Structure and evolution of the continental margin off Norway and the Barents Sea. Episodes 2008, 31, 82–91. [Google Scholar]
- Gernigon, L.; Brönner, M.; Roberts, D.; Olesen, O.; Nasuti, A.; Yamasaki, T. Crustal and basin evolution of the southwestern Barents Sea: From Caledonian orogeny to continental breakup. Tectonics 2014, 33, 347–373. [Google Scholar] [CrossRef]
- Gernigon, L.; Brönner, M.; Dumais, M.-A.; Gradmann, S.; Grønlie, A.; Nasuti, A.; Roberts, D. Basement inheritance and salt structures in the SE Barents Sea: Insights from new potential field data. J. Geodyn. 2018, 119, 82–106. [Google Scholar] [CrossRef]
- Worsley, D. The post-Caledonian development of Svalbard and the western Barents Sea. Polar Res. 2008, 27, 298–317. [Google Scholar] [CrossRef]
- Smyrak-Sikora, A.; Johannessen, E.P.; Olaussen, S.; Sandal, G.; Braathen, A. Sedimentary architecture during Carboniferous rift initiation—The arid Billefjorden Trough, Svalbard. J. Geol. Soc. 2018, 176, 225–252. [Google Scholar] [CrossRef]
- Bugge, T.; Mangerud, G.; Elvebakk, G.; Mork, A.; Nilsson, I.; Fanavoll, S.; Vigran, J. Upper Paleozoic succession on the Finnmark platform, Barents Sea. Nor. J. Geol. 1995, 75, 3–30. [Google Scholar]
- Gudlaugsson, S.; Faleide, J.; Johansen, S.; Breivik, A. Late Palaeozoic structural development of the south-western Barents Sea. Mar. Pet. Geol. 1998, 15, 73–102. [Google Scholar] [CrossRef]
- Stemmerik, L.; Elvebakk, G.; Worsley, D. Upper Palaeozoic carbonate reservoirs on the Norwegian arctic shelf; delineation of reservoir models with application to the Loppa High. Pet. Geosci. 1999, 5, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Stemmerik, L. Late Palaeozoic evolution of the North Atlantic margin of Pangea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 161, 95–126. [Google Scholar] [CrossRef]
- Stemmerik, L.; Worsley, D. 30 years on-Arctic Upper Palaeozoic stratigraphy, depositional evolution and hydrocarbon prospectivity. Nor. J. Geol. 2005, 85, 151–168. [Google Scholar]
- Koyi, H.; Talbot, C.J.; Torudbakken, B. Analogue models of salt diapirs and seismic interpretation in the Nordkapp Basin, Norway. Pet. Geosci. 1995, 1, 185–192. [Google Scholar] [CrossRef]
- Glørstad-Clark, E.; Faleide, J.I.; Lundschien, B.A.; Nystuen, J.P. Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. Mar. Pet. Geol. 2010, 27, 1448–1475. [Google Scholar] [CrossRef]
- Klausen, T.G.; Ryseth, A.E.; Helland-Hansen, W.; Gawthorpe, R.; Laursen, I. Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd Formation, Norwegian Barents Sea. Mar. Pet. Geol. 2015, 62, 102–122. [Google Scholar] [CrossRef]
- Eide, C.H.; Klausen, T.G.; Katkov, D.; Suslova, A.A.; Helland-Hansen, W. Linking an Early Triassic delta to antecedent topography: Source-to-sink study of the southwestern Barents Sea margin. GSA Bull. 2017, 130, 263–283. [Google Scholar] [CrossRef] [Green Version]
- Klausen, T.; Aas, T.J.; Haug, E.C.; Behzad, A.; Snorre, O.; Domenico, C. Clinoform development and topset evolution in a mud-rich delta—The Middle Triassic Kobbe Formation, Norwegian Barents Sea. Sedimentology 2018, 65, 1132–1169. [Google Scholar] [CrossRef]
- Anell, I.; Braathen, A.; Olaussen, S. The Triassic—Early Jurassic of the northern Barents Shelf: A regional understanding of the Longyearbyen CO2 reservoir. Nor. J. Geol. 2014, 94, 83–98. [Google Scholar]
- Grundvåg, S.A.; Marin, D.; Kairanov, B.; Śliwińska, K.K.; Nøhr-Hansen, H.; Jelby, M.E.; Escalona, A.; Olaussen, S. The Lower Cretaceous succession of the northwestern Barents Shelf: Onshore and offshore correlations. Mar. Pet. Geol. 2017, 86, 834–857. [Google Scholar] [CrossRef] [Green Version]
- Marin, D.; Escalona, A.; Nøhr-Hansen, H.; Kasia, K.Ś.; Mordasova, A. Sequence stratigraphy and lateral variability of Lower Cretaceous clinoforms in the SW Barents Sea. AAPG Bull. 2017, 101, 1487–1517. [Google Scholar] [CrossRef]
- Henriksen, E.; Ryseth, A.; Larssen, G.; Heide, T.; Rønning, K.; Sollid, K.; Stoupakova, A. Tectonostratigraphy of the greater Barents Sea: Implications for petroleum systems. In Arctic Petroleum Geology; Spencer, A.M., Embry, A.F., Gautier, D.L., Stoupakova, A.V., Sørensen, K., Eds.; Geological Society, London, Memoirs: London, UK, 2011; Volume 35, pp. 163–195. [Google Scholar]
- Baig, I.; Faleide, J.I.; Jahren, J.; Mondol, N.H. Cenozoic exhumation on the southwestern Barents Shelf: Estimates and uncertainties constrained from compaction and thermal maturity analyses. Mar. Pet. Geol. 2016, 73, 105–130. [Google Scholar] [CrossRef]
- Gac, S.; Klitzke, P.; Minakov, A.; Faleide, J.I.; Scheck-Wenderoth, M. Lithospheric strength and elastic thickness of the Barents Sea and Kara Sea region. Tectonophysics 2016, 691, 120–132. [Google Scholar] [CrossRef]
- Clark, S.A.; Glørstad-Clark, E.; Faleide, J.I.; Schmid, D.; Hartz, E.H.; Fjeldskaar, W. Southwest Barents Sea rift basin evolution: Comparing results from backstripping and time-forward modeling. Basin Res. 2014, 26, 550–566. [Google Scholar] [CrossRef]
- He, Z.; Crews, S.G.; Corrigan, J. Rifting and Heat Flow: Why the Mckenzie model is only part of the story: AAPG Hedberg Conference. In Proceedings of the Basin Modeling Perspectives: Innovative Developments and Novel Applications, The Hague, The Netherlands, 6–9 May 2007. [Google Scholar]
- Klitzke, P.; Faleide, J.I.; Scheck-Wenderoth, M.; Sippel, J. A lithosphere-scale Structural model of the Barents Sea and Kara Sea region. Solid Earth 2015, 6, 153–172. [Google Scholar] [CrossRef]
- Gac, S.; Hansford, P.A.; Faleide, J.I. Basin modeling of the SW Barents Sea. Mar. Pet. Geol. 2018, 95, 167–187. [Google Scholar] [CrossRef]
- Riis, F. Dating and measuring of erosion, uplift and subsidence in Norway and the norwegian shelf in glacial periods. Norsk Geologisk Tidsskrift 1992, 72, 325–331. [Google Scholar]
- Fjeldskaar, W.; Lindholm, C.; Dehls, J.F.; Fjeldskaar, I. Postglacial uplift, neo- tectonics and seismicity in Fennoscandia. Quat. Sci. Rev. 2000, 19, 413–1422. [Google Scholar] [CrossRef]
- Cavanagh, A.J.; di Primio, R.; Scheck-Wenderoth, M.; Horsfield, B. Severity and timing of Cenozoic exhumation in the Southwestern Barents Sea. J. Geol. Soc. 2006, 163, 761–774. [Google Scholar] [CrossRef]
- Fjeldskaar, W.; Amantov, A. Effects of glaciations on sedimentary basins. J. Geodyn. 2018, 118, 66–81. [Google Scholar] [CrossRef]
- Athy, L.F. Density, porosity and compaction of sedimentary rocks. AAPG Bull. 1930, 14, 1–24. [Google Scholar]
- Sclater, J.G.; Christie, P.A.F. Continental stretching: An explanation of the post-mid Cretaceous subsidence of the Central North Sea Basin. J. Geophys. Res. 1980, 85, 3711–3739. [Google Scholar] [CrossRef]
- Sekiguchi, K. A method for determining terrestrial heat flow in oil basin areas. In Terrestrial Heat Flow Studies and Structure of the Lithosphere; Rybach, C.L., Chapman, D.S., Eds.; Tectonophysics, Science Direct: Liblice, Czechoslovakia, 1984; Volume 103, pp. 67–79. [Google Scholar]
- Mørk, A.; Dallmann, W.K.; Dypvik, H.; Johannessen, E.P.; Larssen, G.B.; Nagy, J.; Nøttvedt, A.; Olaussen, S.; Pchelina, T.M.; Worsley, D. Mesozoic lithostratigraphy. In Lithostratigraphic Lexicon of Svalbard. Review and Recommendations for Nomenclature Use. Upper Palaeozoic to Quaternary Bedrock; Dallmann, W.K., Ed.; Norsk Polarinstitutt: Tromsø, Norway, 1999; pp. 127–214. [Google Scholar]
- Sweeney, J.J.; Burnham, A.K. Evaluation of a simple model of vitrinite reflectance based on chemical kinetics (1). AAPG Bull. 1990, 74, 1559–1570. [Google Scholar]
- Jones, I.F.; Davison, I. Seismic imaging in and around salt bodies. Interpretation 2014, 2, 1–20. [Google Scholar] [CrossRef]
- Rojo, L.A.; Escalona, A.; Schulte, L. The use of seismic attributes to enhance imaging of salt structures in the Barents Sea. First Break 2016, 34, 41–49. [Google Scholar] [CrossRef]
- Rowan, M.G.; Ratliff, R.A. Cross-section restoration of salt-related deformation: Best practices and potential pitfalls. J. Struct. Geol. 2012, 41, 24–37. [Google Scholar] [CrossRef]
- Klausen, T.; Helland-Hansen, W. Methods for Restoring and Describing Ancient Clinoform Surfaces. J. Sediment. Res. 2018, 88, 241–259. [Google Scholar] [CrossRef]
- Warren, J.K. Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth-Sci. Rev. 2010, 98, 217–268. [Google Scholar] [CrossRef]
- Koyi, H.; Petersen, K. Influence of basement faults on the development of salt structures in the Danish Basin. Mar. Pet. Geol. 1993, 10, 82–94. [Google Scholar] [CrossRef]
- Stewart, S.; Ruffell, A.; Harvey, M. Relationship between basement-linked and gravity-driven fault systems in the UKCS salt basins. Mar. Pet. Geol. 1997, 14, 581–604. [Google Scholar] [CrossRef]
- Withjack, M.O.; Callaway, S. Active normal faulting beneath a salt layer: An experimental study of deformation patterns in the cover sequence. AAPG Bull. 2000, 84, 627–651. [Google Scholar]
- Rowan, M.G.; Giles, K.A.; Hearon, T.E., IV; Fiduk, J.C. Megaflaps adjacent to salt diapirs. AAPG Bull. 2016, 100, 1723–1747. [Google Scholar] [CrossRef]
- Giles, K.A.; Rowan, M.G. Concepts in halokinetic-sequence deformation and stratigraphy. In Salt Tectonics, Sediments and Prospectivity; Alsop, G.I., Archer, S.G., Hartley, A.J., Grant, N.T., Hodgkinson, R., Eds.; Geological Society: London, UK, 2012; Volume 363, pp. 7–31. [Google Scholar]
- Hearon, T.E., IV; Rowan, M.G.; Giles, K.A.; Hart, W.H. Halokinetic deformation adjacent to the deepwater Auger diapir, Garden Banks 470, northern Gulf of Mexico: Testing the applicability of an outcrop-based model using subsurface data. Interpretation 2014, 2, SM57–SM76. [Google Scholar] [CrossRef]
- Lerch, B.; Karlsen, D.A.; Matapour, Z.; Seland, R.; Backer-Owe, K. Organic geochemistry of Barents Sea petroleum: Thermal maturity and alteration and mixing processes in oils and condensates. J. Pet. Geol. 2016, 39, 125–148. [Google Scholar] [CrossRef]
Unit | Lithology | Density (kg/m3) | Surface Porosity (%) | Factor c (1/km) | Thermal Conductivity (W/mK) | Radiogenic Heat (microW/m3) | Specific Heat Capacity (Kcal/K/Kg) |
---|---|---|---|---|---|---|---|
S7 | ss20, sh80 | 2730 | 53.5 | 0.57 | 2.01 | 1.31 | 0.21 |
S6 | ss10, shs20,sh70 | 2721 | 59.5 | 0.65 | 2.11 | 1.37 | 0.21 |
S5 | ss70. sh30 | 2714 | 49.7 | 0.47 | 3.03 | 0.88 | 0.2 |
S4 | ss30, sh70 | 2566 | 61.3 | 0.67 | 2.13 | 1.31 | 0.21 |
S3 | ss30, sh70 | 2706 | 61.3 | 0.67 | 2.13 | 1.31 | 0.21 |
S2 | sh10, ls90 | 2709 | 52.9 | 0.55 | 2.51 | 0.73 | 0.2 |
S1 | sl100 | 6.5 | 0.01 | 0.21 | |||
Pre-salt | ss25, sh50, co25 | 2540 | 63.65 | 0.64 | 1.34 | 0.97 | 0.23 |
Basement | Gneiss | 2.7 | 2 | 0.19 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cedeño, A.; Rojo, L.A.; Cardozo, N.; Centeno, L.; Escalona, A. The Impact of Salt Tectonics on the Thermal Evolution and the Petroleum System of Confined Rift Basins: Insights from Basin Modeling of the Nordkapp Basin, Norwegian Barents Sea. Geosciences 2019, 9, 316. https://doi.org/10.3390/geosciences9070316
Cedeño A, Rojo LA, Cardozo N, Centeno L, Escalona A. The Impact of Salt Tectonics on the Thermal Evolution and the Petroleum System of Confined Rift Basins: Insights from Basin Modeling of the Nordkapp Basin, Norwegian Barents Sea. Geosciences. 2019; 9(7):316. https://doi.org/10.3390/geosciences9070316
Chicago/Turabian StyleCedeño, Andrés, Luis Alberto Rojo, Néstor Cardozo, Luis Centeno, and Alejandro Escalona. 2019. "The Impact of Salt Tectonics on the Thermal Evolution and the Petroleum System of Confined Rift Basins: Insights from Basin Modeling of the Nordkapp Basin, Norwegian Barents Sea" Geosciences 9, no. 7: 316. https://doi.org/10.3390/geosciences9070316
APA StyleCedeño, A., Rojo, L. A., Cardozo, N., Centeno, L., & Escalona, A. (2019). The Impact of Salt Tectonics on the Thermal Evolution and the Petroleum System of Confined Rift Basins: Insights from Basin Modeling of the Nordkapp Basin, Norwegian Barents Sea. Geosciences, 9(7), 316. https://doi.org/10.3390/geosciences9070316