Coupled Zircon-Rutile U-Pb Chronology: LA ICP-MS Dating, Geological Significance and Applications to Sediment Provenance in the Eastern Himalayan-Indo-Burman Region
Abstract
:1. Introduction
2. Rutile Reference Materials for LA ICP-MS U-Pb Dating
3. Contrasting Geological Significance of Coexisting Zircon and Rutile U-Pb Dates
3.1. Retentivity of Radiogenic Pb in Zircon and Rutile
3.2. Coupled Zircon–Rutile U-Pb Chronology Applied to Bedrock Studies
4. Coupled U-Pb Zircon-Rutile Dating Applied to Sediment Provenance in the Eastern Himalayan-Indo-Burman Region
4.1. The Tibet-Himalaya-Indo-Burman Region
4.2. Modern U-Pb Zircon-Rutile Chronology of Eastern Himalayan-Tibet Drainages
4.3. Coupled U-Pb Zircon-Rutile Chronology Applied to Cenozoic Himalayan-Indo-Burman Sediment Repositories
5. Conclusions and Future Directions
Funding
Acknowledgments
Conflicts of Interest
References
- Schoene, B. U-Th-Pb Geochronology. In Treatise on Geochemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 341–378. ISBN 9780080983004. [Google Scholar]
- Parrish, R.R.; Noble, S.R. Zircon U-Th-Pb geochronology by isotope dilution—Thermal ionization mass spectrometry (ID-TIMS). Rev. Mineral. Geochem. 2003, 53, 183–213. [Google Scholar] [CrossRef]
- Mattinson, J.M. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 2005, 220, 47–66. [Google Scholar] [CrossRef]
- Ireland, T.R.; Williams, I.S. Considerations in Zircon Geochronology by SIMS. Rev. Mineral. Geochem. 2003, 53, 215–241. [Google Scholar] [CrossRef]
- Košler, J.; Sylvester, P.J. Present Trends and the Future of Zircon in Geochronology: Laser Ablation ICPMS. Rev. Mineral. Geochem. 2003, 53, 243–275. [Google Scholar] [CrossRef]
- Schaltegger, U.; Schmitt, A.K.; Horstwood, M.S.A. U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chem. Geol. 2015, 402, 89–110. [Google Scholar] [CrossRef]
- Schoene, B.; Condon, D.J.; Morgan, L.; McLean, N. Precision and Accuracy in Geochronology. Elements 2013, 9, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Sylvester, P.J.; Jackson, S.E. A Brief History of Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA–ICP–MS). Elements 2016, 12, 307–310. [Google Scholar] [CrossRef]
- Günther, D.; Koch, J. Formation of aerosols generated by laser ablation and thir impact on elemental fractionation in LA-ICP-MS. In Laser Ablation ICP–MS in the Earth Sciences: Current Practices and Outstanding Issues; Mineralogical Association of Canada: Quebec City, QC, USA, 2008; pp. 19–34. ISBN 0921294492. [Google Scholar]
- Paton, C.; Woodhead, J.D.; Hellstrom, J.C.; Hergt, J.M.; Greig, A.; Maas, R. Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem. Geophys. Geosyst. 2010, 11. [Google Scholar] [CrossRef]
- Ver Hoeve, T.J.; Scoates, J.S.; Wall, C.J.; Weis, D.; Amini, M. Evaluating downhole fractionation corrections in LA-ICP-MS U-Pb zircon geochronology. Chem. Geol. 2018, 483, 201–217. [Google Scholar] [CrossRef]
- Košler, J.; Sláma, J.; Belousova, E.; Corfu, F.; Gehrels, G.E.; Gerdes, A.; Horstwood, M.S.A.; Sircombe, K.N.; Sylvester, P.J.; Tiepolo, M.; et al. U-Pb Detrital Zircon Analysis – Results of an Inter-laboratory Comparison. Geostand. Geoanalytical Res. 2013, 37, 243–259. [Google Scholar] [CrossRef]
- Woodhead, J.D.; Horstwood, M.S.A.; Cottle, J.M. Advances in Isotope Ratio Determination by LA–ICP–MS. Elements 2016, 12, 317–322. [Google Scholar] [CrossRef]
- Horstwood, M.S.A.; Košler, J.; Gehrels, G.; Jackson, S.E.; McLean, N.M.; Paton, C.; Pearson, N.J.; Sircombe, K.; Sylvester, P.; Vermeesch, P.; et al. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting. Geostand. Geoanalytical Res. 2016, 40, 311–332. [Google Scholar] [CrossRef]
- Harley, S.L.; Kelly, N.M. Zircon Tiny but Timely. Elements 2007, 3, 13–18. [Google Scholar] [CrossRef]
- Hoskin, P.W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Hanchar, J.M.; Miller, C.F. Zircon zonation patterns as revealed by cathodoluminescence and backscattered electron images: Implications for interpretation of complex crustal histories. Chem. Geol. 1993, 110, 1–13. [Google Scholar] [CrossRef]
- Kempe, U.; Gruner, T.; Nasdala, L.; Wolf, D. Relevance of Cathodoluminescence for the Interpretation of U-Pb Zircon Ages, with an Example of an Application to a Study of Zircons from the Saxonian Granulite Complex, Germany BT - Cathodoluminescence in Geosciences. In Cathodoluminescence in Geosciences; Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 415–455. ISBN 978-3-662-04086-7. [Google Scholar]
- Rubatto, D.; Gebauer, D. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In Cathodoluminescence in Geosciences; Pagel, M., Barbin, V., Blanc, P., Ohnenstetter, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2000; pp. 373–400. ISBN 978-3-662-04086-7. [Google Scholar]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of Zircon Textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Feng, R.; Machado, N.; Ludden, J. Lead geochronology of zircon by LaserProbe-inductively coupled plasma mass spectrometry (LP-ICPMS). Geochim. Cosmochim. Acta 1993, 57, 3479–3486. [Google Scholar] [CrossRef]
- Fryer, B.J.; Jackson, S.E.; Longerich, H.P. The application of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to in situ (U)Pb geochronology. Chem. Geol. 1993, 109, 1–8. [Google Scholar] [CrossRef]
- Hirata, T.; Nesbitt, R.W. U-Pb isotope geochronology of zircon: evaluation of the laser probe-inductively coupled plasma mass spectrometry technique. Geochim. Cosmochim. Acta 1995, 59, 2491–2500. [Google Scholar] [CrossRef]
- Engi, M.; Lanari, P.; Kohn, M.J. Significant Ages—An Introduction to Petrochronology. Rev. Mineral. Geochem. 2017, 83, 1–12. [Google Scholar] [CrossRef]
- Kylander-Clark, A.R.C.; Hacker, B.R.; Cottle, J.M. Laser-ablation split-stream ICP petrochronology. Chem. Geol. 2013, 345, 99–112. [Google Scholar] [CrossRef]
- Meinhold, G. Rutile and its applications in earth sciences. Earth-Sci. Rev. 2010, 102, 1–28. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Barth, M.; Horn, I.; McDonough, W.F. Rutile-Bearing Refractory Eclogites: Missing Link Between Continents and Depleted Mantle. Science (80-.) 2000, 287, 278–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zack, T.; Stockli, D.F.; Luvizotto, G.L.; Barth, M.G.; Belousova, E.; Wolfe, M.R.; Hinton, R.W. In situ U--Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contrib. Mineral. Petrol. 2011, 162, 515–530. [Google Scholar] [CrossRef]
- Zack, T.; Kooijman, E. Petrology and Geochronology of Rutile. Rev. Mineral. Geochem. 2017, 83, 443–467. [Google Scholar] [CrossRef]
- Zack, T.; Moraes, R.; Kronz, A. Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contrib. Mineral. Petrol. 2004, 148, 471–488. [Google Scholar] [CrossRef]
- Watson, E.B.; Wark, D.A.; Thomas, J.B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 2006, 151, 413. [Google Scholar] [CrossRef]
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Tomkins, H.S.; Powell, R.; Ellis, D.J. The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol. 2007, 25, 703–713. [Google Scholar] [CrossRef]
- Watson, E.B.; Harrison, T.M. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science (80-.) 2005, 308, 841–844. [Google Scholar] [CrossRef] [Green Version]
- Kooijman, E.; Smit, M.A.; Mezger, K.; Berndt, J. Trace element systematics in granulite facies rutile: implications for Zr geothermometry and provenance studies. J. Metamorph. Geol. 2012, 30, 397–412. [Google Scholar] [CrossRef]
- Blackburn, T.; Shimizu, N.; Bowring, S.A.; Schoene, B.; Mahan, K.H. Zirconium in rutile speedometry: New constraints on lower crustal cooling rates and residence temperatures. Earth Planet. Sci. Lett. 2012, 317–318, 231–240. [Google Scholar] [CrossRef]
- Siégel, C.; Bryan, S.E.; Allen, C.M.; Gust, D.A. Use and abuse of zircon-based thermometers: A critical review and a recommended approach to identify antecrystic zircons. Earth-Sci. Rev. 2018, 176, 87–116. [Google Scholar] [CrossRef]
- Cruz-Uribe, A.M.; Feineman, M.D.; Zack, T.; Jacob, D.E. Assessing trace element (dis)equilibrium and the application of single element thermometers in metamorphic rocks. Lithos 2018, 314–315, 1–15. [Google Scholar] [CrossRef]
- Andò, S.; Garzanti, E.; Padoan, M.; Limonta, M. Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sediment. Geol. 2012, 280, 165–178. [Google Scholar] [CrossRef]
- Deer, W.A.; Howie, R.A.; Zussman, J. An Introduction to the Rock-Forming Minerals; Mineralogical Society of Great Britain and Ireland: London, UK, 2013; ISBN 10 9780903056274; ISBN 13 9780903056434. [Google Scholar]
- Axelsson, E.; Pape, J.; Berndt, J.; Corfu, F.; Mezger, K.; Raith, M.M. Rutile R632—A New Natural Reference Material for U-Pb and Zr Determination. Geostand. Geoanalytical Res. 2018, 42, 319–338. [Google Scholar] [CrossRef]
- Bracciali, L.; Najman, Y.; Parrish, R.R.; Akhter, S.H.; Millar, I. The Brahmaputra tale of tectonics and erosion: Early Miocene river capture in the Eastern Himalaya. Earth Planet. Sci. Lett. 2015, 415, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, K.R.; Cooper, J.A. Geochronology of Precambrian granites and associated U-Ti-Th mineralization, northern Olary province, South Australia. Contrib. Mineral. Petrol. 1984, 86, 298–308. [Google Scholar] [CrossRef]
- Corfu, F.; Andrews, A.J. A U–Pb age for mineralized Nipissing diabase, Gowganda, Ontario. Can. J. Earth Sci. 1986, 23, 107–109. [Google Scholar] [CrossRef]
- Schärer, U.; Krogh, T.E.; Gower, C.F. Age and evolution of the Grenville Province in eastern Labrador from U-Pb systematics in accessory minerals. Contrib. Mineral. Petrol. 1986, 94, 438–451. [Google Scholar] [CrossRef]
- Mezger, K.; Hanson, G.N.; Bohlen, S.R. High-precision UPb ages of metamorphic rutile: application to the cooling history of high-grade terranes. Earth Planet. Sci. Lett. 1989, 96, 106–118. [Google Scholar] [CrossRef]
- Corfu, F.; Muir, T.L. The Hemlo-Heron Bay greenstone belt and Hemlo Au-Mo deposit, Superior Province, Ontario, Canada 2. Timing of metamorphism, alteration and Au mineralization from titanite, rutile, and monazite U-Pb geochronology. Chem. Geol. Isot. Geosci. Sect. 1989, 79, 201–223. [Google Scholar] [CrossRef]
- Cox, R.A.; Indares, A.; Dunning, G.R. Temperature–time paths in the high-P Manicouagan Imbricate zone, eastern Grenville Province: Evidence for two metamorphic events. Precambrian Res. 2002, 117, 225–250. [Google Scholar] [CrossRef]
- Schmitz, M.D.; Bowring, S.A. Constraints on the thermal evolution of continental lithosphere from U-Pb accessory mineral thermochronometry of lower crustal xenoliths, southern Africa. Contrib. Mineral. Petrol. 2003, 144, 592–618. [Google Scholar] [CrossRef]
- Rocchi, S.; Bracciali, L.; Di Vincenzo, G.; Gemelli, M.; Ghezzo, C. Arc accretion to the early Paleozoic Antarctic margin of Gondwana in Victoria Land. Gondwana Res. 2011, 19, 594–607. [Google Scholar] [CrossRef]
- Li, Q.; Li, S.; Zheng, Y.-F.; Li, H.; Massonne, H.J.; Wang, Q. A high precision U–Pb age of metamorphic rutile in coesite-bearing eclogite from the Dabie Mountains in central China: a new constraint on the cooling history. Chem. Geol. 2003, 200, 255–265. [Google Scholar] [CrossRef]
- Baldwin, J.A.; Bowring, S.A.; Williams, M.L.; Williams, I.S. Eclogites of the Snowbird tectonic zone: petrological and U-Pb geochronological evidence for Paleoproterozoic high-pressure metamorphism in the western Canadian Shield. Contrib. Mineral. Petrol. 2004, 147, 528–548. [Google Scholar] [CrossRef]
- Flowers, R.M.; Bowring, S.A.; Tulloch, A.J.; Klepeis, K.A. Tempo of burial and exhumation within the deep roots of a magmatic arc, Fiordland, New Zealand. Geology 2005, 33, 17–20. [Google Scholar] [CrossRef]
- Kylander-Clark, A.R.C.; Hacker, B.R.; Mattinson, J.M. Slow exhumation of UHP terranes: Titanite and rutile ages of the Western Gneiss Region, Norway. Earth Planet. Sci. Lett. 2008, 272, 531–540. [Google Scholar] [CrossRef]
- Clark, D.J.; Hensen, B.J.; Kinny, P.D. Geochronological constraints for a two-stage history of the Albany–Fraser Orogen, Western Australia. Precambrian Res. 2000, 102, 155–183. [Google Scholar] [CrossRef]
- Vry, J.K.; Baker, J.A. LA-MC-ICPMS Pb–Pb dating of rutile from slowly cooled granulites: Confirmation of the high closure temperature for Pb diffusion in rutile. Geochim. Cosmochim. Acta 2006, 70, 1807–1820. [Google Scholar] [CrossRef]
- Storey, C.D.; Smith, M.P.; Jeffries, T.E. In situ LA-ICP-MS U–Pb dating of metavolcanics of Norrbotten, Sweden: Records of extended geological histories in complex titanite grains. Chem. Geol. 2007, 240, 163–181. [Google Scholar] [CrossRef]
- Luvizotto, G.L.; Zack, T.; Meyer, H.P.; Ludwig, T.; Triebold, S.; Kronz, A.; Münker, C.; Stockli, D.F.; Prowatke, S.; Klemme, S.; et al. Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem. Geol. 2009, 261, 346–369. [Google Scholar] [CrossRef]
- Bracciali, L.; Parrish, R.R.; Horstwood, M.S.A.; Condon, D.J.; Najman, Y. U-Pb LA-(MC)-ICP-MS dating of rutile: New reference materials and applications to sedimentary provenance. Chem. Geol. 2013, 347, 82–101. [Google Scholar] [CrossRef]
- Chew, D.M.; Petrus, J.A.; Kamber, B.S. U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chem. Geol. 2014, 363, 185–199. [Google Scholar] [CrossRef]
- Paton, C.; Hellstrom, J.; Paul, B.; Woodhead, J.; Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 2011, 26, 2508–2518. [Google Scholar] [CrossRef]
- Schmitt, A.K.; Zack, T. High-sensitivity U–Pb rutile dating by secondary ion mass spectrometry (SIMS) with an O2+ primary beam. Chem. Geol. 2012, 332–333, 65–73. [Google Scholar] [CrossRef]
- Dodson, M.H. Closure temperature in cooling geochronological and petrological systems. Contrib. Mineral. Petrol. 1973, 40, 259–274. [Google Scholar] [CrossRef]
- Dodson, M.H. Closure Profiles in Cooling Systems. Mater. Sci. Forum 1986, 7, 145–154. [Google Scholar]
- Reiners, P.W.; Ehlers, T.A.; Zeitler, P.K. Past, Present, and Future of Thermochronology. Rev. Mineral. Geochemistry 2005, 58, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Heaman, L.; Parrish, R.R. U-Pb geochronology of accessory minerals. In Applications of Radiogenic Isotope Systems to Problems in Geology, Short Course Handbook, 19; Heaman, L., Ludden, J.N., Eds.; Mineralogical Association of Canada: Quebec City, QC, Canada, 1991; pp. 59–102. [Google Scholar]
- Parrish, R.R. The response of mineral chronometers to metamorphism and deformation in orogenic belts. Geol. Soc. Lond. Spec. Publ. 2001, 184, 289–301. [Google Scholar] [CrossRef] [Green Version]
- Hodges, K. V 3.08—Geochronology and Thermochronology in Orogenic Systems. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Pergamon: Oxford, UK, 2003; pp. 263–292. ISBN 978-0-08-043751-4. [Google Scholar]
- Schaltegger, U.; Davies, J.H.F.L. Petrochronology of Zircon and Baddeleyite in Igneous Rocks: Reconstructing Magmatic Processes at High Temporal Resolution. Rev. Mineral. Geochem. 2017, 83, 297–328. [Google Scholar] [CrossRef]
- Kohn, M.J.; Corrie, S.L.; Markley, C. The fall and rise of metamorphic zircon. Am. Mineral. 2015, 100, 897–908. [Google Scholar] [CrossRef] [Green Version]
- Rubatto, D. Zircon: The Metamorphic Mineral. Rev. Mineral. Geochem. 2017, 83, 261–295. [Google Scholar] [CrossRef]
- Schaltegger, U. Hydrothermal Zircon. Elements 2007, 3, 51–79. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Watson, E.B. Pb diffusion in zircon. Chem. Geol. 2001, 172, 5–24. [Google Scholar] [CrossRef]
- Cherniak, D.J.; Watson, E.B. Diffusion in Zircon. Rev. Mineral. Geochem. 2003, 53, 113–143. [Google Scholar] [CrossRef]
- Cherniak, D.J. Pb diffusion in rutile. Contrib. Mineral. Petrol. 2000, 139, 198–207. [Google Scholar] [CrossRef]
- Smye, A.J.; Marsh, J.H.; Vermeesch, P.; Garber, J.M.; Stockli, D.F. Applications and limitations of U-Pb thermochronology to middle and lower crustal thermal histories. Chem. Geol. 2018, 494, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kooijman, E.; Mezger, K.; Berndt, J. Constraints on the U–Pb systematics of metamorphic rutile from in situ LA-ICP-MS analysis. Earth Planet. Sci. Lett. 2010, 293, 321–330. [Google Scholar] [CrossRef]
- Hodges, K.V.; Harries, W.E.; Bowring, S.A. 40Ar/39Ar age gradients in micas from a high-temperature-low-pressure metamorphic terrain: Evidence for very slow cooling and implications for the interpretation of age spectra. Geology 1994, 22, 55–58. [Google Scholar] [CrossRef]
- Blackburn, T.; Bowring, S.A.; Schoene, B.; Mahan, K.; Dudas, F. U-Pb thermochronology: creating a temporal record of lithosphere thermal evolution. Contrib. Mineral. Petrol. 2011, 162, 479–500. [Google Scholar] [CrossRef]
- Smye, A.J.; Stockli, D.F. Rutile U–Pb age depth profiling: A continuous record of lithospheric thermal evolution. Earth Planet. Sci. Lett. 2014, 408, 171–182. [Google Scholar] [CrossRef]
- Villa, I.M. Diffusion in mineral geochronometers: Present and absent. Chem. Geol. 2016, 420, 1–10. [Google Scholar] [CrossRef]
- Rösel, D.; Zack, T.; Boger, S.D. LA-ICP-MS U–Pb dating of detrital rutile and zircon from the Reynolds Range: A window into the Palaeoproterozoic tectonosedimentary evolution of the North Australian Craton. Precambrian Res. 2014, 255, 381–400. [Google Scholar] [CrossRef]
- Ewing, T.A.; Rubatto, D.; Beltrando, M.; Hermann, J. Constraints on the thermal evolution of the Adriatic margin during Jurassic continental break-up: U--Pb dating of rutile from the Ivrea—Verbano Zone, Italy. Contrib. Mineral. Petrol. 2015, 169, 44. [Google Scholar] [CrossRef]
- Bracciali, L.; Parrish, R.R.; Najman, Y.; Smye, A.; Carter, A.; Wijbrans, J.R. Plio-Pleistocene exhumation of the eastern Himalayan syntaxis and its domal ‘pop-up’. Earth-Sci. Rev. 2016, 160. [Google Scholar] [CrossRef]
- Flowers, R.M.; Mahan, K.H.; Bowring, S.A.; Williams, M.L.; Pringle, M.S.; Hodges, K. V Multistage exhumation and juxtaposition of lower continental crust in the western Canadian Shield: Linking high-resolution U-Pb and 40Ar/39Ar thermochronometry with pressure-temperature-deformation paths. Tectonics 2006, 25. [Google Scholar] [CrossRef]
- Schoene, B.; Bowring, S.A. Determining accurate temperature–time paths from U–Pb thermochronology: An example from the Kaapvaal craton, southern Africa. Geochim. Cosmochim. Acta 2007, 71, 165–185. [Google Scholar] [CrossRef]
- Seymour, N.M.; Stockli, D.F.; Beltrando, M.; Smye, A.J. Tracing the thermal evolution of the Corsican lower crust during Tethyan rifting. Tectonics 2016, 35, 2439–2466. [Google Scholar] [CrossRef]
- Blackburn, T.J.; Bowring, S.A.; Perron, J.T.; Mahan, K.H.; Dudas, F.O.; Barnhart, K.R. An Exhumation History of Continents over Billion-Year Time Scales. Science (80-.) 2012, 335, 73–76. [Google Scholar] [CrossRef]
- Smye, A.J.; Lavier, L.L.; Zack, T.; Stockli, D.F. Episodic heating of continental lower crust during extension: A thermal modeling investigation of the Ivrea-Verbano Zone. Earth Planet. Sci. Lett. 2019, 521, 158–168. [Google Scholar] [CrossRef]
- Baldwin, J.A.; Bowring, S.A.; Williams, M.L.; Mahan, K.H. Geochronological constraints on the evolution of high-pressure felsic granulites from an integrated electron microprobe and ID-TIMS geochemical study. Lithos 2006, 88, 173–200. [Google Scholar] [CrossRef]
- Najman, Y.; Bracciali, L.; Parrish, R.R.; Chisty, E.; Copley, A. Evolving strain partitioning in the Eastern Himalaya: The growth of the Shillong Plateau. Earth Planet. Sci. Lett. 2016, 433, 1–9. [Google Scholar] [CrossRef]
- Mahan, K.H.; Williams, M.L.; Flowers, R.M.; Jercinovic, M.J.; Baldwin, J.A.; Bowring, S.A. Geochronological constraints on the Legs Lake shear zone with implications for regional exhumation of lower continental crust, western Churchill Province, Canadian Shield. Contrib. Mineral. Petrol. 2006, 152, 223–242. [Google Scholar] [CrossRef]
- Martel, E.; van Breemen, O.; Berman, R.G.; Pehrsson, S. Geochronology and tectonometamorphic history of the Snowbird Lake area, Northwest Territories, Canada: New insights into the architecture and significance of the Snowbird tectonic zone. Precambrian Res. 2008, 161, 201–230. [Google Scholar] [CrossRef]
- Dumond, G.; McLean, N.; Williams, M.L.; Jercinovic, M.J.; Bowring, S.A. High-resolution dating of granite petrogenesis and deformation in a lower crustal shear zone: Athabasca granulite terrane, western Canadian Shield. Chem. Geol. 2008, 254, 175–196. [Google Scholar] [CrossRef]
- Flowers, R.M.; Bowring, S.A.; Mahan, K.H.; Williams, M.L.; Williams, I.S. Stabilization and reactivation of cratonic lithosphere from the lower crustal record in the western Canadian shield. Contrib. Mineral. Petrol. 2008, 156, 529. [Google Scholar] [CrossRef]
- Hoffman, P.F. United Plates of America, The Birth of a Craton: Early Proterozoic Assembly and Growth of Laurentia. Annu. Rev. Earth Planet. Sci. 1988, 16, 543–603. [Google Scholar] [CrossRef]
- St-Onge, M.R.; Scott, D.J.; Wodicka, N. Terrane boundaries within Trans-Hudson Orogen (Quebec–Baffin segment), Canada: changing structural and metamorphic character from foreland to hinterland. Precambrian Res. 2001, 107, 75–91. [Google Scholar] [CrossRef]
- St-Onge, M.R.; Wodicka, N.; Lucas, S.B. Granulite and amphibolite facies metamorpism in a convergent plate margin setting: synthesis of the Quebec-Baffin segment of the Trans-Hudson Orogen. Can. Mineral. 2000, 38, 379–398. [Google Scholar] [CrossRef]
- Parrish, R.R. U-Pb geochronology of the Cape Smith Belt and Sugluk block, northern Quebec. Geosci. Can. 1989, 16, 126–130. [Google Scholar]
- Burg, J.-P.; Davy, P.; Nievergelt, P.; Oberli, F.; Seward, D.; Diao, Z.; Meier, M. Exhumation during crustal folding in the Namche-Barwa syntaxis. Terra Nov. 1997, 9, 53–56. [Google Scholar] [CrossRef]
- Seward, D.; Burg, J.-P. Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge: Constraints from structural and thermochronological data. Tectonophysics 2008, 451, 282–289. [Google Scholar] [CrossRef]
- Finnegan, N.J.; Hallet, B.; Montgomery, D.R.; Zeitler, P.K.; Stone, J.O.; Anders, A.M.; Yuping, L. Coupling of rock uplift and river incision in the Namche Barwa–Gyala Peri massif, Tibet. GSA Bull. 2008, 120, 142–155. [Google Scholar] [CrossRef]
- Stewart, R.J.; Hallet, B.; Zeitler, P.K.; Malloy, M.A.; Allen, C.M.; Trippett, D. Brahmaputra sediment flux dominated by highly localized rapid erosion from the easternmost Himalaya. Geology 2008, 36, 711–714. [Google Scholar] [CrossRef]
- Booth, A.L.; Chamberlain, C.P.; Kidd, W.S.F.; Zeitler, P.K. Constraints on the metamorphic evolution of the eastern Himalayan syntaxis from geochronologic and petrologic studies of Namche BarwaConstraints on the metamorphic evolution of the eastern Himalayan syntaxis. GSA Bull. 2009, 121, 385–407. [Google Scholar] [CrossRef]
- Enkelmann, E.; Ehlers, T.A.; Zeitler, P.K.; Hallet, B. Denudation of the Namche Barwa antiform, eastern Himalaya. Earth Planet. Sci. Lett. 2011, 307, 323–333. [Google Scholar] [CrossRef]
- Zeitler, P.K.; Meltzer, A.S.; Brown, L.; Kidd, W.S.F.; Lim, C.; Enkelmann, E. Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block, Tibet. In Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau; Nie, J., Horton, B.K., Hoke, G.D., Eds.; Geological Society of America: Boulder, CO, USA, 2014; Volume 507, pp. 23–58. ISBN 9780813725079. [Google Scholar]
- King, G.E.; Herman, F.; Guralnik, B. Northward migration of the eastern Himalayan syntaxis revealed by OSL thermochronometry. Science (80-.) 2016, 353, 800–804. [Google Scholar] [CrossRef]
- Blum, M.; Rogers, K.; Gleason, J.; Najman, Y.; Cruz, J.; Fox, L. Allogenic and Autogenic Signals in the Stratigraphic Record of the Deep-Sea Bengal Fan. Sci. Rep. 2018, 8, 7973. [Google Scholar] [CrossRef]
- Govin, G.; Najman, Y.; Copley, A.; Millar, I.; van der Beek, P.; Huyghe, P.; Grujic, D.; Davenport, J. Timing and mechanism of the rise of the Shillong Plateau in the Himalayan foreland. Geology 2018, 46, 279–282. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Najman, Y.; Mei, L.; Millar, I.; Sobel, E.R.; Carter, A.; Barfod, D.; Dhuime, B.; Garzanti, E.; Govin, G.; et al. Palaeodrainage evolution of the large rivers of East Asia, and Himalayan-Tibet tectonics. Earth-Sci. Rev. 2019, 192, 601–630. [Google Scholar] [CrossRef]
- Najman, Y.; Mark, C.; Barfod, D.N.; Carter, A.; Parrish, R.; Chew, D.; Gemignani, L. Spatial and temporal trends in exhumation of the Eastern Himalaya and syntaxis as determined from a multitechnique detrital thermochronological study of the Bengal Fan. GSA Bull. 2019, 131, 1607–1622. [Google Scholar] [CrossRef]
- Warren, C.J.; Grujic, D.; Cottle, J.M.; Rogers, N.W. Constraining cooling histories: rutile and titanite chronology and diffusion modelling in NW Bhutan. J. Metamorph. Geol. 2012, 30, 113–130. [Google Scholar] [CrossRef]
- Handy, M.R.; Franz, L.; Heller, F.; Janott, B.; Zurbriggen, R. Multistage accretion and exhumation of the continental crust (Ivrea crustal section, Italy and Switzerland). Tectonics 1999, 18, 1154–1177. [Google Scholar] [CrossRef] [Green Version]
- Vavra, G.; Schmid, R.; Gebauer, D. Internal morphology, habit and U-Th-Pb microanalysis of amphibolite-to-granulite facies zircons: geochronology of the Ivrea Zone (Southern Alps). Contrib. Mineral. Petrol. 1999, 134, 380–404. [Google Scholar] [CrossRef]
- Ewing, T.A.; Hermann, J.; Rubatto, D. The robustness of the Zr-in-rutile and Ti-in-zircon thermometers during high-temperature metamorphism (Ivrea-Verbano Zone, northern Italy). Contrib. Mineral. Petrol. 2013, 165, 757–779. [Google Scholar] [CrossRef]
- Harrison, T.M.; Copeland, P.; Kidd, W.S.F.; Yin, A.N. Raising Tibet. Science (80-.) 1992, 255, 1663–1670. [Google Scholar] [CrossRef] [Green Version]
- Reiners, P.W. Zircon (U-Th)/He Thermochronometry. Rev. Mineral. Geochem. 2005, 58, 151–179. [Google Scholar] [CrossRef]
- Parrish, R.R.; Hodges, V. Isotopic constraints on the age and provenance of the Lesser and Greater Himalayan sequences, Nepalese Himalaya. GSA Bull. 1996, 108, 904–911. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Gehrels, G.E.; Quade, J.; LaReau, B.; Spurlin, M. Tectonic Implications of U-Pb Zircon Ages of the Himalayan Orogenic Belt in Nepal. Science (80-.) 2000, 288, 497–499. [Google Scholar] [CrossRef]
- Najman, Y. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth-Sci. Rev. 2006, 74, 1–72. [Google Scholar] [CrossRef]
- Grujic, D.; Coutand, I.; Bookhagen, B.; Bonnet, S.; Blythe, A.; Duncan, C. Climatic forcing of erosion, landscape, and tectonics in the Bhutan Himalayas. Geology 2006, 34, 801–804. [Google Scholar] [CrossRef]
- Zeitler, P.K.; Koons, P.O.; Bishop, M.P.; Chamberlain, C.P.; Craw, D.; Edwards, M.A.; Hamidullah, S.; Jan, M.Q.; Khan, M.A.; Khattak, M.U.K.; et al. Crustal reworking at Nanga Parbat, Pakistan: Metamorphic consequences of thermal-mechanical coupling facilitated by erosion. Tectonics 2001, 20, 712–728. [Google Scholar] [CrossRef]
- Gehrels, G.; Kapp, P.; DeCelles, P.; Pullen, A.; Blakey, R.; Weislogel, A.; Ding, L.; Guynn, J.; Martin, A.; McQuarrie, N.; et al. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 2011, 30. [Google Scholar] [CrossRef]
- Hodges, K. V Tectonics of the Himalaya and southern Tibet from two perspectives. GSA Bull. 2000, 112, 324–350. [Google Scholar] [CrossRef]
- Hu, X.; Garzanti, E.; Wang, J.; Huang, W.; An, W.; Webb, A. The timing of India-Asia collision onset – Facts, theories, controversies. Earth-Sci. Rev. 2016, 160, 264–299. [Google Scholar] [CrossRef]
- Najman, Y.; Jenks, D.; Godin, L.; Boudagher-Fadel, M.; Millar, I.; Garzanti, E.; Horstwood, M.; Bracciali, L. The Tethyan Himalayan detrital record shows that India–Asia terminal collision occurred by 54 Ma in the Western Himalaya. Earth Planet. Sci. Lett. 2017, 459. [Google Scholar] [CrossRef]
- Allen, R.; Najman, Y.; Carter, A.; Barfod, D.; Bickle, M.J.; Chapman, H.J.; Garzanti, E.; Vezzoli, G.; Ando, S.; Parrish, R.R. Provenance of the Tertiary sedimentary rocks of the Indo-Burman Ranges, Burma (Myanmar): Burman arc or Himalayan-derived? J. Geol. Soc. Lond. 2008, 165, 1045–1057. [Google Scholar] [CrossRef]
- Maurin, T.; Rangin, C. Structure and kinematics of the Indo-Burmese Wedge: Recent and fast growth of the outer wedge. Tectonics 2009, 28. [Google Scholar] [CrossRef]
- Licht, A.; Dupont-Nivet, G.; Win, Z.; Swe, H.H.; Kaythi, M.; Roperch, P.; Ugrai, T.; Littell, V.; Park, D.; Westerweel, J.; et al. Paleogene evolution of the Burmese forearc basin and implications for the history of India-Asia convergence. GSA Bull. 2018, 131, 730–748. [Google Scholar] [CrossRef]
- Galy, A.; France-Lanord, C. Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes. Geology 2001, 29, 23–26. [Google Scholar] [CrossRef]
- Vermeesch, P. Quantitative geomorphology of the White Mountains (California) using detrital apatite fission track thermochronology. J. Geophys. Res. Earth Surf. 2007, 112. [Google Scholar] [CrossRef]
- Cawood, P.A.; Johnson, M.R.W.; Nemchin, A.A. Early Palaeozoic orogenesis along the Indian margin of Gondwana: Tectonic response to Gondwana assembly. Earth Planet. Sci. Lett. 2007, 255, 70–84. [Google Scholar] [CrossRef]
- Harrison, T.M.; Zeitler, P.K. Fundamentals of Noble Gas Thermochronometry. Rev. Mineral. Geochemistry 2005, 58, 123–149. [Google Scholar] [CrossRef]
- Carrapa, B. Resolving tectonic problems by dating detrital minerals. Geology 2010, 38, 191–192. [Google Scholar] [CrossRef]
- Henderson, A.L.; Najman, Y.; Parrish, R.; Mark, D.F.; Foster, G.L. Constraints to the timing of India–Eurasia collision; a re-evaluation of evidence from the Indus Basin sedimentary rocks of the Indus–Tsangpo Suture Zone, Ladakh, India. Earth-Sci. Rev. 2011, 106, 265–292. [Google Scholar] [CrossRef]
- Lang, K.A.; Huntington, K.W.; Burmester, R.; Housen, B. Rapid exhumation of the eastern Himalayan syntaxis since the late Miocene. GSA Bull. 2016, 128, 1403–1422. [Google Scholar] [CrossRef]
- Gemignani, L.; van der Beek, P.A.; Braun, J.; Najman, Y.; Bernet, M.; Garzanti, E.; Wijbrans, J.R. Downstream evolution of the thermochronologic age signal in the Brahmaputra catchment (eastern Himalaya): Implications for the detrital record of erosion. Earth Planet. Sci. Lett. 2018, 499, 48–61. [Google Scholar] [CrossRef]
- Kohn, M.J. Himalayan Metamorphism and Its Tectonic Implications. Annu. Rev. Earth Planet. Sci. 2014, 42, 381–419. [Google Scholar] [CrossRef]
- Guo, Z.; Wilson, M. The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting. Gondwana Res. 2012, 22, 360–376. [Google Scholar] [CrossRef]
- Guo, Z.; Wilson, M. Late Oligocene–early Miocene transformation of postcollisional magmatism in Tibet. Geology 2019, 47, 776–780. [Google Scholar] [CrossRef]
- Mitchell, A.; Chung, S.-L.; Oo, T.; Lin, T.-H.; Hung, C.-H. Zircon U–Pb ages in Myanmar: Magmatic–metamorphic events and the closure of a neo-Tethys ocean? J. Asian Earth Sci. 2012, 56, 1–23. [Google Scholar] [CrossRef]
- Gardiner, N.J.; Searle, M.P.; Morley, C.K.; Robb, L.J.; Whitehouse, M.J.; Roberts, N.M.W.; Kirkland, C.L.; Spencer, C.J. The crustal architecture of Myanmar imaged through zircon U-Pb, Lu-Hf and O isotopes: Tectonic and metallogenic implications. Gondwana Res. 2018, 62, 27–60. [Google Scholar] [CrossRef]
- Ji, W.-Q.; Wu, F.-Y.; Chung, S.-L.; Li, J.-X.; Liu, C.-Z. Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chem. Geol. 2009, 262, 229–245. [Google Scholar] [CrossRef]
- Ji, W.-Q.; Wu, F.-Y.; Liu, X.-C.; Liu, Z.-C.; Zhang, C.; Liu, T.; Wang, J.-G.; Paterson, S.R. Pervasive Miocene melting of thickened crust from the Lhasa terrane to Himalaya, southern Tibet and its constraint on generation of Himalayan leucogranite. Geochim. Cosmochim. Acta 2019. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.-C.; Wang, J.-M.; Wu, F.-Y. Is Himalayan leucogranite a product by in situ partial melting of the Greater Himalayan Crystalline? A comparative study of leucosome and leucogranite from Nyalam, southern Tibet. Lithos 2019, 342–343, 542–556. [Google Scholar] [CrossRef]
- France-Lanord, C.; Spiess, V.; Klaus, A.; Schwenk, T.; Schwenk, T.; The Expedition 354 Scientists. Expedition 354 summary. Proc. Int. Ocean Discov. Progr. 2016, 354, 1–35. [Google Scholar]
- Cochrane, R.; Spikings, R.A.; Chew, D.; Wotzlaw, J.-F.; Chiaradia, M.; Tyrrell, S.; Schaltegger, U.; Van der Lelij, R. High temperature (>350 °C) thermochronology and mechanisms of Pb loss in apatite. Geochim. Cosmochim. Acta 2014, 127, 39–56. [Google Scholar] [CrossRef]
- Frei, R.; Villa, I.M.; Nägler, T.F.; Kramers, J.D.; Przybylowicz, W.J.; Prozesky, V.M.; Hofmann, B.A.; Kamber, B.S. Single mineral dating by the PbPb step-leaching method: Assessing the mechanisms. Geochim. Cosmochim. Acta 1997, 61, 393–414. [Google Scholar] [CrossRef]
- Kramers, J.; Frei, R.; Newville, M.; Kober, B.; Villa, I. On the valency state of radiogenic lead in zircon and its consequences. Chem. Geol. 2009, 261, 4–11. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bracciali, L. Coupled Zircon-Rutile U-Pb Chronology: LA ICP-MS Dating, Geological Significance and Applications to Sediment Provenance in the Eastern Himalayan-Indo-Burman Region. Geosciences 2019, 9, 467. https://doi.org/10.3390/geosciences9110467
Bracciali L. Coupled Zircon-Rutile U-Pb Chronology: LA ICP-MS Dating, Geological Significance and Applications to Sediment Provenance in the Eastern Himalayan-Indo-Burman Region. Geosciences. 2019; 9(11):467. https://doi.org/10.3390/geosciences9110467
Chicago/Turabian StyleBracciali, Laura. 2019. "Coupled Zircon-Rutile U-Pb Chronology: LA ICP-MS Dating, Geological Significance and Applications to Sediment Provenance in the Eastern Himalayan-Indo-Burman Region" Geosciences 9, no. 11: 467. https://doi.org/10.3390/geosciences9110467
APA StyleBracciali, L. (2019). Coupled Zircon-Rutile U-Pb Chronology: LA ICP-MS Dating, Geological Significance and Applications to Sediment Provenance in the Eastern Himalayan-Indo-Burman Region. Geosciences, 9(11), 467. https://doi.org/10.3390/geosciences9110467