High Resolution Characterization of Lithological Heterogeneity of the Paaratte Formation, Otway Basin (Australia), a Coastal to Shallow-Marine Deposit
Abstract
:1. Introduction
2. Study Area Overview and Geological Setting
2.1. Study Area Overview
2.2. Basin Location and Evolution
2.3. The Paaratte Formation
3. Methodology
3.1. Core Sampling and Analysis
3.1.1. Porosity, Permeability and Capillary Entry Pressure Analysis
3.1.2. Quantitative Mineral Composition Analysis
3.1.3. Mineral Specific and Total Grain Size Analysis
3.1.4. Hyperspectral Core Logging
3.2. Wireline Logging and Data Analysis
3.2.1. Available Wireline Log Data Analysis
3.2.2. Deriving Lithotype Logs
4. Results
4.1. Sample Analysis Results
4.1.1. Porosity, Permeability and Entry Pressure Analysis
4.1.2. Quantitative Mineral and Mineral Specific Grain Size Analysis
4.2. Hyperspectral Reflectance Analysis
4.3. Colourlith and ECS Logs and Their Correlation
5. Discussion
5.1. Rock Types and Properties
5.2. Correlation of Hyperspectral, ECS and Colourlith Logs
5.3. Rock Type Abundance and Variability
5.4. Implications of High Resolution Rock Typing
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sedimentary Facies | Core Sample ID | Sample Depth (m) | Porosity (%) | Permeability (mD) |
---|---|---|---|---|
Distributary Channel | #93 | 1477.20 | 26.9 | 7410.00 |
#56V | 1533.78 | 21.2 | 1.07 | |
#42 | 1549.75 | 28.4 | 1110.00 | |
#39 | 1551.25 | 26.5 | 615.00 | |
#37V | 1552.82 | 29.6 | 1930.00 | |
#35 | 1553.48 | 21.2 | 130.00 | |
#34 | 1554.07 | 16.4 | 27.50 | |
Proximal Mouthbar | #97 | 1464.80 | 28.5 | 141.00 |
#92 | 1481.55 | 13.1 | 0.55 | |
#91 | 1484.45 | 29.7 | 1010.00 | |
#82 | 1502.90 | 24.0 | 357.00 | |
#79 | 1506.92 | 29.3 | 262.00 | |
#77 | 1508.80 | 26.6 | 353.00 | |
#75 | 1513.60 | 23.4 | 198.00 | |
#72 | 1518.45 | 27.1 | 109.00 | |
#59 | 1531.50 | 29.0 | 357.00 | |
#55 | 1533.86 | 12.6 | 33.40 | |
#51V | 1539.50 | 26.8 | 407.00 | |
#50 | 1540.30 | 28.3 | 4160.00 | |
#27 | 1560.95 | 28.0 | 249.00 | |
#25 | 1562.60 | 22.7 | 17.00 | |
#23 | 1563.60 | 29.1 | 535.00 | |
Distal Mouthbar | #98 | 1462.85 | 28.8 | 324.00 |
#81 | 1505.00 | 14.1 | 0.90 | |
Delta Front | #71 | 1520.50 | 28.4 | 182.00 |
#69 | 1523.90 | 17.2 | 0.08 | |
#67H | 1524.65 | 21.5 | 0.64 | |
#67V | 1524.65 | 21.5 | NA | |
#66 | 1525.64 | 16.3 | 0.47 | |
#64 | 1526.05 | 27.6 | 268.00 |
Appendix B
Rock Type Classes | Sample ID for QEMSCAN Analysis |
---|---|
Rock Type 1 (Coarse Sandstone) | #93, #50, #37V, #42, #91 |
Rock Type 2 (Fine Sandstone) | #23, #27, #39, #51, #64, #71, #72, #79, #82, #98, #59, #97, #77 |
Rock Type 3 (Siltstone) | #25, #34, #35, #55 |
Rock Type 4 (Mudstone) | #56V, #66, #67V, #69, #81, #92, #67H |
Rock Type 5 (Carbonate-cemented Sandstone) | #75 |
Distributary channel | Proximal mouthbar | Distal mouthbar | Delta front | |||
---|---|---|---|---|---|---|
Depth (m) | Porosity (Fraction) | Permeability (mD) | Framework (%) | Clay (%) | Carbonate (%) | Rock Type Class Assigned |
1462.85 | 0.29 | 324.00 | 78.47 | 0.00 | 21.53 | Carbonate-cemented sandstone |
1464.80 | 0.29 | 141.00 | 86.91 | 9.53 | 3.56 | Fine sandstone |
1466.80 | 0.20 | 1.03 | 62.66 | 18.56 | 18.78 | Carbonate-cemented sandstone |
1470.80 | 0.20 | 2.25 | 83.66 | 16.34 | 0.00 | Mudstone |
1474.55 | 0.15 | 0.06 | 74.83 | 18.40 | 6.77 | Carbonate-cemented sandstone |
1477.20 | 0.27 | 7410.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1481.55 | 0.13 | 0.55 | 76.10 | 0.00 | 23.90 | Carbonate-cemented sandstone |
1484.45 | 0.31 | 4930.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1484.45 | 0.30 | 1010.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1488.70 | 0.23 | 10300.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone * |
1492.64 | 0.29 | 2810.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1495.90 | 0.28 | 2040.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1499.03 | 0.26 | 19.60 | 100.00 | 0.00 | 0.00 | Unclassified |
1499.10 | 0.28 | 747.00 | 100.00 | 0.00 | 0.00 | Fine sandstone |
1499.40 | 0.30 | 1140.00 | 81.74 | 8.73 | 9.53 | Carbonate-cemented sandstone |
1501.00 | 0.13 | 0.83 | 59.60 | 3.65 | 36.75 | Carbonate-cemented sandstone |
1502.90 | 0.24 | 357.00 | 100.00 | 0.00 | 0.00 | Fine sandstone * |
1505.00 | 0.14 | 0.90 | 88.94 | 4.46 | 6.60 | Carbonate-cemented sandstone |
1505.85 | 0.19 | 1.46 | 97.21 | 2.79 | 0.00 | Mudstone |
1506.92 | 0.29 | 262.00 | 100.00 | 0.00 | 0.00 | Fine sandstone |
1508.12 | 0.29 | 476.00 | 100.00 | 0.00 | 0.00 | Fine sandstone |
1508.80 | 0.27 | 353.00 | 100.00 | 0.00 | 0.00 | Fine sandstone |
1510.75 | 0.21 | 2.82 | 63.99 | 33.52 | 2.50 | Mudstone |
1513.60 | 0.23 | 198.00 | 92.75 | 0.00 | 7.25 | Carbonate-cemented sandstone |
1516.65 | 0.19 | 6.35 | 76.89 | 23.11 | 0.00 | Mudstone |
1517.80 | 0.29 | 205.00 | 95.03 | 3.23 | 1.74 | Fine sandstone |
1518.45 | 0.27 | 109.00 | 92.39 | 7.61 | 0.00 | Fine sandstone |
1522.75 | 0.15 | 0.02 | 63.96 | 36.04 | 0.00 | Mudstone * |
1523.90 | 0.17 | 0.08 | 76.62 | 23.38 | 0.00 | Mudstone * |
1524.60 | 0.19 | 0.55 | 77.62 | 22.38 | 0.00 | Mudstone * |
1524.65 | 0.22 | 0.64 | 85.38 | 14.62 | 0.00 | Mudstone * |
1525.64 | 0.16 | 0.47 | 78.63 | 21.37 | 0.00 | Mudstone * |
1526.05 | 0.28 | 268.00 | 91.46 | 8.54 | 0.00 | Fine sandstone |
1526.25 | 0.15 | 0.16 | 70.08 | 29.92 | 0.00 | Mudstone * |
1526.80 | 0.15 | 0.03 | 63.21 | 36.79 | 0.00 | Mudstone * |
1528.50 | 0.16 | 0.05 | 60.47 | 39.53 | 0.00 | Mudstone * |
1528.53 | 0.16 | 0.03 | 60.47 | 39.53 | 0.00 | Mudstone * |
1529.60 | 0.27 | 751.00 | 92.60 | 0.00 | 7.40 | Carbonate-cemented sandstone |
1529.65 | 0.27 | 814.00 | 100.00 | 0.00 | 0.00 | Fine sandstone |
1529.70 | 0.26 | 373.00 | 100.00 | 0.00 | 0.00 | Fine sandstone |
1531.50 | 0.29 | 357.00 | 94.40 | 5.60 | 0.00 | Fine sandstone |
1532.85 | 0.16 | 7.14 | 92.64 | 7.36 | 0.00 | Mudstone |
1533.23 | 0.28 | 1200.00 | 96.24 | 3.76 | 0.00 | Coarse sandstone |
1533.78 | 0.21 | 1.07 | 74.24 | 25.76 | 0.00 | Mudstone |
1533.86 | 0.13 | 33.40 | 61.99 | 38.01 | 0.00 | Siltstone |
1534.10 | 0.23 | 15.30 | 87.31 | 12.69 | 0.00 | Siltstone |
1534.82 | 0.12 | 0.15 | 71.41 | 28.59 | 0.00 | Mudstone |
1539.50 | 0.27 | 407.00 | 100.00 | 0.00 | 0.00 | Fine sandstone |
1539.60 | 0.28 | 1190.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1540.30 | 0.28 | 4160.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1540.55 | 0.29 | 1820.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1541.35 | 0.29 | 2200.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1542.35 | 0.30 | 2010.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1542.42 | 0.30 | 2410.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1543.75 | 0.28 | 2380.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1548.90 | 0.02 | 0.02 | 74.25 | 0.00 | 25.75 | Carbonate-cemented sandstone |
1549.25 | 0.17 | 1.05 | 82.93 | 17.07 | 0.00 | Mudstone |
1549.75 | 0.28 | 1110.00 | 98.43 | 0.00 | 1.57 | Coarse sandstone |
1550.30 | 0.28 | 799.00 | 100.00 | 0.00 | 0.00 | Fine sandstone |
1550.75 | 0.23 | 1030.00 | 67.68 | 32.32 | 0.00 | Unclassified |
1551.25 | 0.27 | 615.00 | 96.91 | 3.09 | 0.00 | Fine sandstone |
1551.65 | 0.24 | 9670.00 | 97.44 | 0.00 | 2.56 | Coarse sandstone * |
1552.82 | 0.30 | 1930.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1552.95 | 0.30 | 2550.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1553.48 | 0.21 | 130.00 | 74.71 | 25.29 | 0.00 | Siltstone * |
1554.07 | 0.16 | 27.50 | 67.75 | 32.25 | 0.00 | Siltstone |
1554.12 | 0.16 | 0.03 | 67.75 | 32.25 | 0.00 | Mudstone * |
1554.25 | 0.27 | 5250.00 | 78.34 | 21.66 | 0.00 | Coarse sandstone |
1555.35 | 0.30 | 2840.00 | 91.57 | 8.43 | 0.00 | Coarse sandstone |
1556.42 | 0.29 | 556.00 | 100.00 | 0.00 | 0.00 | Fine sandstone |
1556.55 | 0.30 | 3420.00 | 100.00 | 0.00 | 0.00 | Coarse sandstone |
1559.57 | 0.28 | 195.00 | 89.59 | 10.41 | 0.00 | Fine sandstone |
1560.95 | 0.28 | 249.00 | 84.83 | 15.17 | 0.00 | Fine sandstone |
1561.02 | 0.29 | 318.00 | 100.00 | 0.00 | 0.00 | Fine sandstone |
1562.60 | 0.23 | 17.00 | 79.38 | 20.62 | 0.00 | Siltstone |
1562.64 | 0.28 | 89.10 | 69.62 | 30.38 | 0.00 | Fine sandstone * |
1563.35 | 0.29 | 380.00 | 100.00 | 0.00 | 0.00 | Fine sandstone |
1563.45 | 0.29 | 378.00 | 86.20 | 13.80 | 0.00 | Fine sandstone |
1563.60 | 0.29 | 535.00 | 76.04 | 23.96 | 0.00 | Fine sandstone |
1564.25 | 0.17 | 0.57 | 63.18 | 36.82 | 0.00 | Mudstone * |
1564.70 | 0.22 | 3.73 | 65.05 | 34.95 | 0.00 | Mudstone |
1565.39 | 0.17 | 0.15 | 77.95 | 22.05 | 0.00 | Mudstone * |
Appendix C
Appendix D
References
- Steefel, C.I.; DePaolo, D.J.; Lichtner, P.C. Reactive transport modeling: An essential tool and a new research approach for the Earth sciences. Earth Planet. Sci. Lett. 2005, 240, 539–558. [Google Scholar] [CrossRef]
- Doyen, P. Seismic Reservoir Characterization: An Earth Modelling Perspective; EAGE publications: Houten, The Netherlands, 2007; Volume 2. [Google Scholar]
- Ringrose, P.; Bentley, M. Reservoir model types. In Reservoir Model Design; Springer: Dordrecht, The Netherlands, 2015; pp. 173–231. [Google Scholar]
- Gershenzon, N.I.; Ritzi, R.W.; Dominic, D.F.; Mehnert, E.; Okwen, R.T. Capillary trapping of CO2 in heterogeneous reservoirs during the injection period. Int. J. Greenh. Gas. Con. 2017, 59, 13–23. [Google Scholar] [CrossRef]
- Trevisan, L.; Krishnamurthy, P.G.; Meckel, T.A. Impact of 3D capillary heterogeneity and bedform architecture at the sub-meter scale on CO2 saturation for buoyant flow in clastic aquifers. Int. J. Greenh. Gas. Con. 2017, 56, 237–249. [Google Scholar] [CrossRef]
- Miall, A.D. Facies Models Stratigraphy: A Modern Synthesis; Springer: Berlin/Heidelberg, Germany, 2016; pp. 161–214. [Google Scholar]
- Ennis-King, J.; Bradshaw, J.; Gibson-Poole, C.; Hennig, A.; Lang, S.; Paterson, L.; Root, R.; Sayers, J.; Spencer, L.; Streit, J. Long-term numerical simulation of a portfolio of possible sites for geological storage of carbon dioxide in Australia. Greenh. Gas Con. Technol. 7 2005, 1, 711–719. [Google Scholar]
- Liang, C.; Cao, Y.; Liu, K.; Jiang, Z.; Wu, J.; Hao, F. Diagenetic variation at the lamina scale in lacustrine organic-rich shales: Implications for hydrocarbon migration and accumulation. Geochim. Cosmochim. Acta 2018, 229, 112–128. [Google Scholar] [CrossRef]
- Ringrose, P.S.; Sorbie, K.S.; Corbett, P.W.M.; Jensen, J.L. Immiscible flow behaviour in laminated and cross-bedded sandstones. J. Pet. Sci. Eng. 1993, 9, 103–124. [Google Scholar] [CrossRef]
- Yang, L.; Xu, T.; Yang, B.; Tian, H.; Lei, H. Effects of mineral composition and heterogeneity on the reservoir quality evolution with CO2 intrusion. Geochem. Geophy. Geosy. 2014, 15, 605–618. [Google Scholar] [CrossRef]
- Flett, M.; Gurton, R.; Weir, G. Heterogeneous saline formations for carbon dioxide disposal: Impact of varying heterogeneity on containment and trapping. J. Pet. Sci. Eng. 2007, 57, 106–118. [Google Scholar] [CrossRef]
- Mikes, D.; Barzandji, O.H.M.; Bruining, J.; Geel, C.R. Upscaling of small-scale heterogeneities to flow units for reservoir modelling. Mar. Pet. Geol. 2006, 23, 931–942. [Google Scholar] [CrossRef]
- Wen, H.; Li, L. An upscaled rate law for magnesite dissolution in heterogeneous porous media. Geochim. Cosmochim. Acta 2017, 210, 289–305. [Google Scholar] [CrossRef]
- Cooperative Research Centre for Greenhouse Gas Technologies. Available online: http://www.co2crc.com.au/otway-research-facility-2/ (accessed on 17 June 2019).
- Boyd, G.A.; Gallagher, S.J. The sedimentology and palaeoenvironments of the Late Cretaceous Sherbrook Group in the Otway Basin. East. Aust. Basins Symp. 2001, 475–484. [Google Scholar]
- Dance, T.; Arnot, M.; Bunch, M.; Hortle, A.; Lawrence, M.; Ennis-King, J. Geocharacterisation and Static Modelling of the Lower Paaratte Formation; CO2CRC Otway Project Stage 2; Cooperative Research Centre for Greenhouse Gas Technologies: Canberra, Australia, 2012; CO2CRC Publication Number RPT12-3481. [Google Scholar]
- Geary, G.C.; Constantine, A.E.; Reid, I.S.A. New Perspectives on Structural Style and Petroleum Prospectivity, Offshore Eastern Otway Basin; Petroleum Exploration Society of Australia (PESA): Adelaide, Australia, 2001. [Google Scholar]
- Geary, G.C.; Reid, I.S.A. Geology and Prospectivity of the Offshore Eastern Otway Basin, Victoria - for the 1998 Acreage Release; Department of Natural Resources and Environment: Palmerston, Australia, 1998. [Google Scholar]
- Lawrence, M.J.F.; Arnot, M.; Browne, G.H.; Bunch, M.; Dance, T. Geological Interpretation of Core and Wireline Data from Otway Project Wells CRC-1 and CRC-2; CO2CRC Publication Number RPT12-3481; Cooperative Research Centre for Greenhouse Gas Technologies: Canberra, Australia, 2013. [Google Scholar]
- Daniel, R. Containment/Injectivity Results from MICP Analysis for Seals, Intraformational Barriers and Reservoir Samples, CRC-2, Otway Basin; CO2CRC Publication Number: TBN 12-3830; Cooperative Research Centre for Greenhouse Gas Technologies: Melbourne, Australia, 2012. [Google Scholar]
- Daniel, R.F.; Menacherry, S.; Bunch, M. Characterisation of Dolomitic Intraformational Barriers, CRC-2B Injection Interval, Paaratte Formation; CO2CRC Publication Number: RPT12-3532; Cooperative Research Centre for Greenhouse Gas Technologies: Melbourne, Australia, 2012. [Google Scholar]
- Dance, T. Characterisation of the Late Cretaceous Paaratte Formation, a heterogeneous saline aquifer, for an Australian CO2 Storage Project. J. Pet. Geol. 2018. (submitted). [Google Scholar]
- Dance, T. Assessment and geological characterisation of the CO2CRC Otway Project CO2 storage demonstration site: From prefeasibility to injection. Mar. Pet. Geol. 2013, 46, 251–269. [Google Scholar] [CrossRef]
- Combinable Magnetic Resonance Report; Schlumberger and CO2CRC Limited: Perth, Australia, (unpublished).
- Moore, A.M.G.; Stagg, H.M.J.; Norvick, M.S. Deep-water Otway Basin: A new assessment of the tectonics and hydrocarbon prospectivity. APPEA J. 2000, 40, 66–85. [Google Scholar] [CrossRef]
- Exon, N.F.; Lee, C.S. Seabed sampling off southeast Australia. BMR Res. Newsl. 1987, 2–4. [Google Scholar]
- Miyazaki, S.; Lavering, I.H.; Stephenson, A.E.; Pain, L. Otway Basin, South Australia, Victoria and Tasmania. Aust. Bur. Miner. Resour. Geol. Geophys. Pet. Accumul. Rep. 1990, 6, 62–66. [Google Scholar]
- Robertson, C.S.; Cronk, D.K.; Mayne, S.J.; Townsend, D.G. A review of petroleum exploration and prospects in the Otway Basin region. Canberra: Geosci. Aust. 1978, 49. [Google Scholar]
- Stacey, A.; Mitchell, C.; Nayak, G.; Struckmeyer, H.; Morse, M.; Totterdell, J.; Gibson, G. Geology and petroleum prospectivity of the deepwater Otway and Sorell basins: new insights from an integrated regional study. APPEA J. 2011, 51, 692. [Google Scholar] [CrossRef]
- Holford, S.; Hillis, R.; Duddy, I.; Green, P.; Stoker, M.; Tuitt, A.; Backé, G.; Tassone, D.; MacDonald, J. Cenozoic post-breakup compressional deformation and exhumation of the southern Australian margin. APPEA J. 2011, 51, 613–638. [Google Scholar] [CrossRef] [Green Version]
- Krassay, A.A.; Cathro, D.L.; Ryan, D.J.; Boult, P.J.; Johns, D.R.; Lang, S.C. A Regional Tectonostratigraphic Framework for the Otway Basin; Petroleum Exploration Society of Australia (PESA): Adelaide, Australia, 2004; pp. 97–116. [Google Scholar]
- Norvick, M.S. Plate Tectonic Reconstructions of Australia’s Southern Margins; Geoscience Australia: Canberra, Australia, 2005. [Google Scholar]
- Willcox, J.B.; Stagg, H.M.J. Australia’s southern margin: a product of oblique extension. Tectonophysics 1990, 173, 269–281. [Google Scholar] [CrossRef]
- Geoscience Australia. Available online: www.ga.gov.au/scientific-topics/energy/province-sedimentary-basin-geology/petroleum/offshore-southern-australia/otway (accessed on 11 January 2019).
- Cande, S.C.; Mutter, J.C. A revised identification of the oldest sea-floor spreading anomalies between Australia and Antarctica. Earth Planet. Sci. Lett. 1982, 58, 151–160. [Google Scholar] [CrossRef]
- Woollands, M.A.; Wong, D. Petroleum Atlas of Victoria, Australia; Department of Natural Resources and Environment: Palmerston, Australia, 2001.
- Morton, J.G.G.; Hill, A.J.; Parker, G.; Tabassi, A. Towards a unified stratigraphy for the Otway Basin. In Proceedings of the NGMA/Petroleum Exploration Society of Australia Otway Basin Symposium, Melbourne, Australia, 20 April 1994. [Google Scholar]
- Buffin, A.J. Waarre sandstone development within the Port Campbell Embayment. APPEA J. 1989, 29, 299–311. [Google Scholar] [CrossRef]
- Hawkins, P.J.; Dellenbach, J. A Review of the Otway Basin; Reynolds, M.A., Ed.; Bureau of Mineral Resources: Canberra, Australia, 1971; pp. 7–22.
- Morgan, R.P. Palynology review of selected oil drilling. Otway Basin, South Australia, for Ultramar Australia. Aust. Morgan Palaeo Assoc. 1985. Unpublished. [Google Scholar]
- Morton, J.G.G. Revisions to stratigraphic nomenclature of the Otway Basin, South Australia. In Quarterly Geological Notes/Issued by the Geological Survey of South Australia; Parkside: Auckland, New Zealand, 1990. [Google Scholar]
- White, M.R. Micropalaeontological analysis of 26 petroleum wells in the Gambier Basin, South Australia. South Aust. Dep. Mines Energy Rep. Book 1995, 95, 6. [Google Scholar]
- O’Brien, G.W.; Thomas, J.H. A Technical Assessment of the Yet-to-Find Hydrocarbon Resource Inventory, Offshore & Onshore Otway Basin, Victoria, Australia; Department of Primary Industries: New South Wales, Australia, 2007.
- Dance, T. Personal Communication; CSIRO: Canberra, Australia, 2017. [Google Scholar]
- Knackstedt, M.; Saadatfarm, M.; Herring, A.; Turner, M.; Sok, R.; Deakin, L.; Knuefing, L.; Eric Oren, P.; Ruspini, L. Multiphase flooding dynamics of Otway core. Phase 1. Cooperative Research Centre for Greenhouse Gas Technologies, Melbourne, Australia, CO2CRC Report No: RPT18-5867; CO2CRC Limited: Carlton, Australia, 2018. [Google Scholar]
- Kaldi, J.; Daniel, R.; Tenthorey, E.; Michael, K.; Schacht, U.; Nicol, A.; Underchultz, J.; Backe, G. Caprock Systems for CO2 Geological Storage; Report No.: 2011/01; IEAGHG: Cheltenham, UK, 2011. [Google Scholar]
- Higgs, K.E.; Haese, R.R.; Golding, S.D.; Schacht, U.; Watson, M.N. The Pretty Hill Formation as a natural analogue for CO2 storage: an investigation of mineralogical and isotopic changes associated with sandstones exposed to low, intermediate and high CO2 concentrations over geological time. Chem. Geol. 2015, 399, 36–64. [Google Scholar] [CrossRef]
- Ayling, B.; Rose, P.; Petty, S.; Zemach, E.; Drakos, P. QEMSCAN (Quantitative evaluation of minerals by scanning electron microscopy): Capability and application to fracture characterization in geothermal systems. In Proceedings of the 37th Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 30 January–1 February 2012. [Google Scholar]
- Schodlok, M.C.; Whitbourn, L.; Huntington, J.; Mason, P.; Green, A.; Berman, M.; Coward, D.; Connor, P.; Wright, W.; Jolivet, M. HyLogger-3, a visible to shortwave and thermal infrared reflectance spectrometer system for drill core logging: functional description. Aust. J. Earth Sci. 2016, 63, 929–940. [Google Scholar]
- Huntington, J.; Whitbourn, L.; Mason, P.; Berman, M.; Schodlok, M.C. HyLogging—Voluminous industrial-scale reflectance spectroscopy of the Earth’s subsurface. In Proceedings of the ASD and IEEE GRS; Art, Science and Applications of Reflectance Spectroscopy Symposium, Boulder, CO, USA, 23–25 February 2010. [Google Scholar]
- Cudahy, T.J.; Hewson, R.D.; Caccetta, M.; Roache, A.; Whitbourn, L.B.; Connor, P.; Coward, D.; Mason, P.; Yang, K.; Huntington, J.F. Drill core Logging of plagioclase feldspar composition and other minerals associated with Archaean gold mineralisation at Kambalda, Western Australia using a bidirectional thermal infrared reflectance system. In Remote Sensing and Spectral Geology; Society of Economic Geologists: Littleton, CO, USA, 2009; pp. 223–235. [Google Scholar]
- Haese, R.R.; Jiang, G.; Ooi, S.; Black, J.R. Enhanced reservoir characterization using hyperspectral core logging. J. Sediment. Res. 2019, 89, 187–198. [Google Scholar] [CrossRef]
- Schlumberger. Available online: www.glossary.oilfield.slb.com/en/Terms/e/elemental_capture_spectroscopy.aspx (accessed on 6 March 2019).
- Kansas Geological Survey. Available online: http://www.kgs.ku.edu/stratigraphic/KIMELEON/history.html (accessed on 11 January 2019).
- Collins, D.R.; Doveton, J.H. Color images of Kansas subsurface geology from well logs. Comput. Geosci. 1986, 12, 519–526. [Google Scholar] [CrossRef]
Depth (m) | 1434.7 | 1435.3 | 1439.7 | 1440.2 | 1448.6 | 1485.4 | 1491.4 | 1504.5 | 1507.7 | 1509.9 |
hFWL (m) | 40.21 | 5.18 | 2.77 | 42.12 | 45.31 | 5.21 | 9.15 | 0.21 | 0.18 | 0.27 |
Pe (kPa) | 142.3 | 18.5 | 9.7 | 149.8 | 160.1 | 18.5 | 32.1 | 0.7 | 0.6 | 0.9 |
Minerals | Rock Type 1 | Rock Type 2 | Rock Type 3 | Rock Type 4 | Rock Type 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | Mean | SD | |
Quartz | 0.783 | 8.13% | 0.7201 | 6.24% | 0.5275 | 13.50% | 0.3508 | 5.29% | 0.6917 | 0.00% |
Alkali Feldspar | 0.076 | 3.40% | 0.0654 | 1.01% | 0.0591 | 0.57% | 0.0691 | 1.53% | 0.0512 | 0.00% |
Kaolinite | 0.0415 | 1.52% | 0.0466 | 1.67% | 0.1237 | 7.04% | 0.1539 | 3.19% | 0.0331 | 0.00% |
Smectites | 0.0334 | 2.51% | 0.045 | 2.36% | 0.1014 | 3.74% | 0.1368 | 2.83% | 0.0145 | 0.00% |
Chlorite | 0.0233 | 0.89% | 0.0515 | 2.64% | 0.0599 | 0.19% | 0.09 | 1.51% | 0.0144 | 0.00% |
Illite | 0.0086 | 0.57% | 0.0214 | 0.65% | 0.0437 | 1.98% | 0.0824 | 1.37% | 0.0099 | 0.00% |
Magnesite | 0.006 | 0.32% | 0.0056 | 0.27% | 0.0098 | 0.33% | 0.018 | 0.99% | 0.0172 | 0.00% |
Siderite | 0.0001 | 0.01% | 0.0011 | 0.23% | 0.001 | 0.06% | 0.0039 | 0.51% | 0.0001 | 0.00% |
Ankerite | 0.0019 | 0.23% | 0.0013 | 0.46% | 0 | 0.00% | 0 | 0.00% | 0.0992 | 0.00% |
Calcite | 0 | 0.00% | 0 | 0.01% | 0 | 0.00% | 0 | 0.00% | 0.0008 | 0.00% |
Dolomite | 0.0004 | 0.04% | 0.0003 | 0.09% | 0 | 0.00% | 0 | 0.00% | 0.0206 | 0.00% |
Plagioclase | 0.0121 | 0.45% | 0.0195 | 0.64% | 0.0262 | 0.60% | 0.0254 | 0.60% | 0.0186 | 0.00% |
Muscovite | 0.009 | 0.69% | 0.0127 | 0.50% | 0.0321 | 2.21% | 0.0517 | 1.69% | 0.0108 | 0.00% |
Pyrite | 0.0026 | 0.16% | 0.0014 | 0.10% | 0.0094 | 1.33% | 0.0138 | 1.55% | 0.0001 | 0.00% |
Pyrophyllite | 0.0007 | 0.04% | 0.0004 | 0.03% | 0.0016 | 0.08% | 0.0009 | 0.03% | 0.0004 | 0.00% |
Ilmenite | 0.0006 | 0.06% | 0.0025 | 0.10% | 0.0014 | 0.09% | 0.0006 | 0.01% | 0.0061 | 0.00% |
Rutile | 0.0006 | 0.04% | 0.0029 | 0.11% | 0.0028 | 0.06% | 0.0023 | 0.03% | 0.0071 | 0.00% |
Zircon | 0.0002 | 0.01% | 0.0023 | 0.36% | 0.0006 | 0.03% | 0.0004 | 0.01% | 0.0042 | 0.00% |
Rock Type Name | Porosity Range (fraction) | Permeability Range (mD) | Bulk Carbonate Content (%) | Mean Bulk Clay Content (%) | Most Recurring Modal Grain Size Range (mm) | Capillary Entry Pressure (Pa) |
---|---|---|---|---|---|---|
Coarse sandstone | >0.25 (#21) | >1000 (#21) | <5 (#21) | 5–20 (#5) | 0.40–0.45 (#5) | 100–1000 |
Fine sandstone | >0.25 (#23) | 100-1000 (#23) | <5 (#23) | 10–30 (#13) | 0.08–0.09 (#13) | 100–1000 |
Siltstone | <0.25 (#5) | 10–100 (#5) | <5 (#5) | 25–60 (#4) | <0.01 (#4) | 1000–10000 |
Mudstone | <0.25 (#21) | <10 (#21) | <5 (#21) | 40–60 (#7) | <0.01 (#7) | 1000–10000 |
Carbonate-cemented sandstone | <0.25 (#10) | <10 (#10) | >5 (#10) | <10 (#1) | 0.07-0.08 (#1) | 10000–160000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, A.; Pajank, L.; Haese, R.R. High Resolution Characterization of Lithological Heterogeneity of the Paaratte Formation, Otway Basin (Australia), a Coastal to Shallow-Marine Deposit. Geosciences 2019, 9, 278. https://doi.org/10.3390/geosciences9060278
Mishra A, Pajank L, Haese RR. High Resolution Characterization of Lithological Heterogeneity of the Paaratte Formation, Otway Basin (Australia), a Coastal to Shallow-Marine Deposit. Geosciences. 2019; 9(6):278. https://doi.org/10.3390/geosciences9060278
Chicago/Turabian StyleMishra, Achyut, Lukas Pajank, and Ralf R. Haese. 2019. "High Resolution Characterization of Lithological Heterogeneity of the Paaratte Formation, Otway Basin (Australia), a Coastal to Shallow-Marine Deposit" Geosciences 9, no. 6: 278. https://doi.org/10.3390/geosciences9060278
APA StyleMishra, A., Pajank, L., & Haese, R. R. (2019). High Resolution Characterization of Lithological Heterogeneity of the Paaratte Formation, Otway Basin (Australia), a Coastal to Shallow-Marine Deposit. Geosciences, 9(6), 278. https://doi.org/10.3390/geosciences9060278