Age and Origin of the Mesoproterozoic Iron Oxide-Apatite Mineralization, Cheever Mine, Eastern Adirondacks, NY
Abstract
:1. Introduction
2. Geological Setting
3. Analytical Methods
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Analytical Procedures
References
- Emmons, E. Geology of New York, Comprising the Survey of the Second Geological District. In Natural History of New York; Mather, W.W., Ed.; Carroll and Cook: Albany, NY, USA, 1842; Volume 4. [Google Scholar]
- Jonsson, E.; Troll, V.R.; Högdahl, K.; Harris, C.; Weis, F.; Nilsson, K.P.; Skelton, A. Magmatic origin of giant ‘Kiruna-type’ apatite-iron-oxide ores in central Sweden. Sci. Rep. 2013, 3, 1644. [Google Scholar] [CrossRef] [PubMed]
- Maynard, G.W. The iron ores of Lake Champlain. J. Br. Iron Steel Inst. 1874, 8, 109–136. [Google Scholar]
- McKeown, F.A.; Klemic, H. Rare-Earth-Bearing Apatite at Mineville, Essex County, New York; U.S. Geological Survey: Reston, VA, USA, 1956.
- Lupulescu, M.V.; Hughes, J.M.; Chiarenzelli, J.R.; Bailey, D.G. Texture, Crystal structure, and composition of fluorapatites from iron oxide-apatite (IOA) deposits, eastern Adirondack Mountains, New York. Can. Mineral. 2017, 755, 399–417. [Google Scholar] [CrossRef]
- Focus Graphite and SOQUEM Announce Positive PEA for the Kwyjibo REE Project in Québec. Available online: https://globenewswire.com/news-release/2018/06/28/1531111/0/en/Focus-Graphite-and-SOQUEM-Announce-Positive-PEA-for-the-Kwyjibo-REE-Project-in-Qu%C3%A9bec.html (accessed on 9 September 2018).
- Bilenker, L.; Reich, M.; Simon, A.; Munizaga, R. Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochim. Cosmochim. Acta 2016, 77, 94–104. [Google Scholar] [CrossRef]
- Hildebrand, R.S. Kiruna-type deposits: Their origin and relationship to intermediate subvolcanic plutons in the Great Bear magmatic zone, Northwestern Canada. Econ. Geol. 1986, 81, 640–659. [Google Scholar] [CrossRef]
- Hitzman, M.W.; Oreskes, N.; Einaudi, M.T. Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Res. 1992, 58, 241–287. [Google Scholar] [CrossRef]
- Corriveau, L.; Montreuil, J.-F.; Potter, E.G. Alteration facies linkages among IOCG, IOA and affiliated deposits in the Great Bear magmatic zone, Canada, in Slack, J., Corriveau, L. and Hitzman, M., eds., Proterozoic iron oxide-apatite (±REE) and iron oxide-copper-gold and affiliated deposits of Southeast Missouri, USA, and the Great Bear magmatic zone, Northwest Territories, Canada. Econ. Geol. 2016, 111, 2045–2072. [Google Scholar]
- Corriveau, L. Iron-Oxide and Alkali-Calcic Alteration Ore Systems and Their Polymetallic IOA, IOCG, Skarn, Albitite-Hosted U±Au±Co, and Affiliated Deposits: A Short Course Series; Part 1: Introduction: Geological Survey of Canada; Scientific Presentation 56; Natural Resources Canada: Ottawa, ON, Canada, 2017; p. 80.
- Valley, P.M.; Hanchar, J.M.; Whitehouse, M.J. Direct dating of Fe oxide-(Cu-Au) mineralization by U/Pb zircon geochronology. Geology 2009, 37, 223–226. [Google Scholar] [CrossRef]
- Valley, P.M.; Hanchar, J.M.; Whitehouse, M.J. New insights on the evolution of the Lyon Mountain Granite and associated Kiruna-type magnetite-apatite deposits, Adirondack Mountains, New York State. Geosphere 2011, 7, 357–389. [Google Scholar] [CrossRef] [Green Version]
- Westhues, A.; Hanchar, J.M.; Voisey, C.R.; Whitehouse, M.J.; Rossman, G.R.; Wirth, R. Tracing the fluid evolution of the Kiruna iron oxide apatite deposits using zircon, monazite, and whole rock trace elements and isotopic studies. Chem. Geol. 2017, 466, 303–322. [Google Scholar] [CrossRef]
- Westhues, A.; Hanchar, J.M.; LeMessurier, M.J.; Whitehouse, M.J. Evidence for hydrothermal alteration and source regions for the Kiruna iron oxide–apatite ore (northern Sweden) from zircon Hf and O isotopes. Geology 2017, 45, 571–574. [Google Scholar] [CrossRef]
- Valley, P.M.; Fisher, C.; Hanchar, J.; Lam, R.; Tubrett, M. Hafnium isotopes in zircon: A tracer of fluid-rock interaction during magnetite–apatite (“Kiruna-type”) mineralization. Chem. Geol. 2010, 275, 208–220. [Google Scholar] [CrossRef]
- Childress, T.; Simon, A.; Day, W.; Lundstrom, C.; Bindeman, I. Iron and Oxygen Isotope Signatures of the Pea Ridge and Pilot Knob Magnetite-Apatite Deposits, Southeast Missouri, USA. Econ. Geol. 2016, 111, 2033–2044. [Google Scholar] [CrossRef]
- Dare, S.A.; Barnes, S.J.; Beaudoin, G. Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS. Miner. Depos. 2015, 50, 607–617. [Google Scholar] [CrossRef]
- Nyström, J.O.; Henriquez, F. Magmatic features of iron ores of the Kiruna type in Chile and Sweden; ore textures and magnetite geochemistry. Econ. Geol. 1994, 89, 820–839. [Google Scholar] [CrossRef]
- Hofstra, A.; Meighan, C.; Song, X.; Samson, I.; Marsh, E.; Lowers, H.; Emsbo, P.; Hunt, A. Mineral thermometry and fluid inclusion studies of the Pea Ridge iron oxide-apatite-rare earth element deposit, Mesoproterozoic St. Francois Mountains Terrane, southeast Missouri, USA. Econ. Geol. 2016, 111, 1985–2016. [Google Scholar] [CrossRef]
- Knipping, J.; Bilenker, L.; Simon, A.; Reich, M.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I.; Munizaga, R. Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 2015, 43, 591–594. [Google Scholar] [CrossRef]
- Nyström, J.O. Apatite iron ores of the Kiruna Field, northern Sweden: Magmatic textures and carbonatitic affinity. Geologiska Föreningen i Stockholm Förhandlingar 1985, 107, 133–141. [Google Scholar] [CrossRef]
- Nyström, J.O.; Henríquez, F.; Naranjo, J.A.; Naslund, H.R. Magnetite spherules in pyroclastic iron ore at El Laco, Chile. Am. Miner. 2016, 101, 587–595. [Google Scholar] [CrossRef]
- Rivers, T. Upper-crustal orogenic lid and mid-crustal core complexes: Signature of a collapsed orogenic plateau in the hinterland of the Grenville Province. Can. J. Earth Sci. 2012, 49, 1–42. [Google Scholar] [CrossRef]
- Frost, C.B.; Frost, B.R. Proterozoic ferroan feldspathic magmatism. Precambrian Res. 2013, 228, 151–163. [Google Scholar] [CrossRef]
- Roden-Tice, M.T.; Tice, S.T. Regional-scale Mid-Jurassic to Late Cretaceous unroofing from the Adirondack Mountains through central New England based on apatite fission-track and (U-Th)/He thermochronology. J. Geol. 2005, 113, 535–552. [Google Scholar] [CrossRef]
- Lowe, D.G.; Arnott, R.W.C.; Chiarenzelli, J.R.; Rainbird, R.H. Early Paleozoic rifting and reactivation of a passive-margin rift: Insights from detrital zircon provenance signatures of the Potsdam Group, Ottawa graben. Geol. Soc. Am. Bull. 2018, 130, 1377–1396. [Google Scholar] [CrossRef]
- Wynne-Edwards, H.R. The Grenville Province. In Variations in Tectonic Styles in Canada; Special Paper; Price, R.A., Douglas, R.J.W., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 1972; Volume 11, pp. 263–334. [Google Scholar]
- Moore, J.M.; Thompson, P. The Flinton Group: A late Precambrian metasedimentary succession in the Grenville Province of eastern Ontario. Can. J. Earth Sci. 1980, 17, 1685–1707. [Google Scholar] [CrossRef]
- Rivers, T.; Martignole, J.; Gower, F.; Davidson, A. New tectonic divisions of the Grenville Province, southeast Canadian Shield. Tectonics 1989, 8, 63–84. [Google Scholar] [CrossRef]
- Mezger, K.; van der Pluijm, B.A.; Essene, E.J.; Halliday, A.N. The Carthage-Colton Mylonite Zone (Adirondack Mountains, New York): The site of a cryptic suture in the Grenville Orogen? J. Geol. 1992, 100, 630–638. [Google Scholar] [CrossRef]
- Bonamici, C.E.; Kozdon, R.; Ushikubo, T.; Valley, J.W. High-resolution P-T-t paths from δ18O zoning in titanite: A snapshot of late-orogenic collapse in the Grenville of New York. Geology 2011, 39, 959–962. [Google Scholar] [CrossRef]
- Selleck, B.W.; McLelland, J.; Bickford, M.E. Granite emplacement during tectonic exhumation: The Adirondack example. Geology 2005, 33, 781–784. [Google Scholar] [CrossRef]
- McLelland, J.; Selleck, B. Megacrystic Gore Mountain–type garnets in the Adirondack Highlands: Age, origin, and tectonic implications. Geosphere 2011, 7, 1194–1208. [Google Scholar] [CrossRef]
- Chiarenzelli, J.; McLelland, J. Granulite facies metamorphism, paleoisotherms, and disturbance of the U-Pb systematics of zircon in anorogenic plutonic rocks from the Adirondack Highlands. J. Metamorph. Geol. 1992, 11, 59–70. [Google Scholar] [CrossRef]
- Heumann, M.J.; Bickford, M.E.; Hill, B.M.; Selleck, B.W.; Jercinovic, M.J. Timing of anatexis in metapelites from the Adirondack Lowlands and Southern Highlands: A manifestation of the Shawinigan orogeny and subsequent anorthosite-mangerite-charnockite-granite (AMCG) magmatism. Geol. Soc. Am. Bull. 2006, 118, 1283–1298. [Google Scholar] [CrossRef]
- Chiarenzelli, J.; Valentino, D.; Lupulescu, M.; Thern, E.; Johnston, S. Differentiating Shawinigan and Ottawan orogenesis in the Central Adirondacks. Geosphere 2011, 7, 2–22. [Google Scholar] [CrossRef]
- Chiarenzelli, J.; Kratzmann, D.; Selleck, B.; de Lorraine, W. Age and provenance of Grenville Supergroup rocks, Trans-Adirondack Basin, constrained by detrital zircons. Geology 2015, 43, 183–186. [Google Scholar] [CrossRef]
- Lupulescu, M.; Chiarenzelli, J.; Pullen, A.; Price, J. Using pegmatite geochronology to constrain temporal events in the Adirondack Mountains. Geosphere 2011, 7, 23–39. [Google Scholar] [CrossRef] [Green Version]
- Chiarenzelli, J.; Selleck, B.; Lupulescu, M.; Regan, S.; Bickford, M.E.; Valley, P.; McLelland, J. Lyon Mountain ferroan leucogranite suite: Response to collision, thickened crust, and extension in the core of the Grenville Orogen. Geol. Soc. Am. Bull. 2017, 129, 1472–1488. [Google Scholar] [CrossRef]
- McLelland, J.; Hamilton, M.; Selleck, B.; McLelland, J.M.; Walker, D.; Orrell, S. Zircon U-Pb geochronology of the Ottawan orogeny, Adirondack Highlands, New York: Regional and tectonic implications. Precambrian Res. 2001, 109, 39–72. [Google Scholar] [CrossRef]
- McLelland, J.; Morrison, J.; Selleck, B.; Cunningham, B.; Olson, C.; Schmidt, K. Hydrothermal alteration of late- to post-tectonic Lyon Mountain granitic gneiss, Adirondack Mountains, New York: Origin of quartz-sillimanite segregations, quartz-albite lithologies, and associated Kiruna-type low Ti-Fe-oxide deposits. J. Metamorph. Geol. 2002, 20, 175–190. [Google Scholar] [CrossRef]
- Kemp, J.F. The Mineville-Port Henry mine group in Geology of the Adirondack magnetic iron ores, Newland, D.H., Ed. N. Y. State Mus. Bull. 1908, 119, 57–88. [Google Scholar]
- Regan, S.; Lupulescu, M.; Jercinovic, M.; Singer, J.; Geer, P.; Chiarenzelli, J.; Williams, M.; Walsh, G. Geochronology of IOA-type deposits: What are we dating? Geol. Soc. Am. Abstr. Programs 2016, 48, 7. [Google Scholar]
- Chew, D.; Sylvester, P.; Tubrett, M. U–Pb and Th–Pb dating of apatite by LA-ICPMS. Chem. Geol. 2013, 280, 200–216. [Google Scholar] [CrossRef]
- Ludwig, K. Isoplot 3.7 and 4.1; Berkeley Geochronology Center: Berkeley, CA, USA, 2008; Available online: https://www.bgc.org/isoplot_etc/isoplot.html (accessed on 9 September 2018).
- Sun, S.S.; McDonough, W.F. Chemical and Isotopic Systematics of Oceanic Basalts; Saunders, A.D., Norry, M.J., Eds.; Geological Society of London: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Condit, C.; Mahan, K.; Curtis, K.; Moeller, A. Dating metasomatism: Monazite and zircon growth during amphibolite facies albitization. Minerals 2018, 8, 187. [Google Scholar] [CrossRef]
- Wu, Y.; Zheng, Y. Genesis of zircon and its constraints on the interpretation of U-Pb age. Chin. Sci. Bull. 2004, 49, 1554–1569. [Google Scholar] [CrossRef]
- Pelleter, E.; Cheilletz, A.; Gasquet, D.; Mouttaqi, A.; Annich, M.; Deloule, E. Hydrothermal zircons: A tool for ion microprobe U-Pb dating of ore mineralization in polyphase deposits. Chem. Geol. 2007, 245, 135–161. [Google Scholar] [CrossRef]
- Fu, B.; Mernagh, T.P.; Kita, N.T.; Kemp, A.I.; Valley, J.W. Distinguishing masgmatic zircon for hydrothermal zircon: A case study from the Gidinburh high-sulphidation Au-Ag-(Cu) deposit of SE Australia. Chem. Geol. 2009, 259, 131–148. [Google Scholar] [CrossRef]
- Miller, C.F.; McDowell, S.M.; Mapes, R.W. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology 2003, 31, 529–532. [Google Scholar] [CrossRef]
- Valley, J.W.; Reinhard, D.A.; Cavosie, A.J.; Ushikubo, T.; Lawrence, D.F.; Larson, D.J.; Kelly, T.F.; Snoeyenbos, D.R.; Strickland, A. Nano- and micro-geochronology in Hadean and Archean zircons by atom-probe tomography and SIMS: New tools for old minerals. Am. Miner. 2015, 100, 1355–1377. [Google Scholar] [CrossRef] [Green Version]
- Hynes, A.; Rivers, T. Protracted continental collision—Evidence from the Grenville Orogen. Can. J. Earth Sci. 2010, 47, 591–620. [Google Scholar] [CrossRef]
- McLelland, J.; Chiarenzelli, J.; Whitney, P.; Isachsen, Y. U-Pb zircon geochronology of the Adirondack Mountains and implications for their geologic evolution. Geology 1988, 16, 920–924. [Google Scholar] [CrossRef]
- Gehrels, G.E.; Valencia, V.; Ruiz, J. Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollector inductively coupled plasma-mass spectrometry. Geochem. Geophys. 2008, 9, 1–13. [Google Scholar] [CrossRef]
- Stacey, J.S.; Kramers, J.D. Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet. Sci. Lett. 1975, 26, 207–221. [Google Scholar] [CrossRef]
Sample | SiO2 | TiO2 | Al2O3 | FeOT | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI | TOT |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CVE-1 | 70.59 | 0.39 | 10.99 | 10.68 | 0.01 | 0.05 | 0.36 | 5.77 | 0.64 | 0.05 | 0.00 | 99.52 |
CVE-2 | 80.28 | 0.33 | 10.35 | 1.41 | 0.01 | 0.11 | 0.57 | 4.80 | 1.40 | 0.01 | 0.23 | 99.27 |
CVE-3 | 67.94 | 0.26 | 11.20 | 12.21 | 0.02 | 0.24 | 0.76 | 6.38 | 0.07 | 0.09 | 0.00 | 99.17 |
CVE-4 | 4.95 | 0.70 | 0.49 | 86.97 | 0.07 | 0.23 | 2.65 | 0.29 | 0.07 | 2.90 | 0.00 | 99.32 |
CV-7 | 65.93 | 0.47 | 14.40 | 8.68 | 0.02 | 0.08 | 0.56 | 9.03 | 0.20 | 0.09 | 0.00 | 99.46 |
Sample Lat./Long. in DD | Lithology Dominant Minerals | Number Population 1 | Age (Ma) 2 | U (ppm) | U/Th Ratio |
---|---|---|---|---|---|
CVE-1 44.0814-73.4528 | Leucogranite Plg-Qtz-Mag | 21 rims 13 cores | 1059.6 ± 3.4 CA Cores 1103-1242 | 1149 ± 837 976 ± 696 | 10.1 ± 7.9 9.3 ± 11.0 |
CVE-2 44.0814-73.4528 | Leucogranite Plg-Qtz-Per-Mag | 34/35 homogeneous | 1036.3 ± 2.9 CA | 188 ± 90 | 4.0 ± 1.0 |
CVE-3 44.0814-73.4528 | Leucogranite Plg-Qtz-Cpx-Mag | 35/35 homogeneous | 1040 ± 11 WA | 1740 ± 294 | 11.2 ± 5.6 |
CVE-4 44.0814-73.4528 | Ore Mag-Ap-Cpx-Qtz | 27/35 homogeneous | 1033.6 ± 2.9 CA | 986 ± 310 | 6.8 ± 4.5 |
CV-7 44.0776-73.4506 | Leucogranite Plg-Qtz-Mag | 33/35 homogeneous | 1043.9 ± 4.1 CA | 665 ± 271 | 5.8 ± 2.0 |
CV-2013 44.0802-73.4532 | Leucogranite Plg-Qtz-Mag-Cpx | 17 rims 6 cores | 1066.0 ± 6.3 CA Cores 1091-1136 | 1326 ± 234 1107 ± 474 | 6.4 ± 2.1 2.6 ± 1.4 |
La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CVE-1 | 27.6 | 65.1 | 17.0 | 15.3 | 58.5 | 18.9 | 94.5 | 185.4 | 343 | 637 | 1064 | 1632 | 2457 | 3317 |
CVE-2 | 0.1 | 40.6 | 0.1 | 0.4 | 6.7 | 3.9 | 22.2 | 61.5 | 147 | 359 | 785 | 1521 | 2880 | 4349 |
CVE-3 | 135.8 | 187.3 | 96.9 | 87.2 | 137.2 | 21.6 | 101.0 | 173.8 | 328 | 640 | 1189 | 1941 | 3071 | 4251 |
CVE-4 | 10.4 | 59.0 | 9.9 | 10.7 | 35.9 | 7.4 | 50.6 | 106.9 | 210 | 447 | 816 | 1410 | 2338 | 3179 |
CV-7 | 0.9 | 44.9 | 2.8 | 4.3 | 36.0 | 8.7 | 75.2 | 155.8 | 307 | 610 | 1083 | 1692 | 2715 | 3708 |
CV-2013 | 0.2 | 114.4 | 29.0 | 33.4 | 108.6 | 49.9 | 126.7 | 268.5 | 544 | 1104 | 2027 | 3364 | 5385 | 7229 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiarenzelli, J.R.; Lupulescu, M.V.; Regan, S.P.; Singer, J.W. Age and Origin of the Mesoproterozoic Iron Oxide-Apatite Mineralization, Cheever Mine, Eastern Adirondacks, NY. Geosciences 2018, 8, 345. https://doi.org/10.3390/geosciences8090345
Chiarenzelli JR, Lupulescu MV, Regan SP, Singer JW. Age and Origin of the Mesoproterozoic Iron Oxide-Apatite Mineralization, Cheever Mine, Eastern Adirondacks, NY. Geosciences. 2018; 8(9):345. https://doi.org/10.3390/geosciences8090345
Chicago/Turabian StyleChiarenzelli, Jeffrey R., Marian V. Lupulescu, Sean P. Regan, and Jared W. Singer. 2018. "Age and Origin of the Mesoproterozoic Iron Oxide-Apatite Mineralization, Cheever Mine, Eastern Adirondacks, NY" Geosciences 8, no. 9: 345. https://doi.org/10.3390/geosciences8090345
APA StyleChiarenzelli, J. R., Lupulescu, M. V., Regan, S. P., & Singer, J. W. (2018). Age and Origin of the Mesoproterozoic Iron Oxide-Apatite Mineralization, Cheever Mine, Eastern Adirondacks, NY. Geosciences, 8(9), 345. https://doi.org/10.3390/geosciences8090345