Water, Hydrous Melting, and Teleseismic Signature of the Mantle Transition Zone
Abstract
:1. Introduction
2. Petrological-Geophysical Modelling Approach
2.1. Chemical Composition and Proportion of Phases
2.2. Elastic Constants
2.3. Water Saturation and Considered Mineral Phases
2.4. Thermal Profile
2.5. Water Distribution Patterns
2.6. Domain Calculation
2.7. Seismic Velocity Reduction Due to the Attenuation
2.8. Receiver Function Modelling
3. Results
3.1. Phase Equilibria
3.2. Velocity Models
3.3. Receiver Functions
3.3.1. General Observations
3.3.2. Gaussian Distribution Models
3.3.3. Linear Distribution Models
3.3.4. Velocity Pull-Down and Depth Conversion
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Litasov, K.D.; Ohtani, E. Effect of water on the phase relations in Earth’s mantle and deep water cycle. Geol. Soc. Am. Spec. Pap. 2007, 421, 115–156. [Google Scholar] [CrossRef]
- Andrews, J.; Deuss, A. Detailed nature of the 660km region of the mantle from global receiver function data. J. Geophys. Res. Solid Earth 2008, 113, B06304. [Google Scholar] [CrossRef]
- Lawrence, J.F.; Shearer, P.M. A global study of transition zone thickness using receiver functions. J. Geophys. Res. Solid Earth 2006, 111, B06307. [Google Scholar] [CrossRef] [Green Version]
- Stammler, K.; Kind, R.; Petersen, N.; Korsarev, G.; Vinnik, L.; Qiyuan, L. The upper mantle discontinuities: Correlated or anticorrelated? Geophys. Res. Lett. 1992, 15, 1563–1566. [Google Scholar] [CrossRef]
- Vinnik, L.; Kosarev, G.; Petersen, N. Mantle transition zone beneath Eurasia. Geophys. Res. Let. 1996, 23, 1485–1488. [Google Scholar] [CrossRef]
- Cottaar, S.; Deuss, A. Large-scale mantle discontinuity topography beneath Europe: Signature of akimotoite in subducting slabs. J. Geophys. Res. Solid Earth 2006, 121, 279–292. [Google Scholar] [CrossRef] [Green Version]
- Nagel, T.; Duesterhoeft, N.; Schiffer, C. Garnet-controlled very low velocities in the lower transition zone at sites of mantle upwelling. Terra Nova 2018, 30, 333–340. [Google Scholar] [CrossRef]
- Bell, D.R.; Rossman, G.R. Water in Earth’s mantle: The role of nominally anhydrous minerals. Science 1992, 255, 1391–1397. [Google Scholar] [CrossRef]
- Inoue, T.; Yurimoto, H.; Kudoh, Y. Hydrous modified spinel, Mg1.75SiH0.5O4: A new water reservoir in the mantle transition region. Geophys. Res. Lett. 1995, 22, 117–120. [Google Scholar] [CrossRef]
- Kohlstedt, D.L.; Keppler, K.; Rubie, D.C. Solubility of water in the α, β and γ phases of (Mg,Fe)2SiO4. Contrib. Mineral Petrol. 1996, 123, 345–357. [Google Scholar] [CrossRef]
- Bolfan-Casanova, N. Water in the Earth’s mantle. Mineral. Mag. 2005, 69, 229–257. [Google Scholar] [CrossRef]
- Thompson, A.B. Water in the Earth’s upper mantle. Nature 1992, 358, 295–302. [Google Scholar] [CrossRef]
- Richard, G.C.; Bercovici, D. Water-induced convection in the Earth’s mantle transition zone. J. Geophys. Res. Solid Earth 2009, 114, B01205. [Google Scholar] [CrossRef] [Green Version]
- Karato, S. Water distribution across the mantle transition zone and its implications for global material circulation. Earth Planet Sci. Lett. 2011, 301, 413–423. [Google Scholar] [CrossRef]
- Peslier, A.H.; Schönbächler, M.; Busemann, H.; Karato, S.-I. Water in the Earth’s Interior: Distribution and Origin. Space Sci. Rev. 2017, 21, 743–810. [Google Scholar] [CrossRef]
- Ohtani, E.; Litasov, K.; Hosoya, T.; Kubo, T.; Kondo, T. Water transport into the deep mantle and formation of a hydrous transition zone. Phys. Earth Planet Inter. 2004, 255–269. [Google Scholar] [CrossRef]
- Maruyama, S.; Okamoto, K. Water transportation from the subducting slab into the mantle transition zone. Gondwana. Res. 2007, 11, 148–165. [Google Scholar] [CrossRef]
- Pearson, D.G.; Brenker, F.E.; Nestola, F.; McNeill, J.; Nasdala, L.; Hutchison, M.T.; Matveev, S.; Mather, K.; Silversmit, G.; Schmitz, S.; et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 2014, 507, 221–224. [Google Scholar] [CrossRef]
- Huang, X.; Xu, Y.; Karato, S. Water content in the transition zone from electrical conductivity of wadsleyite and ringwoodite. Nature 2005, 434, 746–749. [Google Scholar] [CrossRef]
- Yoshino, T.; Nishi, M.; Matsuzakia, T.; Yamazaki, D.; Katsura, T. Electrical conductivity of majorite garnet and its implications for electrical structure in the mantle transition zone. Phys. Earth Planet Inter. 2008, 170, 193–200. [Google Scholar] [CrossRef]
- Zhu, H.; Bozdağ, E.; Duffy, T.S.; Tromp, J. Seismic attenuation beneath Europe and the North Atlantic: Implications for water in the mantle. Earth Planet Sci. Let. 2013, 381, 1–11. [Google Scholar] [CrossRef]
- Van der Meijde, M.; Marone, F.; Giardini, D.; van der Lee, S. Seismic evidence for water deep in Earth’s upper mantle. Science 2003, 300, 1556–1558. [Google Scholar] [CrossRef] [PubMed]
- Thio, V.; Cobden, L.; Trampert, J. Seismic signature of a hydrous mantle transition zone. Phys. Earth Planet Inter. 2016, 250, 46–63. [Google Scholar] [CrossRef] [Green Version]
- Fei, H.; Yamazaki, D.; Sakurai, M.; Miyajima, N.; Ohfuji, H.; Katsura, T.; Yamamoto, T. A nearly water-saturated mantle transition zone inferred from mineral viscosity. Sci. Adv. 2017, 3, e1603024. [Google Scholar] [CrossRef] [Green Version]
- Frost, D.J.; Dolejš, D. Experimental determination of the effect of H2O on the 410-km seismic discontinuity. Earth Planet Sci. Let. 2007, 256, 182–195. [Google Scholar] [CrossRef]
- Kawamoto, T. Hydrous phase stability and partial melt chemistry in H2O-saturated KLB-1 peridotite up to the uppermost lower mantle conditions. Phys. Earth Planet. Inter. 2004, 143, 387–395. [Google Scholar] [CrossRef]
- Sakuyama, T.; Tian, W.; Kimura, J.-I.; Fukao, Y.; Hirahara, Y.; Takahashi, T.; Senda, R.; Chang, Q.; Miyazaki, T.; Obayashi, M.; et al. Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone: Constraints from Cenozoic alkaline basalts in eastern China. Chem. Geol. 2013, 359, 32–48. [Google Scholar] [CrossRef]
- Wallace, P.J. Water and partial melting in mantle plumes: Inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas. Geophys. Res. Let. 1998, 25, 3639–3642. [Google Scholar] [CrossRef]
- Watanabe, T. Effects of water and melt on seismic velocities and their application to characterization of seismic reflectors. Geophys. Res. Let. 1993, 20, 2933–2936. [Google Scholar] [CrossRef]
- Bercovici, D.; Karato, S. Whole-mantle convection and the transition-zone water filter. Nature 2003, 425, 39–44. [Google Scholar] [CrossRef]
- Sakamaki, T.; Ohtani, E.; Urakawa, S.; Suzuki, A.; Katayama, Y. Measurement of hydrous peridotite magma density at high pressure using the X-ray absorption method. Earth Planet Sci. Let. 2009, 287, 293–297. [Google Scholar] [CrossRef]
- Bajgain, S.; Ghosh, D.B.; Karki, B.B. Structure and density of basaltic melts at mantle conditions from first-principles simulations. Nat. Comm. 2015, 6, 8578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaeffer, A.J.; Bostock, M.G. A low-velocity zone atop the transition zone in northwestern Canada. J. Geophys. Res. Solid Earth 2010, 115, B06302. [Google Scholar] [CrossRef] [Green Version]
- Schmandt, B.; Jacobsen, S.D.; Becker, T.W.; Liu, Z.; Dueker, K.G. Dehydration melting at the top of the lower mantle. Science 2014, 344, 1265–1268. [Google Scholar] [CrossRef] [PubMed]
- Vinnik, L.; Farra, V. Low S velocity atop the 410-km discontinuity and mantle plumes. Earth Planet Sci. Let. 2007, 262, 398–412. [Google Scholar] [CrossRef]
- Liu, Z.; Park, J.; Karato, S.-I. Seismological detection of low-velocity anomalies surrounding the mantle transition zone in Japan subduction zone. Geophys. Res. Let. 2016, 43, 2480–2487. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.A.; Hammond, J.O.S.; Kendall, J.-M.; Stuart, G.W.; Helffrich, G.R.; Keir, D.; Ayele, A.; Goitom, B. Hydrous upwelling across the mantle transition zone beneath the Afar Triple Junction. Geochem. Geophys. 2015, 16, 834–846. [Google Scholar] [CrossRef] [Green Version]
- Irifune, T.; Isshiki, M. Iron partitioning in a pyrolite mantle and the nature of the 410-km seismic discontinuity. Nature 1998, 392, 702–705. [Google Scholar] [CrossRef]
- Stixrude, L.; Lithgow-Bertelloni, C. Influence of phase transformations on lateral heterogeneity and dynamics in Earth’s mantle. Earth Planet Sci. Let. 2007, 263, 45–55. [Google Scholar] [CrossRef]
- Kaminsky, F. Mineralogy of the lower mantle: A review of super-deep mineral inclusions in diamond. Earth Sci. Rev. 2012, 110, 127–147. [Google Scholar] [CrossRef]
- Muir, J.M.; Brodholt, J.P. Ferrous iron partitioning in the lower mantle. Phys. Earth Planet Inter. 2016, 257, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Mattern, E.; Matas, J.; Ricard, Y.; Bass, J. Lower mantle composition and temperature from mineral physics and thermodynamic modelling. Geophys. J. Int. 2005, 160, 973–990. [Google Scholar] [CrossRef]
- Stixrude, L.; Lithgow-Bertelloni, C. Thermodynamics of mantle minerals II. Phase equilibria. Geophys. J. Int. 2011, 184, 1180–1213. [Google Scholar] [CrossRef]
- Holland, T.J.B.; Hudson, N.F.C.; Powell, R.; Harte, B. New Thermodynamic models and calculated phase equilibria in ncfmas for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle. J. Petrol. 2013, 54, 1901–1920. [Google Scholar] [CrossRef]
- Sakai, T.; Dekura, H.; Hirao, N. Experimental and theoretical thermal equations of state of MgSiO3 post-perovskite at multi-megabar pressures. Sci. Rep. 2016, 6, 22652. [Google Scholar] [CrossRef]
- Núñez-Valdez, M.; Wu, Z.; Yu, Y.G.; Wentzcovitch, R.M. Thermal elasticity of (FexMg(1-x))2SiO4 olivine and wadsleyite. Geophys. Res. Let. 2013, 40, 290–294. [Google Scholar] [CrossRef]
- Liu, X.; Xiong, Z.; Chang, L.; He, Q.; Wang, F.; Shieh, S.R.; Wu, C.; Li, B.; Zhang, L. Anhydrous ringwoodites in the mantle transition zone: Their bulk modulus, solid solution behavior, compositional variation, and sound velocity feature. Solid Earth Sci. 2016, 1, 28–47. [Google Scholar] [CrossRef] [Green Version]
- Erba, A.; Mahmoud, A.; Orlando, R.; Dovesi, R. Elastic properties of six silicate garnet end members from accurate ab initio simulations. Phys. Chem. Miner. 2014, 41, 151–160. [Google Scholar] [CrossRef]
- Wolf, A.S.; Jackson, J.M.; Dera, P.; Prakapenka, V.B. The thermal equation of state of (Mg, Fe)SiO3 bridgmanite (perovskite) and implications for lower mantle structures. J. Geophys. Res. Solid Earth 2015, 120, 7460–7489. [Google Scholar] [CrossRef] [Green Version]
- Watt, J.P.; Davies, G.F.; O’Connell, R.J. The elastic properties of composite materials. Rev. Geophys. 1976, 14, 541–563. [Google Scholar] [CrossRef]
- Mao, Z.; Fan, D.; Lin, J.; Yang, J.; Tkachev, S.N.; Zhuravlev, K.; Prakapenka, V.B. Elasticity of single-crystal olivine at high pressures and temperatures. Earth Planet Sci. Let. 2015, 426, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Mayama, N.; Suzuki, I.; Saito, T.; Ohno, I.; Katsura, T.; Yoneda, A. Temperature dependence of elastic moduli of β-(Mg,Fe)2SiO4. Geophys. Res. Let. 2004, 31, L04612. [Google Scholar] [CrossRef] [Green Version]
- Isaak, D.G.; Gwanmesia, G.D.; Falde, D.; Davis, M.G.; Triplett, R.S.; Wang, L. The elastic properties of β-Mg2SiO4 from 295 to 660 K and implications on the composition of Earth’s upper mantle. Phys. Earth Planet Inter. 2007, 162, 22–31. [Google Scholar] [CrossRef]
- Mayama, N.; Suzuki, I.; Saito, T.; Ohno, I.; Katsura, T.; Yoneda, A. Temperature dependence of the elastic moduli of ringwoodite. Phys. Earth Planet Inter. 2005, 148, 353–359. [Google Scholar] [CrossRef]
- Bina, C.R.; Helffrich, G.R. Calculation of elastic properties from thermodynamic equation of state principles. Ann. Rev. Earth Planet Sci. 1992, 20, 527–552. [Google Scholar] [CrossRef]
- Vacher, P.; Mocquet, A.; Sotin, C. Computation of seismic profiles from mineral physics: the importance of the non-olivine components for explaining the 660 km depth discontinuity. Phys. Earth Planet. Inter. 1998, 106, 275–298. [Google Scholar] [CrossRef]
- Katsura, T.; Shatskiy, A.; Geeth, M.A.; Manthilake, M.; Zhai, S.; Fukui, H.; Yamazaki, D.; Matsuzaki, T.; Yoneda, A.; Ito, E.; et al. Thermal expansion of forsterite at high pressures determined by in situ X-ray diffraction: The adiabatic geotherm in the upper mantle. Phys. Earth Planet. Inter. 2009, 174, 86–92. [Google Scholar] [CrossRef]
- Katsura, T.; Yamada, H.; Nishikawa, O.; Song, M.; Kubo, A.; Shinmei, T.; Yokoshi, S.; Aizawa, Y.; Yoshino, T.; Walter, M.J.; et al. Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4. J. Geophys. Res. Solid Earth 2004, 109, B02209. [Google Scholar] [CrossRef]
- Chopelas, A.; Boehler, R. Thermal expansivity in the lower mantle. Geophys Res. Let 1992, 19, 1983–1986. [Google Scholar] [CrossRef]
- Knittle, E.; Jeanloz, R.; Smith, G.L. Thermal expansion of silicate perovskite and stratification of the Earth’s mantle. Nature 1986, 319, 214–216. [Google Scholar] [CrossRef]
- Afonso, J.C.; Ranalli, G.; Fernandez, M. Thermal expansivity and elastic properties of the lithospheric mantle: results from mineral physics of composites. Phys. Earth Planet. Inter. 2005, 149, 279–306. [Google Scholar] [CrossRef]
- Katsura, T.; Yoneda, A.; Yamazaki, D.; Yoshino, T.; Ito, E. Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter. 2010, 183, 212–218. [Google Scholar] [CrossRef]
- Stacey, F.D.; Davis, P.M. Physics of the Earth, 4th ed.; Cambridge University Press: Cambridge, UK, 2008; pp. 348–360. [Google Scholar] [CrossRef]
- Jacobsen, S. Effect of water on the equation of state of nominally anhydrous minerals. Rev. Mineral. Geochem. 2009, 62, 321–342. [Google Scholar] [CrossRef]
- Wood, B.J.; Corgne, A. Mineralogy of the Earth: Trace Elements and Hydrogen in the Earth’s Transition Zone and Lower Mantle. In Treatise on Geophysics, 2nd ed.; Schubert, G., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 61–84. [Google Scholar] [CrossRef]
- Liu, W.; Tian, L.; Zhao, J.; Liu, H.; Liu, L.; Du, J. Water effect on high-pressure elasticity of olivine, wadsleyite and ringwoodite in Mg2SiO4 by first-principles. Int J. Mod. Phys. B 2012, 26, 1250106. [Google Scholar] [CrossRef]
- Mao, Z.; Li, X.Y. Effect of hydration on the elasticity of mantle minerals and its geophysical implications. Sci. China Earth Sci. 2016, 59, 873–888. [Google Scholar] [CrossRef]
- Cammarano, F.; Goes, S.; Vacher, P.; Giardini, D. Inferring upper-mantle temperatures from seismic velocities. Phys. Earth Planet. Inter. 2003, 138, 197–222. [Google Scholar] [CrossRef]
- Green, D.H.; Falloon, T.J. Primary magmas at mid-ocean ridges, hotspots, and other intraplate settings: Constraints on mantle potential temperature. Geol. Soc. Am. Spec. Pap. 2005, 388, 217–247. [Google Scholar] [CrossRef]
- Herzberg, C.; Asimow, P.D.; Arndt, N.; Niu, Y.; Lesher, C.M.; Fitton, J.G.; Cheadle, M.J.; Saunders, A.D. Temperatures in ambient mantle and plumes: Constraints from basalts, picrites, and komatiites. Geochem. Geophys. 2007, 8, Q02006. [Google Scholar] [CrossRef]
- Herzberg, C. Basalts as temperature probes of Earth’s mantle. Geology 2011, 39, 1179–1180. [Google Scholar] [CrossRef] [Green Version]
- Fei, Y.; Bertka, C.M. Phase transitions in the Earth’s mantle and mantle mineralogy. In Mantle Petrology: Field Observations and High-Pressure Experimentation: A Tribute to F. R. Boyd; Fei, Y., Bertka, C.M., Mysen, B.O., Eds.; Geochemical Society: Washington, DC, USA, 1999; pp. 189–208. [Google Scholar]
- Mrosko, M.; Koch-Müller, M.; McCammon, C.; Rhede, D.; Smyth, J.R.; Wirth, R. Water, iron, redox environment: effects on the wadsleyite-ringwoodite phase transition. Contrib. Mineral. Petrol. 2015, 170, 9. [Google Scholar] [CrossRef]
- Hirschmann, M.M. Mantle solidus: Experimental constraints and the effects of peridotite composition. Geochem. Geophys. 2000, 1, 2000GC000070. [Google Scholar] [CrossRef]
- Saxena, N. Exact results for generalized Biot–Gassmann equations for rocks that change in pore shape and grain geometry. Geophys. J. Int. 2015, 203, 1575–1586. [Google Scholar] [CrossRef]
- Kováčik, J. Correlation between Young’s modulus and porosity in porous materials. J. Mater. Sci Lett 2001, 20, 1953–1955. [Google Scholar] [CrossRef]
- Cammarano, F.; Romanowicz, B. Radial profiles of seismic attenuation in the upper mantle based on physical models. Geophys. J. Int. 2008, 175, 116–134. [Google Scholar] [CrossRef] [Green Version]
- Artemieva, I.M.; Billien, M.; Leveque, J.-J.; Mooney, W.D. Shear wave velocity, seismic attenuation, and thermal structure of the continental upper mantle. Geophys. J. Int. 2004, 157, 607–628. [Google Scholar] [CrossRef] [Green Version]
- Chantel, J.; Manthilake, G.; Andrault, D.; Novella, D.; Yu, T.; Wang, Y. Experimental evidence supports mantle partial melting in the asthenosphere. Sci. Adv. 2016, 2, e1600246. [Google Scholar] [CrossRef] [Green Version]
- Langston, C.A. Structure under Mount Rainier, Washington, inferred from teleseismic body waves. J. Geophys. Res. 1979, 84, 4749–4762. [Google Scholar] [CrossRef] [Green Version]
- Vinnik, L.P. Detection of waves converted from P to SV in the mantle. Phys. Earth Planet. Inter. 1977, 15, 39–45. [Google Scholar] [CrossRef]
- Ammon, C.J. The isolation of receiver effects from teleseismic P waveforms. Bull. Seism. Soc. Am. 1991, 81, 2504–2510. [Google Scholar]
- Kind, R.; Kosarev, G.L.; Petersen, N.V. Receiver functions at the stations of the German Regional Seismic Network (GRSN). Geophys. J. Int. 1995, 121, 191–202. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Kanamori, H. Moho depth variation in southern California from teleseismic receiver functions. J. Geophys. Res. 2000, 105, 2969–2980. [Google Scholar] [CrossRef] [Green Version]
- Kennett, B.L.N. Seismic Wave Propagation in Stratified Media; Cambridge University Press: Cambridge, UK, 1983; p. 342. [Google Scholar]
- Clayton, R.W.; Wiggins, R.A. Source shape estimation and deconvolution of teleseismic bodywaves. Geophys J. Royal Astron. Soc. 1976, 47, 151–177. [Google Scholar] [CrossRef] [Green Version]
- Stixrude, L. Structure and sharpness of phase transitions and mantle discontinuities. J. Geophys Res. Solid Earth 1997, 102, 14835–14852. [Google Scholar] [CrossRef]
- Tauzin, B.; Ricard, Y. Seismically deduced thermodynamics phase diagrams for the mantle transition zone. Earth Planet. Sci. Let. 2014, 401, 337–346. [Google Scholar] [CrossRef]
- Kerschhofer, L.; Dupas, C.; Liu, M.; Sharp, T.G.; Durham, W.B.; Rubie, D.C. Polymorphic transformations between olivine, wadsleyite and ringwoodite: mechanisms of intracrystalline nucleation and the role of elastic strain. Mineral. Mag. 1998, 62, 617–638. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Anderson, D.L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 1981, 25, 297–356. [Google Scholar] [CrossRef]
- Kennett, B.L.N.; Engdahl, E.R.; Buland, R. Constraints on seismic velocities in the earth from travel times. Geophys. J. Int. 1995, 122, 108–124. [Google Scholar] [CrossRef]
- Vinnik, L.; Farra, V. S velocity reversal in the mantle transition zone. Geophys. Res. Let. 2006, 33, L18316. [Google Scholar] [CrossRef] [Green Version]
- Vinnik, L.P.; Foulger, G.R.; Du, Z. Seismic boundaries in the mantle beneath Iceland: a new constraint on temperature. Geophys. J. Int. 2005, 160, 533–538. [Google Scholar] [CrossRef] [Green Version]
- Blum, J.; Shen, Y. Thermal, hydrous, and mechanical states of the mantle transition zone beneath southern Africa. Earth Planet Sci. Let. 2004, 217, 367–378. [Google Scholar] [CrossRef]
- Shen, X.; Yuan, X.; Li, X. A ubiquitous low-velocity layer at the base of the mantle transition zone. Geophys. Res. Let. 2014, 41, 836–842. [Google Scholar] [CrossRef] [Green Version]
- Eagar, K.C.; Fouch, M.J.; James, D.E. Receiver function imaging of upper mantle complexity beneath the Pacific Northwest, United States. Earth Planet. Sci. Let. 2010, 297, 141–153. [Google Scholar] [CrossRef]
- Bonatto, L.; Schimmel, M.; Gallart, J.; Morales, J. Studying the 410-km and 660-km discontinuities beneath Spain and Morocco through detection of P-to-S conversions. Geophys J. Int. 2013, 194, 920–935. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Dueker, K.G.; Huang, H.-H. Ps mantle transition zone imaging beneath the Colorado Rocky Mountains: Evidence for an upwelling hydrous mantle. Earth Planet. Sci. Let. 2018, 492, 197–205. [Google Scholar] [CrossRef]
- Wang, Y.; Pavlis, G.L.; Li, M. Heterogeneous distribution of water in the mantle transition zone inferred from wavefield imaging. Earth Planet. Sci. Let. 2019, 505, 42–50. [Google Scholar] [CrossRef]
- Vigneresse, J.L.; Barbey, P.; Cuney, M. Rheological Transitions during partial melting and crystallization with application to felsic magma segregation and transfer. J. Petrol. 1996, 37, 1579–1600. [Google Scholar] [CrossRef]
- Petford, N. Rheology of granitic magmas during ascent and emplacement. Ann. Rev. Earth Planet. Sci. 2003, 31, 399–427. [Google Scholar] [CrossRef] [Green Version]
- Russell, B. A Gassmann-consistent rock physics template. CSEG Recorder 2013, 38, 22–30. [Google Scholar]
- Revenaugh, J.; Sipkin, S.A. Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature 1994, 369, 474–476. [Google Scholar] [CrossRef]
- Fee, D.; Dueker, K. Mantle transition zone topography and structure beneath the Yellowstone hotspot. Geophys Res. Let. 2004, 31, L18603. [Google Scholar] [CrossRef] [Green Version]
- Song, T.R.A.; Helmberger, D.V.; Grand, S.P. Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature 2004, 427, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Jasbinsek, J.; Dueker, K. Ubiquitous low-velocity layer atop the 410-km discontinuity in the northern Rocky Mountains. Geochem. Geophys. 2007, 8, Q10004. [Google Scholar] [CrossRef] [Green Version]
- Courtier, A.M.; Revenaugh, J. Deep upper-mantle melting beneath the Tasman and Coral Seas detected with multiple ScS reverberations. Earth Planet. Sci. Let. 2007, 259, 66–76. [Google Scholar] [CrossRef]
- Schmandt, B.; Dueker, K.G.; Hansen, S.M.; Jasbinsek, J.J.; Zhang, Z. A sporadic low-velocity layer atop the western US mantle transition zone and short-wavelength variations in transition zone discontinuities. Geochem. Geophys. 2011, 12, Q08014. [Google Scholar] [CrossRef] [Green Version]
- Tauzin, B.; Debayle, E.; Wittlinger, G. Seismic evidence for a global low-velocity layer within the Earth’s upper mantle. Nat. Geosci. 2010, 3, 718–721. [Google Scholar] [CrossRef]
Method | Computation | Experiments | ||||
---|---|---|---|---|---|---|
Phase | Olv | Wad | Rin | Olv | Wad | Rin |
KS0 | −6.1 | −8.4 | −8.5 | −3.8–0.4CFe | −12.4–0.5CFe | −11.8 |
G | −3.7 | −6.0 | −7.4 | −2.2–0.52CFe | −9.7–0.5CFe | −5.6–0.9CFe |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fomin, I.; Schiffer, C. Water, Hydrous Melting, and Teleseismic Signature of the Mantle Transition Zone. Geosciences 2019, 9, 505. https://doi.org/10.3390/geosciences9120505
Fomin I, Schiffer C. Water, Hydrous Melting, and Teleseismic Signature of the Mantle Transition Zone. Geosciences. 2019; 9(12):505. https://doi.org/10.3390/geosciences9120505
Chicago/Turabian StyleFomin, Ilya, and Christian Schiffer. 2019. "Water, Hydrous Melting, and Teleseismic Signature of the Mantle Transition Zone" Geosciences 9, no. 12: 505. https://doi.org/10.3390/geosciences9120505
APA StyleFomin, I., & Schiffer, C. (2019). Water, Hydrous Melting, and Teleseismic Signature of the Mantle Transition Zone. Geosciences, 9(12), 505. https://doi.org/10.3390/geosciences9120505