Big Data in Natural Disaster Management: A Review
Abstract
:1. Introduction
2. Review Methodology
3. Major Data Sources
3.1. Satellite Imagery
3.2. UAV-Based Aerial Imagery and Videos.
3.3. Wireless Sensor Web and Internet of Things
3.4. LiDAR
3.5. Simulation Data
3.6. Vector-Based Spatial Data
3.7. Crowdsourcing
3.8. Social Media
3.9. Mobile GPS and Call Data Record
4. Usage of Big Data in Disaster Management Phases
4.1. Mitigation/Prevention
4.1.1. Long-term Risk Assessment and Reduction
4.1.2. Forecasting and Predicting
4.2. Preparedness
4.2.1. Monitoring and Detection
4.2.2. Early Warning
4.3. Response
4.3.1. Damage Assessment
4.3.2. Post-Disaster Coordination and Response
4.4. Recovery
5. Two Emerging Topics—Evolutionary Technologies
5.1. Machine Learning
5.2. Big Data Cyberinfrastructure
6. Big Data Challenges in Disaster Management
6.1. Big Data Collection
6.2. Big Data Analytics
6.3. Cyberinfrastructures
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blaikie, P.; Cannon, T.; Davis, I.; Wisner, B. At Risk: Natural Hazards, People’s Vulnerability and Disasters; Routledge: London, UK, 2014. [Google Scholar]
- Celik, S.; Corbacioglu, S. Role of information in collective action in dynamic disaster environments. Disasters 2010, 34, 137–154. [Google Scholar] [CrossRef] [PubMed]
- Sutanta, H.; Bishop, I.D.B.; Rajabifard, A.R. Integrating spatial planning and disaster risk reduction at the local level in the context of spatially enabled government. In Spatially Enabling Society Research, Emerging Trends and Critical Assessment; Abbas, R., Joep, C., Kalantari, M., Kok, B., Eds.; Leuven University Press: Leuven, Belgium, 2010; pp. 55–68. ISBN 978-90-5867-851-5. [Google Scholar]
- Penning-Rowsell, E.C.; Sultana, P.; Thompson, P.M. The ‘last resort’? Population movement in response to climate-related hazards in Bangladesh. Environ. Sci. Policy 2013, 27, 445. [Google Scholar] [CrossRef]
- Gaillard, J.C.; Mercer, J. From knowledge to action: Bridging gaps in disaster risk reduction. Prog. Hum. Geogr. 2013, 37, 93–114. [Google Scholar] [CrossRef]
- Villars, R.L.; Olofson, C.W.; Eastwood, M. Big Data: What It Is and Why You Should Care; IDC: Framingham, MA, USA, 2011. [Google Scholar]
- Hashem, I.A.T.; Yaqoob, I.; Anuar, N.B.; Mokhtar, S.; Gani, A.; Khan, S.U. The rise of “big data” on cloud computing: Review and open research issues. Inf. Syst. 2015, 47, 98–115. [Google Scholar] [CrossRef]
- National Research Council. Public Response to Alerts and Warnings on Mobile Devices: Summary of a Workshop on Current Knowledge and Research Gaps; National Academies Press: Washington, DC, USA, 2011; ISBN 978-0-309-21162-8. [Google Scholar]
- Castillo, C. Big Crisis Data: Social Media in Disasters and Time-Critical Situations; Cambridge University Press: Cambridge, UK, 2016; ISBN 9781107135765. [Google Scholar]
- Cinnamon, J.; Jones, S.K.; Adger, W.N. Evidence and future potential of mobile phone data for disease disaster management. Geoforum 2016, 75, 253–264. [Google Scholar] [CrossRef]
- Erdelj, M.; Natalizio, E. UAV-assisted disaster management: Applications and open issues. In Proceedings of the 2016 International Conference on Computing, Networking and Communications (ICNC 2016), Kauai, HI, USA, 15–18 February 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–5. [Google Scholar]
- Dos Santos Rocha, R.; Widera, A.; van den Berg, R.P.; de Albuquerque, J.P.; Helingrath, B. Improving the Involvement of Digital Volunteers in Disaster Management. In Proceedings of the International Conference on Information Technology in Disaster Risk Reduction, Sofia, Bulgaria, 16–18 November 2016; Murayama, Y., Velev, D., Zlateva, P., Gonzalez, J.J., Eds.; Springer: Cham, Switzerland, 2016; pp. 214–224. [Google Scholar]
- Federal Geographic Data Committee. Emerging Technologies and the Geospatial Landscape. A Report of the National Geospatial Advisory Committee. Available online: https://www.fgdc.gov/ngac/meetings/dec-2016/ngac-paper-emerging-technologies-and-the.pdf (accessed on 22 April 2018).
- United Nation. Data-Pop Alliance Synthesis Report Big Data for Climate Change and Disaster Resilience: Realizing the Benefits for Developing Countries. Available online: http://datapopalliance.org/wp-content/uploads/2015/11/Big-Data-for-Resilience-2015-Report.pdf (accessed on 22 April 2018).
- Skakun, S.; Kussul, N.; Shelestov, A.; Kussul, O. Flood hazard and flood risk assessment using a time series of satellite images: A case study in Namibia. Risk Anal. 2014, 34, 1521–1537. [Google Scholar] [CrossRef] [PubMed]
- Plank, S. Rapid damage assessment by means of multi-temporal SAR—A comprehensive review and outlook to Sentinel-1. Remote Sens. 2014, 6, 4870–4906. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, F.; Liu, W. Remote sensing technologies for post-earthquake damage assessment: A case study on the 2016 Kumamoto earthquake. In Proceedings of the 6th Asia Conference on Earthquake Engineering (6ACEE), Cebu City, Philippines, 22–24 September 2016. [Google Scholar]
- Pradhan, B.; Tehrany, M.S.; Jebur, M.N. A new semiautomated detection mapping of flood extent from TerraSAR-X satellite image using rule-based classification and taguchi optimization techniques. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4331–4342. [Google Scholar] [CrossRef]
- Liou, Y.A.; Kar, S.K.; Chang, L. Use of high-resolution FORMOSAT-2 satellite images for post-earthquake disaster assessment: A study following the 12 May 2008 Wenchuan Earthquake. Int. J. Remote Sens. 2010, 31, 3355–3368. [Google Scholar] [CrossRef]
- Ehrlich, D.; Kemper, T.; Blaes, X.; Soille, P. Extracting building stock information from optical satellite imagery for mapping earthquake exposure and its vulnerability. Nat. Hazards 2013, 68, 79–95. [Google Scholar] [CrossRef]
- Dini, G.R.; Jacobsen, K.; Rottensteiner, F.; Al Rajhi, M.; Heipke, C. 3D building change detection using high resolution stereo images and a GIS database. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Melbourne, Australia, 25 August–1 September 2012; Volume 39, pp. 299–304. [Google Scholar] [CrossRef]
- Tian, J.; Nielsen, A.A.; Reinartz, P. Building damage assessment after the earthquake in Haiti using two post-event satellite stereo imagery and DSMs. Int. J. Image Data Fusion 2015, 6, 155–169. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Hong, Z.; Liu, S.; Zhang, X.; Xie, H.; Li, Z.; Yang, S.; Wang, W.; Bao, F. Building-damage detection using pre-and post-seismic high-resolution satellite stereo imagery: A case study of the May 2008 Wenchuan earthquake. ISPRS J. Photogramm. Remote Sens. 2012, 68, 13–27. [Google Scholar] [CrossRef]
- Tian, J.; Cui, S.; Reinartz, P. Building Change Detection Based on Satellite Stereo Imagery and Digital Surface Models. IEEE Trans. Geosci. Remote Sens. 2014, 52, 406–417. [Google Scholar] [CrossRef] [Green Version]
- Koyama, C.N.; Gokon, H.; Jimbo, M.; Koshimura, S.; Sato, M. Disaster debris estimation using high-resolution polarimetric stereo-SAR. ISPRS J. Photogramm. Remote Sens. 2016, 120, 84–98. [Google Scholar] [CrossRef]
- Chini, M.; Piscini, A.; Cinti, F.R.; Amici, S.; Nappi, R.; DeMartini, P.M. The 2011 Tohoku (Japan) Tsunami inundation and liquefaction investigated through optical, thermal, and SAR data. IEEE Geosci. Remote Sens. Lett. 2013, 10, 347–351. [Google Scholar] [CrossRef]
- Pesaresi, M.; Ehrlich, D.; Ferri, S.; Florczyk, A.; Freire, S.; Haag, F.; Halkia, M.; Julea, A.M.; Kemper, T.; Soille, P. Global human settlement analysis for disaster risk reduction. Int. Arch. Photogramm. Remote Sen. Spat. Inf. Sci. 2015, 40, 837. [Google Scholar] [CrossRef] [Green Version]
- McCallum, I.; Liu, W.; See, L.; Mechler, R.; Keating, A.; Hochrainer-Stigler, S.; Mochizuki, J.; Fritz, S.; Dugar, S.; Arestegui, M.; et al. Technologies to support community flood disaster risk reduction. Int. J. Disaster Risk Sci. 2016, 7, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Raspini, F.; Bardi, F.; Bianchini, S.; Ciampalini, A.; Del Ventisette, C.; Farina, P.; Ferrigno, F.; Solari, L.; Casagli, N. The contribution of satellite SAR-derived displacement measurements in landslide risk management practices. Nat. Hazards 2017, 86, 327–351. [Google Scholar] [CrossRef]
- Ofli, F.; Meier, P.; Imran, M.; Castillo, C.; Tuia, D.; Rey, N.; Briant, J.; Millet, P.; Reinhard, F.; Parkan, M.; et al. Combining human computing and machine learning to make sense of big (aerial) data for disaster response. Big Data 2016, 4, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Nonami, K.; Kendoul, F.; Suzuki, S.; Wang, W.; Nakazawa, D. Introduction. In Autonomous Flying Robots; Springer: Tokyo, Japan, 2010; pp. 1–29. ISBN 978-4-431-53855-4. [Google Scholar]
- Kim, K.; Davidson, J. Unmanned aircraft systems used for disaster management. Transp. Res. Rec. J. Transp. Res. Board 2015, 2532, 83–90. [Google Scholar]
- Foresti, G.L.; Farinosi, M.; Vernier, M. Situational awareness in smart environments: Socio-mobile and sensor data fusion for emergency response to disasters. J. Ambient Intell. Humaniz. Comput. 2015, 6, 239–257. [Google Scholar] [CrossRef]
- Kakooei, M.; Baleghi, Y. Fusion of satellite, aircraft, and UAV data for automatic disaster damage assessment. Int. J. Remote Sens. 2017, 38, 2511–2534. [Google Scholar] [CrossRef]
- Tanzi, T.J.; Chandra, M.; Isnard, J.; Camara, D.; Olivier, S.; Harivelo, F. Towards” drone-borne” disaster management: Future application scenarios. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 181. [Google Scholar] [CrossRef]
- Griffin, G.F. The use of unmanned aerial vehicles for disaster management. Geomatica 2014, 68, 265–281. [Google Scholar] [CrossRef]
- Chen, D.; Liu, Z.; Wang, L.; Dou, M.; Chen, J.; Li, H. Natural disaster monitoring with wireless sensor networks: A case study of data-intensive applications upon low-cost scalable systems. Mob. Netw. Appl. 2013, 18, 651–663. [Google Scholar] [CrossRef]
- Erdelj, M.; Natalizio, E.; Chowdhury, K.R.; Akyildiz, I.F. Help from the sky: Leveraging UAVs for disaster management. IEEE Pervasive Comput. 2017, 16, 24–32. [Google Scholar] [CrossRef]
- Erman, A.T.; van Hoesel, L.; Havinga, P.; Wu, J. Enabling mobility in heterogeneous wireless sensor networks cooperating with UAVs for mission-critical management. IEEE Wirel. Commun. 2008, 15, 38–46. [Google Scholar] [CrossRef]
- Carli, M.; Panzieri, S.; Pascucci, F. A joint routing and localization algorithm for emergency scenario. Ad Hoc Netw. 2014, 13, 19–33. [Google Scholar] [CrossRef]
- Khalil, I.M.; Khreishah, A.; Ahmed, F.; Shuaib, K. Dependable wireless sensor networks for reliable and secure humanitarian relief applications. Ad Hoc Networks 2014, 13, 94–106. [Google Scholar] [CrossRef]
- Tuna, G.; Gungor, V.C.; Gulez, K. An autonomous wireless sensor network deployment system using mobile robots for human existence detection in case of disasters. Ad Hoc Netw. 2014, 13, 54–68. [Google Scholar] [CrossRef]
- Ray, P.P.; Mukherjee, M.; Shu, L. Internet of things for disaster management: State-of-the-art and prospects. IEEE Access 2017, 5, 18818–18835. [Google Scholar] [CrossRef]
- Sakhardande, P.; Hanagal, S.; Kulkarni, S. Design of disaster management system using IoT based interconnected network with smart city monitoring. In Proceedings of the International Conference on Internet of Things and Applications (IOTA), Pune, India, 22–24 January 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 185–190. [Google Scholar]
- Bisson, M.; Spinetti, C.; Neri, M.; Bonforte, A. Mt. Etna volcano high-resolution topography: Airborne LiDAR modelling validated by GPS data. Int. J. Dig. Earth 2016, 9, 710–732. [Google Scholar] [CrossRef]
- Nomikou, P.; Parks, M.M.; Papanikolaou, D.; Pyle, D.M.; Mather, T.A.; Carey, S.; Watts, A.B.; Paulatto, M.; Kalnins, M.L.; Livanos, I.; et al. The emergence and growth of a submarine volcano: The Kameni islands, Santorini (Greece). GeoResJ 2014, 1, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Costabile, P.; Macchione, F.; Natale, L.; Petaccia, G. Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach. Nat. Hazards 2015, 77, 181–204. [Google Scholar] [CrossRef]
- Chen, B.; Krajewski, W.F.; Goska, R.; Young, N. Using LiDAR surveys to document floods: A case study of the 2008 Iowa flood. J. Hydrol. 2017, 553, 338–349. [Google Scholar] [CrossRef]
- Gong, J. (Mobile lidar data collection and analysis for post-sandy disaster recovery. In Proceedings of the Computing in Civil Engineering, Los Angeles, CA, USA, 23–25 June 2013; American Society of Civil Engineers: Reston, VA, USA, 2013; pp. 677–684. [Google Scholar]
- Kwan, M.P.; Ransberger, D.M. LiDAR assisted emergency response: Detection of transport network obstructions caused by major disasters. Comput. Environ. Urban Syst. 2010, 34, 179–188. [Google Scholar] [CrossRef]
- Moya, L.; Yamazaki, F.; Liu, W.; Yamada, M. Detection of collapsed buildings due to the 2016 Kumamoto, Japan, earthquake from Lidar data. Nat. Hazards Earth Syst. Sci. 2017, 18, 65. [Google Scholar] [CrossRef]
- Murakami, H.; Vecchi, G.A.; Underwood, S.; Delworth, T.L.; Wittenberg, A.T.; Anderson, W.G.; Chen, J.H.; Gudgel, R.G.; Harris, L.M.; Lin, S.J.; et al. Simulation and prediction of category 4 and 5 hurricanes in the high-resolution GFDL HiFLOR coupled climate model. J. Clim. 2015, 28, 9058–9079. [Google Scholar] [CrossRef]
- MacLachlan, C.; Arribas, A.; Peterson, K.A.; Maidens, A.; Fereday, D.; Scaife, A.A.; Gordon, M.; Vellinga, M.; Williams, A.; Comer, R.E.; et al. Global Seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc. 2015, 141, 1072–1084. [Google Scholar] [CrossRef]
- Goldenberg, S.B.; Gopalakrishnan, S.G.; Tallapragada, V.; Quirino, T.; Marks, F., Jr.; Trahan, S.; Zhang, X.; Atlas, R. The 2012 triply nested, high-resolution operational version of the Hurricane Weather Research and Forecasting Model (HWRF): Track and intensity forecast verifications. Weather Forecast. 2015, 30, 710–729. [Google Scholar] [CrossRef]
- Kim, J.C.; Jung, H.; Kim, S.; Chung, K. Slope based intelligent 3D disaster simulation using physics engine. Wirel. Pers. Commun. 2016, 86, 183–199. [Google Scholar] [CrossRef]
- Yu, M.; Huang, Y.; Xu, Q.; Guo, P.; Dai, Z. Application of virtual earth in 3D terrain modeling to visual analysis of large-scale geological disasters in mountainous areas. Environ. Earth Sci. 2016, 75, 563. [Google Scholar] [CrossRef]
- Dou, M.; Chen, J.; Chen, D.; Chen, X.; Deng, Z.; Zhang, X.; Xu, K.; Wang, J. Modeling and simulation for natural disaster contingency planning driven by high-resolution remote sensing images. Future Gener. Comput. Syst. 2014, 37, 367–377. [Google Scholar] [CrossRef]
- Mas, E.; Koshimura, S.; Imamura, F.; Suppasri, A.; Muhari, A.; Adriano, B. Recent advances in agent-based tsunami evacuation simulations: Case studies in Indonesia, Thailand, Japan and Peru. Pure Appl. Geophys. 2015, 172, 3409–3424. [Google Scholar] [CrossRef]
- Kureshi, I.; Theodoropoulos, G.; Mangina, E.; O’Hare, G.; Roche, J. Towards an info-symbiotic decision support system for disaster risk management. In Proceedings of the 19th International Symposium on Distributed Simulation and Real Time Applications, Chengdu, Sichuan, China, 14–16 October 2015; IEEE Press: Piscataway, NJ, USA, 2015; pp. 85–91. [Google Scholar]
- Tomaszewski, B.; Judex, M.; Szarzynski, J.; Radestock, C.; Wirkus, L. Geographic information systems for disaster response: A review. J. Homel. Secur. Emerg. Manag. 2015, 12, 571–602. [Google Scholar] [CrossRef]
- Herold, S.; Sawada, M.C. A review of geospatial information technology for natural disaster management in developing countries. Int. J. Appl. Geospat. Res. 2012, 3, 14–62. [Google Scholar] [CrossRef]
- Stefanidis, A.; Crooks, A.; Radzikowski, J. Harvesting ambient geospatial information from social media feeds. GeoJournal 2013, 78, 319–338. [Google Scholar] [CrossRef]
- Loukis, E.; Charalabidis, Y. Active and passive crowdsourcing in government. In Policy Practice and Digital Science; Janssen, M., Wimmer, M.A., Deljoo, A., Eds.; Springer: Cham, Switzerland, 2015; pp. 261–289. ISBN 978-3-319-12783-5. [Google Scholar]
- Tong, Y.; Cao, C.C.; Chen, L. TCS: Efficient topic discovery over crowd-oriented service data. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; ACM: New York, NY, USA, 2014; pp. 861–870. [Google Scholar]
- Qin, H.; Rice, R.M.; Fuhrmann, S.; Rice, M.T.; Curtin, K.M.; Ong, E. Geocrowdsourcing and accessibility for dynamic environments. GeoJournal 2016, 81, 699–716. [Google Scholar] [CrossRef]
- Büscher, M.; Liegl, M.; Thomas, V. Collective intelligence in crises. In Social Collective Intelligence; Miorandi, D., Maltese, V., Rovatsos, M., Nijholt, A., Stewart, J., Eds.; Springer: Cham, Switzerland, 2014; pp. 243–265. [Google Scholar]
- Tavakkol, S.; To, H.; Kim, S.H.; Lynett, P.; Shahabi, C. An entropy-based framework for efficient post-disaster assessment based on crowdsourced data. In Proceedings of the Second ACM SIGSPATIAL International Workshop on the Use of GIS in Emergency Management, San Jose, CA, USA, 3–5 November 2010; ACM: New York, NY, USA, 2010; p. 13. [Google Scholar]
- Poblet, M.; García-Cuesta, E.; Casanovas, P. Crowdsourcing tools for disaster management: A review of platforms and methods. In AI Approaches to the Complexity of Legal Systems; Casanovas, P., Pagallo, U., Palmirani, M., Sartor, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 261–274. [Google Scholar]
- Palen, L.; Hiltz, S.R.; Liu, S. Online Forums Supporting Grassroots Participation in Emergency Preparedness and Response. Commun. ACM 2007, 50, 54–58. [Google Scholar] [CrossRef]
- Roche, S.; Propeck-Zimmermann, E.; Mericskay, B. GeoWeb and crisis management: Issues and perspectives of volunteered geographic information. GeoJournal 2013, 78, 21–40. [Google Scholar] [CrossRef]
- Sievers, J.A. Embracing Crowdsourcing: A strategy for state and local governments Approaching “Whole Community” Emergency Planning. State Local Gov. Rev. 2015, 47, 57–67. [Google Scholar] [CrossRef]
- Nonnecke, B.M.; Mohanty, S.; Lee, A.; Lee, J.; Beckman, S.; Mi, J.; Krishnan, S.; Roxas, R.E.; Oco, N.; Crittenden, C.; et al. Malasakit 1.0: A participatory online platform for crowdsourcing disaster risk reduction strategies in the philippines. In Proceedings of the Global Humanitarian Technology Conference (GHTC), San Jose, CA, USA, 18–21 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–6. [Google Scholar]
- Charalabidis, Y.N.; Loukis, E.; Androutsopoulou, A.; Karkaletsis, V.; Triantafillou, A. Passive crowdsourcing in government using social media. Transform. Gov. People Process Policy 2014, 8, 283–308. [Google Scholar] [CrossRef]
- Emergency Alerting Platforms Working Group. Social Media & Complementary Alerting Methods–Recommended Strategies & Best Practices. Available online: https://transition.fcc.gov/bureaus/pshs/advisory/csric5/WG2_FinalReport_091416.docx (accessed on 12 March 2018).
- Granell, C.; Ostermann, F.O. Beyond data collection: Objectives and methods of research using VGI and geo-social media for disaster management. Comput. Environ. Urban Syst. 2016, 59, 231–243. [Google Scholar] [CrossRef]
- Carley, K.M.; Malik, M.; Landwehr, P.M.; Pfeffer, J.; Kowalchuck, M. Crowd sourcing disaster management: The complex nature of Twitter usage in Padang Indonesia. Saf. Sci. 2016, 90, 48–61. [Google Scholar] [CrossRef]
- Middleton, S.E.; Middleton, L.; Modafferi, S. Real-time crisis mapping of natural disasters using social media. IEEE Intell. Syst. 2014, 29, 9–17. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Jung, J.E. Real-time event detection for online behavioral analysis of big social data. Future Gener. Comput. Syst. 2017, 66, 137–145. [Google Scholar] [CrossRef]
- Imran, M.; Castillo, C.; Lucas, J.; Meier, P.; Vieweg, S. AIDR: Artificial intelligence for disaster response. In Proceedings of the 23rd International Conference on World Wide Web, Seoul, Korea, 7–11 April 2014; ACM: New York, NY, USA, 2014; pp. 159–162. [Google Scholar]
- Chae, J.; Thom, D.; Jang, Y.; Kim, S.; Ertl, T.; Ebert, D.S. Public behavior response analysis in disaster events utilizing visual analytics of microblog data. Comput. Graph. 2014, 38, 51–60. [Google Scholar] [CrossRef]
- Landwehr, P.M.; Carley, K.M. Social media in disaster relief. In Data Mining and Knowledge Discovery for Big Data; Chu, W.W., Ed.; Springer: Berlin, Germany, 2014; pp. 225–257. ISBN 978-3-642-40836-6. [Google Scholar]
- Horanont, T.; Witayangkurn, A.; Sekimoto, Y.; Shibasaki, R. Large-scale auto-GPS analysis for discerning behavior change during crisis. IEEE Intell. Syst. 2013, 28, 26–34. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Fang, R.; Shi, C.; Zhao, Q. Real-time high-precision earthquake monitoring using single-frequency GPS receivers. GPS Solut. 2015, 19, 27–35. [Google Scholar] [CrossRef]
- Song, X.; Zhang, Q.; Sekimoto, Y.; Shibasaki, R. Prediction of human emergency behavior and their mobility following large-scale disaster. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; ACM: New York, NY, USA, 2014; pp. 5–14. [Google Scholar]
- Donovan, B.; Work, D.B. Using coarse GPS data to quantify city-scale transportation system resilience to extreme events. In Proceedings of the 2015 Transportation Research Board Annual Meeting, Washington, DC, USA, 11–15 January 2015; arXiv: Ithaca, NY, USA, 2015. [Google Scholar]
- Bharti, N.; Lu, X.; Bengtsson, L.; Wetter, E.; Tatem, A.J. Remotely measuring populations during a crisis by overlaying two data sources. Int. Health 2015, 7, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.; zu Erbach-Schoenberg, E.; Albert, M.; Power, D.; Tudge, S.; Gonzalez, M.; Guthrie, S.; Chamberlain, H.; Brooks, C.; Hughes, C.; et al. Rapid and near real-time assessments of population displacement using mobile phone data following disasters: The 2015 Nepal Earthquake. PLoS Curr. 2016, 8. [Google Scholar] [CrossRef] [PubMed]
- Ghurye, J.; Krings, G.; Frias-Martinez, V. A Framework to Model Human Behavior at Large Scale during Natural Disasters. In Proceedings of the 17th IEEE International Conference on Mobile Data Management (MDM), Porto, Portugal, 13–16 June 2016; Chow, C., Jayaraman, P., Wu, W., Eds.; IEEE: Piscataway, NJ, USA, 2016; Volume 1, pp. 18–27. [Google Scholar]
- Poser, K.; Dransch, D. Volunteered geographic information for disaster management with application to rapid flood damage estimation. Geomatica 2010, 64, 89–98. [Google Scholar] [CrossRef]
- Alexander, D.E. Principles of Emergency Planning and Management; Oxford University Press on Demand: Oxford, UK, 2002; ISBN 9780195218381. [Google Scholar]
- Ehrlich, D.; Tenerelli, P. Optical satellite imagery for quantifying spatio-temporal dimension of physical exposure in disaster risk assessments. Nat. Hazards 2013, 68, 1271–1289. [Google Scholar] [CrossRef]
- McCormick, S. After the cap: Risk assessment, citizen science and disaster recovery. Ecol. Soc. 2012, 17. [Google Scholar] [CrossRef]
- Kwak, Y.J. Nationwide Flood Monitoring for Disaster Risk Reduction Using Multiple Satellite Data. ISPRS Int. J. Geo-Inf. 2017, 6, 203. [Google Scholar] [CrossRef]
- Horita, F.E.; de Albuquerque, J.P.; Degrossi, L.C.; Mendiondo, E.M.; Ueyama, J. Development of a spatial decision support system for flood risk management in Brazil that combines volunteered geographic information with wireless sensor networks. Comput. Geosci. 2015, 80, 84–94. [Google Scholar] [CrossRef]
- Zhang, J.A.; Nolan, D.S.; Rogers, R.F.; Tallapragada, V. Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Weather Rev. 2015, 143, 3136–3155. [Google Scholar] [CrossRef]
- Yablonsky, R.M.; Ginis, I.; Thomas, B. Ocean modeling with flexible initialization for improved coupled tropical cyclone-ocean model prediction. Environ. Model. Softw. 2015, 67, 26–30. [Google Scholar] [CrossRef]
- Zhang, J.A.; Marks, F.D.; Montgomery, M.T.; Lorsolo, S. An estimation of turbulent characteristics in the low-level region of intense Hurricanes Allen (1980) and Hugo (1989). Mon. Weather Rev. 2011, 139, 1447–1462. [Google Scholar] [CrossRef]
- Zhang, J.A.; Gopalakrishnan, S.G.; Marks, F.D.; Rogers, R.F.; Tallapragada, V. A developmental framework for improving hurricane model physical parameterizations using aircraft observations. Trop. Cycl. Res. Rev. 2012, 1, 419–429. [Google Scholar] [CrossRef]
- Ruf, C.S.; Atlas, R.; Chang, P.S.; Clarizia, M.P.; Garrison, J.L.; Gleason, S.; Katzberg, S.J.; Jelenak, Z.; Johnson, J.T.; Majumdar, S.J.; O’brien, A. New ocean winds satellite mission to probe hurricanes and tropical convection. Bull. Am. Meteorol. Soc. 2016, 97, 385–395. [Google Scholar] [CrossRef]
- Zhang, F.; Weng, Y. Predicting hurricane intensity and associated hazards: A five-year real-time forecast experiment with assimilation of airborne Doppler radar observations. Bull. Am. Meteorol. Soc. 2015, 96, 25–33. [Google Scholar] [CrossRef]
- Furquim, G.; Filho, G.P.R.; Jalali, R.; Pessin, G.; Pazzi, R.W.; Ueyama, J. How to Improve Fault Tolerance in Disaster Predictions: A Case Study about Flash Floods Using IoT, ML and Real Data. Sensors 2018, 18, 907. [Google Scholar] [CrossRef] [PubMed]
- Kalyuzhnaya, A.V.; Nasonov, D.; Ivanov, S.V.; Kosukhin, S.S.; Boukhanovsky, A.V. Towards a scenario-based solution for extreme metocean event simulation applying urgent computing. Future Gener. Comput. Syst. 2018, 79, 604–617. [Google Scholar] [CrossRef]
- Yan, J.; Jin, J.; Chen, F.; Yu, G.; Yin, H.; Wang, W. Urban flash flood forecast using support vector machine and numerical simulation. J. Hydroinformatics 2018, 20, 221–231. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Schulte, E.; Schmuck, G.; Camia, A.; Strobl, P.; Liberta, G.; Giovando, C.; Boca, R.; Sedano, F.; Kempeneers, P.; et al. Comprehensive monitoring of wildfires in Europe: The European forest fire information system (EFFIS). In Approaches to Managing Disaster-Assessing Hazards, Emergencies and Disaster Impacts; Tiefenbacher, J., Ed.; InTech: Rijeka, Croatia, 2012; pp. 87–108. ISBN 978-953-51-0294-6. [Google Scholar]
- Lacava, T.; Brocca, L.; Coviello, I.; Faruolo, M.; Pergola, N.; Tramutoli, V. Integration of optical and passive microwave satellite data for flooded area detection and monitoring. In Engineering Geology for Society and Territory-Volume 3; Lollino, G., Arattano, M., Rinaldi, M., Giustolisi, O., Marechal, J., Gordon, E.G., Eds.; Springer: Cham, Switzerland, 2014; pp. 631–635. ISBN 978-3-319-09053-5. [Google Scholar]
- Kussul, N.; Shelestov, A.; Skakun, S. Flood monitoring from SAR data. In Use of Satellite and In-Situ Data to Improve Sustainability; Kogan, F., Powell, A., Fedorov, O., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 19–29. ISBN 978-90-481-9617-3. [Google Scholar]
- De Groeve, T. Flood monitoring and mapping using passive microwave remote sensing in Namibia. Geomat. Nat. Hazards Risk 2010, 1, 19–35. [Google Scholar] [CrossRef]
- Earle, P.S.; Bowden, D.C.; Guy, M. Twitter earthquake detection: Earthquake monitoring in a social world. Ann. Geophys. 2012, 54. [Google Scholar] [CrossRef]
- Mandl, D.; Frye, S.; Cappelaere, P.; Handy, M.; Policelli, F.; Katjizeu, M.; Van Langenhove, G.; Aube, G.; Saulnier, J.F.; Sohlberg, R.; et al. Use of the earth observing one (EO-1) satellite for the namibia sensorweb flood early warning pilot. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 298–308. [Google Scholar] [CrossRef]
- Arribas-Bel, D. Accidental, open and everywhere: Emerging data sources for the understanding of cities. Appl. Geogr. 2014, 49, 45–53. [Google Scholar] [CrossRef]
- Musaev, A.; Wang, D.; Pu, C. LITMUS: A Multi-Service Composition System for Landslide Detection. IEEE Trans. Serv. Comput. 2015, 8, 715–726. [Google Scholar] [CrossRef]
- Poslad, S.; Middleton, S.E.; Chaves, F.; Tao, R.; Necmioglu, O.; Bügel, U. A semantic IoT early warning system for natural environment crisis management. IEEE Trans. Emerg. Top. Comput. 2015, 3, 246–257. [Google Scholar] [CrossRef]
- Vetrivel, A.; Gerke, M.; Kerle, N.; Vosselman, G. Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images. ISPRS J. Photogramm. Remote Sens. 2015, 105, 61–78. [Google Scholar] [CrossRef]
- Fernandez Galarreta, J.; Kerle, N.; Gerke, M. UAV-based urban structural damage assessment using object-based image analysis and semantic reasoning. Nat. Hazards Earth Syst. Sci. 2015, 15, 1087–1101. [Google Scholar] [CrossRef]
- Corbane, C.; Saito, K.; Dell’Oro, L.; Bjorgo, E.; Gill, S.P.; Emmanuel Piard, B.; Huyck, C.K.; Kemper, T.; Lemoine, G.; Spence, R.J.; et al. A comprehensive analysis of building damage in the 12 January 2010 MW7 Haiti earthquake using high-resolution satellite and aerial imagery. Photogramm. Eng. Remote Sens. 2011, 77, 997–1009. [Google Scholar] [CrossRef]
- Jongman, B.; Wagemaker, J.; Romero, B.R.; de Perez, E.C. Early flood detection for rapid humanitarian response: Harnessing near real-time satellite and Twitter signals. ISPRS Int. J. Geo-Inf. 2015, 4, 2246–2266. [Google Scholar] [CrossRef]
- Di Felice, M.; Trotta, A.; Bedogni, L.; Chowdhury, K.R.; Bononi, L. Self-organizing aerial mesh networks for emergency communication. In Proceedings of the 2014 IEEE 25th Annual International Symposium on Personal, Indoor, and Mobile Radio Communication (PIMRC), Washington, DC, USA, 2–5 September 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1631–1636. [Google Scholar]
- Mosterman, P.J.; Sanabria, D.E.; Bilgin, E.; Zhang, K.; Zander, J. A heterogeneous fleet of vehicles for automated humanitarian missions. Comput. Sci. Eng. 2014, 16, 90–95. [Google Scholar] [CrossRef]
- Lu, Z.; Cao, G.; La Porta, T. Networking smartphones for disaster recovery. In Proceedings of the 2016 IEEE International Conference on Pervasive Computing and Communications (PerCom), Sydney, Australia, 14–18 March 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–9. [Google Scholar]
- Van de Walle, B.; Dugdale, J. Information management and humanitarian relief coordination: Findings from the Haiti earthquake response. Int. J. Bus. Contin. Risk Manag. 2012, 3, 278–305. [Google Scholar] [CrossRef]
- De Alwis Pitts, D.A.; So, E. Enhanced change detection index for disaster response, recovery assessment and monitoring of accessibility and open spaces (camp sites). Int. J. Appl. Earth Obs. Geoinform. 2017, 57, 49–60. [Google Scholar] [CrossRef]
- Contreras, D.; Forino, G.; Blaschke, T. Measuring the progress of a recovery process after an earthquake: The case of L’aquila, Italy. Int. J. Disaster Risk Reduct. 2017. [Google Scholar] [CrossRef]
- Kahn, M.E. The death toll from natural disasters: The role of income, geography, and institutions. Rev. Econ. Stat. 2005, 87, 271–284. [Google Scholar] [CrossRef]
- Afzalan, N.; Evans-Cowley, J.; Mirzazad-Barijough, M. From big to little data for natural disaster recovery: How online and on-the-ground activities are connected. I/S J. Law Policy Inf. Soc. 2015, 11, 153. [Google Scholar] [CrossRef]
- Yan, Y.; Eckle, M.; Kuo, C.L.; Herfort, B.; Fan, H.; Zipf, A. Monitoring and assessing post-disaster tourism recovery using geotagged social media data. ISPRS Int. J. Geo-Inf. 2017, 6, 144. [Google Scholar] [CrossRef]
- Goodchild, M.F.; Glennon, J.A. Crowdsourcing geographic information for disaster response: A research frontier. Int. J. Dig. Earth 2010, 3, 231–241. [Google Scholar] [CrossRef]
- Cervone, G.; Sava, E.; Huang, Q.; Schnebele, E.; Harrison, J.; Waters, N. Using Twitter for tasking remote-sensing data collection and damage assessment: 2013 Boulder flood case study. Int. J. Remote Sens. 2016, 37, 100–124. [Google Scholar] [CrossRef]
- Byun, Y.; Han, Y.; Chae, T. Image fusion-based change detection for flood extent extraction using bi-temporal very high-resolution satellite images. Remote Sens. 2015, 7, 10347–10363. [Google Scholar] [CrossRef]
- Westrope, C.; Banick, R.; Levine, M. Groundtruthing OpenStreetMap building damage assessment. Procedia Eng. 2014, 78, 29–39. [Google Scholar] [CrossRef]
- Virtual Social Media Working Group and DHS First Responders Group. Lessons Learned: Social Media and Hurricane Sandy. Available online: https://www.dhs.gov/sites/default/files/publications/Lessons%20Learned%20Social%20Media%20and%20Hurricane%20Sandy.pdf (accessed on 12 March 2018).
- Bejiga, M.B.; Zeggada, A.; Nouffidj, A.; Melgani, F. A convolutional neural network approach for assisting avalanche search and rescue operations with uav imagery. Remote Sens. 2017, 9, 100. [Google Scholar] [CrossRef]
- Goldberg, D.; Holland, J. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99. [Google Scholar] [CrossRef]
- Benediktsson, J.; Swain, P.H.; Ersoy, O.K. Neural network approaches versus statistical methods in classification of multisource remote sensing data. IEEE Trans. Geosci. Remote Sens. 1990, 28, 540–552. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S. Comparison of support vector machine, neural network, and CART algorithm for the land-cover classifcation using limited data points. ISPRS J. Photogramm. Remote Sens. 2012, 70, 78–87. [Google Scholar] [CrossRef]
- Cooner, A.J.; Shao, Y.; Campbell, J.B. Detection of urban damage using remote sensing and machine learning algorithms: Revisiting the 2010 Haiti earthquake. Remote Sens. 2016, 8, 868. [Google Scholar] [CrossRef]
- Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput.-Aided Civil Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Pouyanfar, S.; Chen, S.C. Automatic video event detection for imbalance data using enhanced ensemble deep learning. Int. J. Semant. Comput. 2017, 11, 85–109. [Google Scholar] [CrossRef]
- Asim, K.M.; Martínez-Álvarez, F.; Basit, A.; Iqbal, T. Earthquake magnitude prediction in Hindukush region using machine learning techniques. Nat. Hazards 2017, 85, 471–486. [Google Scholar] [CrossRef]
- Chang, V. Towards a Big Data system disaster recovery in a Private Cloud. Ad Hoc Netw. 2015, 35, 65–82. [Google Scholar] [CrossRef]
- Wan, Z.; Hong, Y.; Khan, S.; Gourley, J.; Flamig, Z.; Kirschbaum, D.; Tang, G. A cloud-based global flood disaster community cyber-infrastructure: Development and demonstration. Environ. Model. Softw. 2014, 58, 86–94. [Google Scholar] [CrossRef]
- Belaud, J.P.; Negny, S.; Dupros, F.; Michéa, D.; Vautrin, B. Collaborative simulation and scientific big data analysis: Illustration for sustainability in natural hazards management and chemical process engineering. Comput. Ind. 2014, 65, 521–535. [Google Scholar] [CrossRef]
- Puthal, D.; Nepal, S.; Ranjan, R.; Chen, J. A secure big data stream analytics framework for disaster management on the cloud. In Proceedings of the 2016 IEEE 18th International Conference on High Performance Computing and Communications; IEEE 14th International Conference on Smart City; IEEE 2nd International Conference on Data Science and Systems (HPCC/SmartCity/DSS), Sydney, Australia, 12–14 December 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1218–1225. [Google Scholar]
- Hua, Y.; He, W.; Liu, X.; Feng, D. SmartEye: Real-time and efficient cloud image sharing for disaster environments. In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong Kong, China, 26 April–1 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1616–1624. [Google Scholar]
- Bartoli, G.; Fantacci, R.; Gei, F.; Marabissi, D.; Micciullo, L. A novel emergency management platform for smart public safety. Int. J. Commun. Syst. 2015, 28, 928–943. [Google Scholar] [CrossRef]
- Trono, E.M.; Arakawa, Y.; Tamai, M.; Yasumoto, K. Dtn mapex: Disaster area mapping through distributed computing over a delay tolerant network. In Proceedings of the 2015 Eighth International Conference on Mobile Computing and Ubiquitous Networking (ICMU), Hakodate, Japan, 20–25 January 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 179–184. [Google Scholar]
Disaster Management Phase | Data Source | Reviewed Application Fields |
---|---|---|
1. Mitigation/Prevention | ||
Long-term risk assessment and reduction | Satellite, 33% Crowdsourcing, 17% Sensor web and IoT, 17% Social media, 13% Mobile GPS and CDR, 12% Simulation, 8% | General natural disaster [10] Earthquake [88,91] Oil spill [92] Flood [15,93,94] |
Forecasting and Predicting | Simulation, 50% Satellite, 25% Sensor web and IoT, 13% Social media, 12% | Hurricane [52,54,95,96,97,98,99,100] Flood [101,102,103] |
2. Preparedness | ||
Monitoring and detection | Social Media, 31% Sensor web and IoT, 31% Satellite, 13% Combination of various data types, 9% Spatial data, 4% Lidar, 4% Mobile GPS and CDR, 4% Crowdsourcing, 4% | Wildfire [104] Flood [105,106,107,108,109] Earthquake [108,110] Landslide [111] Volcano [45,46] |
Early warning | Social media, 29% Sensor web and IoT, 29% Simulation 14% Crowdsourcing 14% Satellite, 14% | Flood [112] Tsunami [76,112] |
3. Response | ||
Damage Assessment | Satellite, 53% UAV, 21% Social media, 16% Sensor web and IoT, 5% Crowdsourcing, 5% | Earthquake [19,20,113,114,115] Flood [116] Typhoon [117] Hurricane [118] |
Post-disaster Coordination and Response | Social media, 25% Satellite, 16% Sensor web and IoT, 16% Crowdsourcing, 10% UAV, 9% Simulation, 6% Spatial data, 6% Lidar, 6% Mobile GPS and CDR, 3% Combination of various data types, 3% | General natural disaster [117,118,119] Flood [89,108] Earthquake [19,83,84,85,120] |
4. Recovery | ||
Combination of various data types, 60% Crowdsourcing, 30% Satellite, 10% | Earthquake [121,122,123] Hurricane [124] Typhoon [125] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.; Yang, C.; Li, Y. Big Data in Natural Disaster Management: A Review. Geosciences 2018, 8, 165. https://doi.org/10.3390/geosciences8050165
Yu M, Yang C, Li Y. Big Data in Natural Disaster Management: A Review. Geosciences. 2018; 8(5):165. https://doi.org/10.3390/geosciences8050165
Chicago/Turabian StyleYu, Manzhu, Chaowei Yang, and Yun Li. 2018. "Big Data in Natural Disaster Management: A Review" Geosciences 8, no. 5: 165. https://doi.org/10.3390/geosciences8050165
APA StyleYu, M., Yang, C., & Li, Y. (2018). Big Data in Natural Disaster Management: A Review. Geosciences, 8(5), 165. https://doi.org/10.3390/geosciences8050165