# Framework for Offline Flood Inundation Forecasts for Two-Dimensional Hydrodynamic Models

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Methodology

#### 2.1. Framework for Offline Flood Inundation Forecast

_{RP1}), only the discharge forecast is shown to the end users. Coupled hydrological-hydrodynamic forecast is activated if the forecasted discharge exceeds the threshold. The threshold of Q

_{RP1}, which is less than the bankful discharge, is carefully selected to ensure that all the maps begin with the similar initial inundation extent and are not over-spilling the river banks. To select the optimal map from the database, the forecasted hydrograph for the next 12 h is compared to the discharge database and the index of the best match is recorded. Furthermore, the inundation maps corresponding to the recorded index are published for the next 12 h with 15-min intervals and can be accessed by end users via a webgis server. The maps are updated every three hours and the forecasted discharge is matched with the discharge database repeatedly for the next 12 h.

#### 2.2. Evaluation Metrics

^{2}) [22]. The metrics are calculated as in Table 1.

^{2}values of more than 0.85. The value of 0.85 was based on the review for model evaluation criteria between the simulated and measured discharge [22,23]; however, the value can be changed depending on the case study. Furthermore, if no optimal match is found, it selects the best NSE and a warning note is issued to the end-user along with the NSE value reported.

## 3. Study Area, Data and Models

#### 3.1. Study Area

#### 3.2. Case Study Data

#### 3.3. Pre-Calibration and Validation of the 2D Flood Inundation Model

^{2}), c

_{f}is the bottom friction coefficient (/s), R is the hydraulic radius (m), |V| is the magnitude of the velocity vector (m/s) and n is the Manning’s roughness coefficient (s/m

^{(1/3)}).

^{−1}was used for distributing the discharge over the cells that integrate the boundary. Table 2 shows the model properties and information of the cell size. The roughness parameter was selected based on a sensitivity analysis. Table 3 shows the calibrated parameter for each land use class (Figure 2a).

## 4. Results and Discussion

#### 4.1. Discharge Comparison

^{2}of 0.87 were selected at the twelfth hour in May 2013. Figure 7 presents the discharge hydrographs that are resulted from the rainfall scenario at the virtual gauge and the optimal ID for the 12-h forecast window with the three-hour update interval of the four events. The selection of new maps (ID) can be seen in the figure. It also shows the different databases for the advective and convective events. It is worth mentioning that the excellent agreement between the offline and online discharge hydrographs is a result of the suitability of the variety of synthetic scenarios generated from the KOSTRA and PEN rainfall simulation to fit the observed data. The quality of the database is therefore considered equally important as the methodology for selecting the maps, as presented in order to cover possible future events.

#### 4.2. Inundation Forecast Comparison

#### 4.2.1. Convective Events

#### 4.2.2. Advective Events

#### 4.3. Update Map Selection

^{3}/s). This value was decided on the river overflowing the banks. Since the inundation extents are within the main channel, they are not affected by this initial discharge. It would be possible to reduce this value and optimise the forecasts. The optimal maps were selected from 3–12 h.

## 5. Framework Performance

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- European Commission. Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the Assessment and Management of Flood Risks. 2007. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32007L0060&from=EN (accessed on 23 March 2018).
- Munich Re. Topics GEO Natural Catastrophes 2016—Analyses, Assessments, Positions; Münchener Rückversicherung-Gesellschaft (Munich Re): Munich, Germany, 2017. [Google Scholar]
- Thieken, A.H.; Kienzler, S.; Kreibich, H.; Kuhlicke, C.; Kunz, M.; Mühr, B.; Müller, M.; Otto, A.; Petrow, T.; Pisi, S.; et al. Review of the Flood Risk Management System in Germany after the Major Flood in 2013. Ecol. Soc.
**2016**, 21, 1–12. [Google Scholar] [CrossRef] - Laurent, S.; Hangen-Brodersen, C.; Ehret, U.; Meyer, I.; Moritz, K.; Vogelbacher, A.; Holle, F.K. Forecast Uncertainties in the Operational Flood Forecasting of the Bavarian Danube Catchment. In Hydrological Processes of the Danube River Basin—Perspectives from the Danubian Countries; Brilly, M., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 367–387. [Google Scholar]
- Bates, P.D.; Pappenberger, F.; Romanowicz, R.J. Uncertainty in Flood Inundation Modelling. In Applied Uncertainty Analysis for Flood Risk Management; Beven, K., Hall, J., Eds.; Imperial College Press: London, UK, 2014; pp. 232–269. [Google Scholar]
- Hu, X.; Song, L. Hydrodynamic Modeling of Flash Flood in Mountain Watersheds Based on High-performance GPU Computing. Nat. Haz.
**2018**, 91, 567–586. [Google Scholar] [CrossRef] - Zhang, S.; Yuan, R.; Wu, Y.; Yi, Y. Parallel Computation of a Dam-break Flow Model Using Openacc Applications. J. Hydraul. Eng.
**2017**, 143, 04016070. [Google Scholar] [CrossRef] - Henonin, J.; Russo, B.; Mark, O.; Gourbesville, P. Real-time Urban Flood Forecasting and Modelling—A State of the Art. J. Hydroinform.
**2013**, 15, 717–736. [Google Scholar] [CrossRef] - Bhatt, C.M.; Rao, G.S.; Diwakar, P.G.; Dadhwal, V.K. Development of Flood Inundation Extent Libraries Over a Range of Potential Flood Levels: A Practical Framework for Quick Flood Response. Geomat. Nat. Haz. Risk
**2017**, 8, 384–401. [Google Scholar] [CrossRef] - Voigt, S.; Kemper, T.; Riedlinger, T.; Kiefl, R.; Scholte, K.; Mehl, H. Satellite Image Analysis for Disaster and Crisis-management Support. IEEE Trans. Geosci. Remote Sens.
**2007**, 45, 1520–1528. [Google Scholar] [CrossRef] - Bates, P.D. Integrating Remote Sensing Data with Flood Inundation Models: How Far Have We Got? Hydrol. Process
**2012**, 26, 2515–2521. [Google Scholar] [CrossRef] - Bales, J.D.; Wagner, C.R. Sources of Uncertainty in Flood Inundation Maps. J. Flood Risk Manag.
**2009**, 2, 139–147. [Google Scholar] [CrossRef] - René, J.-R.; Djordjević, S.; Butler, D.; Madsen, H.; Mark, O. Assessing the Potential for Real-time Urban Flood Forecasting Based on a Worldwide Survey on Data Availability. Urban Water J.
**2014**, 11, 573–583. [Google Scholar] [CrossRef] - Chen, A.S.; Hsu, M.-H.; Teng, W.-H.; Huang, C.-J.; Yeh, S.-H.; Lien, W.-Y. Establishing the Database of Inundation Potential in Taiwan. Nat. Haz.
**2006**, 37, 107–132. [Google Scholar] [CrossRef][Green Version] - Schulz, A.; Kiesel, J.; Kling, H.; Preishuber, M.; Petersen, G. An Online System for Rapid and Simultaneous Flood Mapping Scenario Simulations—The Zambezi FloodDSS. Presented at the EGU General Assembly Conference, Vienna, Austria, 12–17 April 2015. [Google Scholar]
- Raymond, M.; Peyron, N.; Bahl, M.; Martin, A.; Alfonsi, F. ESPADA: Un Outil Innovant Pour la Gestion en Temps Réel Descrues Rrbaines. In Proceedings of the Novatech 6th Conference of Sustainable Techniques and Strategies in Urban Water Management, Lyon, France, 25–27 June 2007; pp. 793–800. [Google Scholar]
- Dottori, F.; Kalas, M.; Salamon, P.; Bianchi, A.; Alfieri, L.; Feyen, L. An Operational Procedure for Rapid Flood Risk Assessment in Europe. Nat. Haz. Earth Syst. Sci.
**2017**, 17, 1111–1126. [Google Scholar] [CrossRef] - Alfieri, L.; Salamon, P.; Bianchi, A.; Neal, J.; Bates, P.; Feyen, L. Advances in Pan-European Flood Hazard Mapping. Hydrol. Proc.
**2014**, 28, 4067–4077. [Google Scholar] [CrossRef] - Ludwig, K.; Bremicker, M. The Water Balance Model LARSIM: Design, Content and Applications; Institut für Hydrologie der Universität: Freiberg, Germany, 2006. [Google Scholar]
- Disse, M.; Konnerth, I.; Bhola, P.K.; Leandro, J. Unsicherheitsabschätzung für die Berechnung von Dynamischen Überschwemmungskarten—Fallstudie Kulmbach. Wasserwirtsch. Springer Prof.
**2017**, 11, 47–51. [Google Scholar] [CrossRef] - Leandro, J.; Konnerth, I.; Bhola, P.; Amin, K.; Köck, F.; Disse, M. Floodevac Interface zur Hochwassersimulation mit Integrierten Unsicherheitsabschätzungen. In Tag der Hydrologie, Fachgemeinschaft Hydrologische; Reinhardt-Imjela, C., Ed.; Wissenschaften in der DWA Geschäftsstelle: Trier, Germany, 2017; pp. 185–192. [Google Scholar]
- Krause, P.B.; Boyle, D.P.; Bäse, F. Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Adv. Geosci.
**2005**, 5, 89–97. [Google Scholar] [CrossRef] - Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.D.; Veith, T. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE
**2007**, 50, 885–900. [Google Scholar] [CrossRef] - Leandro, J.; Djordjević, S.; Chen, A.S.; Savić, D.A.; Stanić, M. Calibration of a 1D/1D Urban Flood Model Using 1D/2D Model Results in the Absence of Field Data. J. Water Sci. Technol.
**2011**, 64, 1016–1024. [Google Scholar] [CrossRef] - Moya Quiroga, V.; Kure, S.; Udo, K.; Mano, A. Application of 2D Numerical Simulation for the Analysis of the February 2014 Bolivian Amazonia Flood: Application of the New HEC-RAS Version 5. RIBAGUA Rev. Iberoam. Agua
**2016**, 3, 25–33. [Google Scholar] [CrossRef] - Verworn, H.R. Praxisrelevante Extremwerte des Niederschlags; Institut für Wasserwirtschaft, Hydrologie und Landwirtschaftlichen Wasserbau: Magdenburg, Germany, 2016; pp. 173–185. [Google Scholar]
- Maniak, U. Niederschlag-abfluss-modelle für Hochwasserabläufe. In Hydrologie und Wasserwirtschaft: Eine Einführung für Ingenieure; Springer: Berlin, Germany, 2010; pp. 261–360. [Google Scholar]
- Brunner, G.W. HEC-RAS River Analysis System Hydraulic Reference Manual; Report for US Army Corps of Engineers; Hydrologic Engineering Center (HEC): Davis, CA, USA, 2010. [Google Scholar]
- Leandro, J.; Chen, A.S.; Schumann, A. A 2D Parallel Diffusive Wave Model for Floodplain Inundation with Variable Time Step (P-D Wave). J. Hydrol.
**2014**, 517, 250–259. [Google Scholar] [CrossRef] - Hof, W. Flood Events of January 2011 in Main. Available online: www.wwa-ho.bayern.de/hochwasser/hochwasserereignisse/januar2011/main/index.htm (accessed on 20 March 2018).
- Wolf, L. Hochwassergroßeinsatz in Kulmbach. Available online: https://fotothurnau.wordpress.com/2011/01/15/hochwasser-groseinsatz-in-kulmbach/ (accessed on 20 March 2018).
- Leandro, J.; Schumann, A.; Pfister, A. A Step Towards Considering the Spatial Heterogeneity of Urban Key Features in Urban Hydrology Flood Modelling. J. Hydrol.
**2016**, 535, 356–365. [Google Scholar] [CrossRef] - Molinari, D.; Ballio, F.; Handmer, J.; Menoni, S. On the Modeling of Significance for Flood Damage Assessment. Int. J. Disaster Risk Reduct.
**2014**, 10, 381–391. [Google Scholar] [CrossRef]

**Figure 1.**Framework of the offline flood inundation forecast including the pre-recorded and real time component. The coupled hydrological-hydrological forecast is activated once a one-year return period (Q

_{RP1}) is exceeded.

**Figure 2.**Study area (

**a**) Land use and (

**b**) digital elevation model of the city Kulmbach. Data source: Water Management Authority Hof.

**Figure 3.**Precipitation values in mm for various durations (in min) and various return periods. PEN method used to extrapolate precipitation values above 100-year return period. Data source: KOSTRA-DWD 2000 (Kulmbach: Column 47, Row 67).

**Figure 4.**Discharge hydrographs at the upstream gauging stations (

**a**) Ködnitz and (

**b**) Kauerndorf. Data source: Bavarian Hydrological Service (www.gkd.bayern.de).

**Figure 5.**Error in m between the water levels resulting from the calibrated model and the measured water levels on 14 January 2011 at eight sites.

**Figure 7.**Comparison of discharge hydrographs at the virtual gauge: (

**a**,

**c**) advective events in February 2005 and January 2011, (

**b**,

**d**) convective events in May 2006 and May 2013.

**Figure 8.**Goodness of fit (

**a**) Fit Statistics and (

**b**) Absolute Error between offline and online flooded cells for each time step for the forecast duration of 12 h.

**Figure 9.**Water depth error between offline and online maps for May 2006. Positive values indicate over-prediction and negative values indicate under-prediction: (

**a**) T = 3 h, (

**b**) T = 6 h, (

**c**) T = 9 h and (

**d**) T = 12 h.

**Figure 10.**Water depth error between offline and online maps for May 2013: (

**a**) T = 3 h, (

**b**) T = 6 h, (

**c**) T = 9 h and (

**d**) T = 12 h.

**Figure 11.**Water depth error between offline and online for February 2005: (

**a**) T = 3 h, (

**b**) T = 6 h, (

**c**) T = 9 h and (

**d**) T = 12 h.

**Figure 12.**Water depth error between offline and online for January 2011: (

**a**) T = 3 h, (

**b**) T = 6 h, (

**c**) T = 9 h and (

**d**) T = 12 h.

**Figure 14.**Update of the map selection for the advective events: (

**a**) February 2005 and (

**b**) January 2011.

Evaluation Metrics | Equation | Terms |
---|---|---|

Nash-Sutcliffe efficiency (NSE) | $1-\frac{{{\displaystyle \sum}}_{i=1}^{n}{({O}_{i}-{P}_{i})}^{2}}{{{\displaystyle \sum}}_{i=1}^{n}{({O}_{i}-\overline{O})}^{2}}$ | $n$—the number of samples $O$—the forecasted discharge $P$—the discharge of the database $b$—the gradient of the regression line $\mathrm{x}=\{\begin{array}{l}\left|b\right|\text{\hspace{1em}}\mathrm{if}\text{}b\le 1\\ {\left|b\right|}^{-1}\text{\hspace{1em}}\mathrm{if}\text{}b1\end{array}$ $\mathrm{b}=\frac{{{\displaystyle \sum}}_{i=1}^{n}({O}_{i}-\tilde{O})({P}_{\dot{i}}-\tilde{P})}{\overline{{{\displaystyle \sum}}_{\dot{i}=1}^{n}{({O}_{i}-\tilde{O})}^{2}}}$ |

Weighted coefficient of determination (wr^{2}) | $\mathrm{x}{\left(\frac{{{\displaystyle \sum}}_{i=1}^{n}({O}_{i}-\tilde{O})({P}_{\dot{i}}-\tilde{P})}{\sqrt{{{\displaystyle \sum}}_{i=1}^{n}{({O}_{i}-\tilde{O})}^{2}}\sqrt{{{\displaystyle \sum}}_{i=1}^{n}{({P}_{i}-\tilde{P})}^{2}}}\right)}^{2}$ | |

Fit Statistic (F) | $\frac{{A}_{0}}{{A}_{\mathit{offline}}+{A}_{\mathit{online}}-{A}_{0}}$ | ${A}_{0}$—the overlap of flooded cells in the online (${A}_{\mathit{online}}$) and offline (${A}_{\mathit{offline}}$) maps $\mathit{nf}$—the number of flooded cells ${d}_{}^{\mathit{offline}}$ and ${d}_{}^{\mathit{online}}$—the water depth in the offline and online maps |

Absolute Error (e) | $\frac{{{\displaystyle \sum}}_{i=1}^{\mathit{nf}}|{d}_{i}^{\mathit{offline}}-{d}_{i}^{\mathit{online}}|}{\mathit{nf}}$ |

Data | Value |
---|---|

Model area | 11.5 km^{2} |

Total number of cells | 430,485 |

Number of cells in results domain | 193,161 |

Δt | 20 s |

Minimum cell area | 6.8 m^{2} |

Maximum cell area | 59.8 m^{2} |

Average cell area | 24.8 m^{2} |

Land Use | Calibrated Manning’s n [s/m^{(1/3)}] | Ranges of Manning’s n [s/m^{(1/3)}] |
---|---|---|

Water bodies | 0.022 | 0.015–0.149 |

Agriculture | 0.043 | 0.025–0.110 |

Forest | 0.189 | 0.110–0.200 |

Transportation | 0.014 | 0.012–0.020 |

Urban | 0.074 | 0.040–0.080 |

Duration | No. of Data Samples | Goodness of Fit [-] | |||
---|---|---|---|---|---|

February 2005 | May 2006 | January 2011 | May 2013 | ||

0–3 h | 13 | 0.98 (NSE) | 0.91 (NSE) | 0.96 (NSE) | 0.97 (NSE) |

0–6 h | 25 | 0.99 (NSE) | 0.95 (NSE) | 0.97 (NSE) | 0.96 (NSE) |

0–9 h | 37 | 0.99 (NSE) | 0.95 (NSE) | 0.95 (NSE) | 0.91 (NSE) |

0–12 h | 49 | 0.94 (NSE) | 0.95 (NSE) | 0.97 (NSE) | 0.87 (wr^{2}) |

**Table 5.**Average Fit Statistics and absolute error for the four events at the end of the forecast update interval of three hours.

Duration | Average Fit Statistics [-] | Average Absolute Error [m] | ||||||
---|---|---|---|---|---|---|---|---|

February 2005 | May 2006 | January 2011 | May 2013 | February 2005 | May 2006 | January 2011 | May 2013 | |

0–3 h | 0.97 | 0.75 | 0.97 | 0.76 | 0.06 | 0.14 | 0.06 | 0.27 |

0–6 h | 0.96 | 0.84 | 0.97 | 0.80 | 0.07 | 0.11 | 0.06 | 0.22 |

0–9 h | 0.96 | 0.89 | 0.97 | 0.92 | 0.07 | 0.09 | 0.07 | 0.12 |

0–12 h | 0.93 | 0.90 | 0.95 | 0.93 | 0.11 | 0.08 | 0.07 | 0.11 |

Time | Flooded Cells | May 2006 [%] | |||
---|---|---|---|---|---|

<−0.25 m | −0.25–0 m | 0.25–0 m | >0.25 m | ||

T = 3 h | 36,865 | 3 | 48 | 49 | 0 |

T = 6 h | 55,550 | 3 | 96 | 1 | 0 |

T = 9 h | 60,012 | 3 | 11 | 86 | 0 |

T = 12 h | 60,418 | 3 | 13 | 84 | 0 |

Time | Flooded Cells | May 2013 [%] | |||
---|---|---|---|---|---|

<−0.25 m | −0.25–0 m | 0.25–0 m | >0.25 m | ||

T = 3 h | 34,493 | 8 | 92 | 0 | 0 |

T = 6 h | 44,553 | 5 | 4 | 84 | 7 |

T = 9 h | 45,864 | 4 | 6 | 89 | 1 |

T = 12 h | 44,204 | 8 | 88 | 3 | 1 |

Time | Flooded Cells | February 2005 [%] | |||
---|---|---|---|---|---|

<−0.25 m | −0.25–0 m | 0.25–0 m | >0.25 m | ||

T = 3 h | 30,915 | 6 | 7 | 87 | 0 |

T = 6 h | 37,426 | 5 | 2 | 87 | 5 |

T = 9 h | 43,691 | 5 | 12 | 76 | 7 |

T = 12 h | 46,790 | 7 | 91 | 2 | 0 |

Time | Flooded Cells | January 2011 [%] | |||
---|---|---|---|---|---|

<−0.25 m | −0.25–0 m | 0.25–0 m | >0.25 m | ||

T = 3 h | 30,825 | 6 | 70 | 24 | 0 |

T = 6 h | 32,348 | 6 | 69 | 25 | 0 |

T = 9 h | 37,097 | 6 | 3 | 87 | 4 |

T = 12 h | 42,603 | 5 | 4 | 81 | 10 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bhola, P.K.; Leandro, J.; Disse, M. Framework for Offline Flood Inundation Forecasts for Two-Dimensional Hydrodynamic Models. *Geosciences* **2018**, *8*, 346.
https://doi.org/10.3390/geosciences8090346

**AMA Style**

Bhola PK, Leandro J, Disse M. Framework for Offline Flood Inundation Forecasts for Two-Dimensional Hydrodynamic Models. *Geosciences*. 2018; 8(9):346.
https://doi.org/10.3390/geosciences8090346

**Chicago/Turabian Style**

Bhola, Punit Kumar, Jorge Leandro, and Markus Disse. 2018. "Framework for Offline Flood Inundation Forecasts for Two-Dimensional Hydrodynamic Models" *Geosciences* 8, no. 9: 346.
https://doi.org/10.3390/geosciences8090346