Special Issue on Remote Sensing of Snow and Its Applications
Abstract
:1. Introduction
2. Remote Sensing of Snow and Its Applications
2.1. New Opportunities (Copernicus Sentinels) and Emerging Remote Sensing Methods
2.2. The Use of Snow Data in Modeling
2.3. Characterization of Snowpack
3. Summary
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Lemke, P.; Ren, J.; Alley, R.B.; Allison, I.; Carrasco, J.; Flato, G.; Fujii, Y.; Kaser, G.; Mote, P.; Thomas, R.H.; et al. Observations: Changes in Snow, Ice and Frozen Ground. In Climate Change 2007; The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Climate Change: Global Temperature. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-temperature (accessed on 13 June 2019).
- Special Issue Remote Sensing of Snow and Its Applications. Available online: https://www.mdpi.com/journal/geosciences/special_issues/Remot_Sensing_Snow_Applications (accessed on 13 June 2019).
- Copernicus. Available online: https://www.copernicus.eu/ (accessed on 1 June 2019).
- Sentinels. Available online: https://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus (accessed on 1 June 2019).
- Copernicus DIAS. Available online: https://www.copernicus.eu/en/access-data/dias (accessed on 12 June 2019).
- Dong, C. Remote Sensing, Hydrological Modeling and In Situ Observations in Snow Cover Research: A review. J. Hydrol. 2018, 561, 573–583. [Google Scholar] [CrossRef]
- Piazzi, G.; Tanis, C.M.; Kuter, S.; Simsek, B.; Puca, S.; Toniazzo, A.; Takala, M.; Akyürek, Z.; Gabellani, S.; Arslan, A.N. Cross-Country Assessment of H-SAF Snow Products by Sentinel-2 Imagery Validated against In-Situ Observations and Webcam Photography. Geosciences 2019, 9, 129. [Google Scholar] [CrossRef]
- Salzano, R.; Salvatori, R.; Valt, M.; Giuliani, G.; Chatenoux, B.; Ioppi, L. Automated Classification of Terrestrial Images: The Contribution to the Remote Sensing of Snow Cover. Geosciences 2019, 9, 97. [Google Scholar] [CrossRef]
- Salvatori, R.; Plini, P.; Giusto, M.; Valt, M.; Salzano, R.; Montagnoli, M.; Cagnati, A.; Crepaz, G.; Sigismondi, D. Snow cover monitoring with images from digital camera systems. Ital. J. Remote Sens. 2011, 43, 137–145. [Google Scholar] [CrossRef]
- Parajka, J.; Haas, P.; Kirnbauer, R.; Jansa, J.R.; Blöschl, G. Potential of time-lapse photography of snow for hydrological purposes at the small catchment scale. Hydrol. Process. 2012, 26, 3327–3337. [Google Scholar] [CrossRef]
- Bernard, E.; Friedt, J.M.; Tolle, F.; Griselin, M.; Martin, G.; Laffly, D.; Marlin, C. Monitoring seasonal snow dynamics using ground based high resolution photography (Austre Lovénbreen, Svalbard, 79 N). ISPRS J. Photogramm. Remote Sens. 2013, 75, 92–100. [Google Scholar] [CrossRef]
- Garvelmann, J.; Pohl, S.; Weiler, M. From observation to the quantification of snow processes with a time-lapse camera network. Hydrol. Earth Syst. Sci. 2013, 17, 1415–1429. [Google Scholar] [CrossRef] [Green Version]
- Fedorov, R.; Camerada, A.; Fraternali, P.; Tagliasacchi, M. Estimating snow cover from publicly available images. IEEE Trans. Multimed. 2016, 18, 1187–1200. [Google Scholar] [CrossRef]
- Arslan, A.N.; Tanis, C.M.; Metsämäki, S.; Aurela, M.; Böttcher, K.; Linkosalmi, M.; Peltoniemi, M. Automated Webcam Monitoring of Fractional Snow Cover in Northern Boreal Conditions. Geosciences 2017, 7, 55. [Google Scholar] [CrossRef]
- Härer, S.; Bernhardt, M.; Corripio, J.G.; Schulz, K. PRACTISE—Photo Rectification and ClassificaTIon SoftwarE (V.1.0). Geosci. Model Dev. 2013, 6, 837–848. [Google Scholar] [CrossRef]
- Tanis, C.M.; Peltoniemi, M.; Linkosalmi, M.; Aurela, M.; Böttcher, K.; Manninen, T.; Arslan, A.N. A system for Acquisition, Processing and Visualization of Image Time Series from Multiple Camera Networks. Data 2018, 3, 23. [Google Scholar] [CrossRef]
- Munkhjargal, M.; Groos, S.; Pan, C.G.; Yadamsuren, G.; Yamkin, J.; Menzel, L. Multi-Source Based Spatio-Temporal Distribution of Snow in a Semi-Arid Headwater Catchment of Northern Mongolia. Geosciences 2019, 9, 53. [Google Scholar] [CrossRef]
- Heilig, A.; Wendleder, A.; Schmitt, A.; Mayer, C. Discriminating Wet Snow and Firn for Alpine Glaciers Using Sentinel-1 Data: A Case Study at Rofental, Austria. Geosciences 2019, 9, 69. [Google Scholar] [CrossRef]
- Helmert, J.; Şensoy Şorman, A.; Alvarado Montero, R.; De Michele, C.; De Rosnay, P.; Dumont, M.; Finger, D.C.; Lange, M.; Picard, G.; Potopová, V.; et al. Review of Snow Data Assimilation Methods for Hydrological, Land Surface, Meteorological and Climate Models: Results from a COST HarmoSnow Survey. Geosciences 2018, 8, 489. [Google Scholar] [CrossRef]
- Slater, A.G.; Clark, M. Snow Data Assimilation via an Ensemble Kalman Filter. J. Hydrometeorol. 2006, 7, 478–493. [Google Scholar] [CrossRef]
- Thirel, G.; Salamon, P.; Burek, P.; Kalas, M. Assimilation of MODIS Snow Cover Area Data in a Distributed Hydrological Model Using the Particle Filter. Remote Sens. 2013, 5, 5825–5850. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Peters-Lidard, C.D.; Kumar, S.; Foster, J.L.; Shaw, M.; Tian, Y.; Fall, G.M. Assimilating satellite-based snow depth and snow cover products for improving snow predictions in Alaska. Adv. Water Resour. 2013, 54, 208–227. [Google Scholar] [CrossRef]
- Arsenault, K.R.; Houser, P.R. Generating Observation-Based Snow Depletion Curves for Use in Snow Cover Data Assimilation. Geosciences 2018, 8, 484. [Google Scholar] [CrossRef]
- Appel, F.; Koch, F.; Rösel, A.; Klug, P.; Henkel, P.; Lamm, M.; Mauser, W.; Bach, H. Advances in Snow Hydrology Using a Combined Approach of GNSS In Situ Stations, Hydrological Modelling and Earth Observation—A Case Study in Canada. Geosciences 2019, 9, 44. [Google Scholar] [CrossRef]
- Zreda, M.; Köhli, M.; Schrön, M.; Hamann, S.; Womack, G. Using Downward-Looking Cosmogenic Neutron Sensor to Calibrate Wide-Area Sensor and to Measure Snow Water Equivalent; EGU General Assembly: Vienna, Austria, 2019; Volume 21. [Google Scholar]
- Snowpack Analyzers. Available online: https://www.sommer.at/en/ (accessed on 14 June 2019).
- Pirazzini, R.; Leppänen, L.; Picard, G.; Lopez-Moreno, J.I.; Marty, C.; Macelloni, G.; Kontu, A.; von Lerber, A.; Tanis, C.M.; Schneebeli, M.; et al. European In-Situ Snow Measurements: Practices and Purposes. Sensors 2018, 18, 2016. [Google Scholar] [CrossRef]
- Leppänen, L.; Kontu, A. Analysis of QualitySpec Trek Reflectance from Vertical Profiles of Taiga Snowpack. Geosciences 2018, 8, 404. [Google Scholar] [CrossRef]
- Sanow, J.E.; Fassnacht, S.R.; Kamin, D.J.; Sexstone, G.A.; Bauerle, W.L.; Oprea, I. Geometric Versus Anemometric Surface Roughness for a Shallow Accumulating Snowpack. Geosciences 2018, 8, 463. [Google Scholar] [CrossRef]
AVHRR | Landsat | MODIS | PMV (Mostly AMSR-E) | Sentinel-1 | Sentinel-2 | Emerging Technologies (UAS-Drone, GNSS, GNSS-R, GPS-IR, Webcam-Camera) |
---|---|---|---|---|---|---|
6 | 21 | 97 | 38 | 9 | 5 | 18 |
User Interface | Database Repository | Database Acquisitions & Services |
---|---|---|
Simplicity & Clarity | Dataset Services & Descriptions | Advanced Products/Tools/Services |
Demonstarte Core Benefits Effectively | Other Dataset than Copernicus | Cloud Services |
User Guides & Tutorials | Search Criteria by Region | Ease of Downloading |
Help Desk & FAQ | Search Criteria by Products | Example Analysis |
User Update | Search Criteria by End-use Application | Customized/Direct Pricing |
No Prerequisite Knowledge | Visualization by Timeline | Open Source Software |
Mobile Compatibility | Global/Regional Visualization | Monitoring & Dashboard |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arslan, A.N.; Akyürek, Z. Special Issue on Remote Sensing of Snow and Its Applications. Geosciences 2019, 9, 277. https://doi.org/10.3390/geosciences9060277
Arslan AN, Akyürek Z. Special Issue on Remote Sensing of Snow and Its Applications. Geosciences. 2019; 9(6):277. https://doi.org/10.3390/geosciences9060277
Chicago/Turabian StyleArslan, Ali Nadir, and Zuhal Akyürek. 2019. "Special Issue on Remote Sensing of Snow and Its Applications" Geosciences 9, no. 6: 277. https://doi.org/10.3390/geosciences9060277
APA StyleArslan, A. N., & Akyürek, Z. (2019). Special Issue on Remote Sensing of Snow and Its Applications. Geosciences, 9(6), 277. https://doi.org/10.3390/geosciences9060277