Cyclic Behavior Associated with the Degassing Process at the Shallow Submarine Volcano Tagoro, Canary Islands, Spain
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fricke, H.; Giere, O.; Stetter, K.; Alfredsson, G.A.; Kristjansson, J.K.; Stoffers, P.; Svavarsson, J. Hydrothermal vent communities at the shallow subpolar Mid-Atlantic ridge. Mar. Biol. 1989, 102, 425–429. [Google Scholar] [CrossRef]
- Botz, R.; Winckler, G.; Bayer, R.; Schmitt, M.; Schmidt, M.; Garbe-Schönberg, D.; Stoffers, P.; Kristjansson, J.K. Origin of trace gases in submarine hydrothermal vents of the Kolbeinsey Ridge, north Iceland. Earth Planet. Sci. Lett. 1999, 171, 83–93. [Google Scholar] [CrossRef]
- Dando, P.R.; Stüben, D.; Varnavas, S.P. Hydrothermalism in the Mediterranean Sea. Prog. Oceanogr. 1999, 44, 333–367. [Google Scholar] [CrossRef]
- Cardigos, F.; Colaço, A.; Dando, P.R.; Ávila, S.P.; Sarradin, P.M.; Tempera, F.; Conceição, P.; Pascoal, A.; Serrão Santos, R. Shallow water hydrothermal vent field fluids and communities of the D. João de Castro Seamount (Azores). Chem. Geol. 2005, 224, 153–168. [Google Scholar] [CrossRef]
- Furushima, Y.; Nagao, M.; Suzuki, A.; Yamamoto, H.; Maruyama, T. Periodic behavior of the bubble jet (Geyser) in the taketomi submarine hot springs of the southern part of yaeyama archipelago Japan. Mar. Technol. Soc. J. 2009, 43, 13–22. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Massoth, G.J.; McDuff, R.E.; Lupton, J.E.; Lilley, M.D. Geochemistry of hydrothermal fluids from Axial Seamount hydrothermal emissions study vent field, Juan de Fuca Ridge: Subseafloor boiling and subsequent fluid-rock interaction. J. Geophys. Res. 1990, 95, 12895–12921. [Google Scholar] [CrossRef]
- Tassi, F.; Capaccioni, B.; Caramanna, G.; Cinti, D.; Montegrossi, G.; Pizzino, L.; Quattrocchi, F.; Vaselli, O. Low-pH waters discharging from submarine vents at Panarea Island (Aeolian Islands, southern Italy) after the 2002 gas blast: Origin of hydrothermal fluids and implications for volcanic surveillance. Appl. Geochem. 2009, 24, 246–254. [Google Scholar] [CrossRef]
- Campbell, A.C.; Edmond, J.M. Halide systematics of submarine hydrothermal vents. Nature 1989, 342, 168–170. [Google Scholar] [CrossRef]
- Thompson, G. Hydrothermal Fluxes in the Ocean. In Chemical Oceanography; Elsevier: London, UK, 1983; pp. 271–337. [Google Scholar]
- Von Damm, K.L. Seafloor Hydrothermal Activity: Black Smoker Chemistry And Chimneys. Ann. Rev. Earth Planet. Sci. 1990, 18, 173–204. [Google Scholar]
- Rona, P.A.; Bemis, K.G.; Jones, C.D.; Jackson, D.R.; Mitsuzawa, K.; Silver, D. Entrainment and bending in a major hydrothermal plume, Main Endeavour Field, Juan de Fuca Ridge. Geophys. Res. Lett. 2006, 33, L19313. [Google Scholar] [CrossRef]
- Prol-Ledesma, R.M.; Canet, C.; Torres-Vera, M.A.; Forrest, M.J.; Armienta, M.A. Vent fluid chemistry in Bahía Concepción coastal submarine hydrothermal system, Baja California Sur, Mexico. J. Volcanol. Geotherm. Res. 2004, 137, 311–328. [Google Scholar] [CrossRef]
- Wenzhöfer, F.; Holby, O.; Glud, R.N.; Nielsen, H.K.; Gundersen, J.K. In situ microsensor studies of a shallow water hydrothermal vent at Milos, Greece. Mar. Chem. 2000, 69, 43–54. [Google Scholar] [CrossRef]
- Tarasov, V.G.; Gebruk, A.V.; Mironov, A.N.; Moskalev, L.I. Deep-sea and shallow-water hydrothermal vent communities: Two different phenomena? Chem. Geol. 2005, 224, 5–39. [Google Scholar] [CrossRef]
- Aliani, S.; Bortoluzzi, G.; Caramanna, G.; Raffa, F. Seawater dynamics and environmental settings after November 2002 gas eruption off Bottaro (Panarea, Aeolian Islands, Mediterranean Sea). Cont. Shelf Res. 2010, 30, 1338–1348. [Google Scholar] [CrossRef]
- Tudino, T.; Bortoluzzi, G.; Aliani, S. Shallow-water gaseohydrothermal plume studies after massive eruption at Panarea, Aeolian Islands, Italy. J. Mar. Syst. 2014, 131, 1–9. [Google Scholar] [CrossRef]
- Heinicke, J.; Italiano, F.; Maugeri, R.; Merkel, B.; Pohl, T.; Schipek, M.; Braun, T. Evidence of tectonic control on active arc volcanism: The Panarea-Stromboli tectonic link inferred by submarine hydrothermal vents monitoring (Aeolian arc, Italy). Geophys. Res. Lett. 2009, 36, L04301. [Google Scholar] [CrossRef]
- Tivey, M.K.; Bradley, A.M.; Joyce, T.M.; Kadko, D. Insights into tide-related variability at seafloor hydrothermal vents from time-series temperature measurements. Earth Planet. Sci. Lett. 2002, 202, 693–707. [Google Scholar] [CrossRef]
- Bayona, J.M.; Monjonell, A.; Miquel, J.C.; Fowler, S.W.; Albaigés, J. Biogeochemical characterization of particulate organic matter from a coastal hydrothermal vent zone in the Aegean Sea. Org. Geochem. 2002, 33, 1609–1620. [Google Scholar] [CrossRef]
- Tarasov, V.G.; Propp, M.V.; Propp, L.N.; Zhirmunsky, A.V.; Namsakakv, B.B.; Gorlenko, V.M.; Starynin, D.A. Shallow-Water Gasohydrothermal Vents of Ushishir Volcano and the Ecosystem of Kraternaya Bight (The Kurile Islands). Mar. Ecol. 1990, 11, 1–23. [Google Scholar] [CrossRef]
- Santana-Casiano, J.M.; Fraile-Nuez, E.; González-Dávila, M.; Baker, E.T.; Resing, J.A.; Walker, S.L. Significant discharge of CO2 from hydrothermalism associated with the submarine volcano of El Hierro Island. Sci. Rep. 2016, 6, 1–9. [Google Scholar] [CrossRef]
- Chance, A.; Kelly, P.M. An apparent periodicity in an index of volcanic activity. Nature 1979, 280, 671–672. [Google Scholar] [CrossRef]
- Aliani, S.; Meloni, R.; Dando, P.R. Periodicities in sediment temperature time-series at a marine shallow water hydrothermal vent in Milos Island (Aegean Volcanic arc, Eastern Mediterranean). J. Mar. Syst. 2004, 46, 109–119. [Google Scholar] [CrossRef]
- Spampinato, L.; Oppenheimer, C.; Cannata, A.; Montalto, P.; Salerno, G.G.; Calvari, S. On the time-scale of thermal cycles associated with open-vent degassing. Bull. Volcanol. 2012, 74, 1281–1292. [Google Scholar] [CrossRef]
- Tamburello, G.; Aiuppa, A.; McGonigle, A.J.S.; Allard, P.; Cannata, A.; Giudice, G.; Kantzas, E.P.; Pering, T.D. Periodic volcanic degassing behavior: The Mount Etna example. Geophys. Res. Lett. 2013, 40, 4818–4822. [Google Scholar] [CrossRef]
- Ilanko, T.; Oppenheimer, C.; Burgisser, A.; Kyle, P. Cyclic degassing of Erebus volcano, Antarctica. Bull. Volcanol. 2015, 77, 56. [Google Scholar] [CrossRef]
- Chouet, B.A. Long-period volcano seismicity: Its source and use in eruption forecasting. Nature 1996, 380, 309–316. [Google Scholar] [CrossRef]
- Ripepe, M.; Marchetti, E.; Bonadonna, C.; Harris, A.J.L.; Pioli, L.; Ulivieri, G. Monochromatic infrasonic tremor driven by persistent degassing and convection at Villarrica Volcano, Chile. Geophys. Res. Lett. 2010, 37, 15. [Google Scholar] [CrossRef]
- Blake, S. Volatile oversaturation during the evolution of silicic magma chambers as an eruption trigger. J. Geophys. Res. 1984, 89, 8237. [Google Scholar] [CrossRef]
- Dingwell, D.B. Magma degassing and fragmentation: Recent experimental advances. In From Magma to Tephra-Modelling Physical Processes of Explosive Volcanic Eruptions; Elsevier: Amsterdam, The Netherland, 1998. [Google Scholar]
- Varley, N.R.; Taran, Y. Degassing processes of Popocatépetl and Volcán de Colima, Mexico. Geol. Soc. Lond. Spec. Publ. 2003, 213, 263–280. [Google Scholar] [CrossRef]
- Edmonds, M.; Herd, R.A.; Galle, B.; Oppenheimer, C.M. Automated, high time-resolution measurements of SO2 flux at Soufrière Hills Volcano, Montserrat. Bull. Volcanol 2003, 65, 578–586. [Google Scholar] [CrossRef]
- Pering, T.D.; Tamburello, G.; McGonigle, A.J.S.; Aiuppa, A.; Cannata, A.; Giudice, G.; Patanè, D. High time resolution fluctuations in volcanic carbon dioxide degassing from Mount Etna. J. Volcanol. Geotherm. Res. 2014, 270, 115–121. [Google Scholar] [CrossRef]
- Peters, N.; Oppenheimer, C.; Killingsworth, D.R.; Frechette, J.; Kyle, P. Correlation of cycles in Lava Lake motion and degassing at Erebus Volcano, Antarctica. Geochem. Geophys. Geosyst. 2014, 15, 3244–3257. [Google Scholar] [CrossRef]
- Dziak, R.P.; Baker, E.T.; Shaw, A.M. Flux measurements of explosive degassing using a yearlong hydroacoustic record at an erupting submarine volcano. Geochemistry 2012. [Google Scholar] [CrossRef]
- O’Hara, S.; Dando, P.R.; Schuster, U.; Bennis, A. Gas seep induced interstitial water circulation: Observations and environmental implications. Cont. Shelf Res. 1995, 15, 931–948. [Google Scholar] [CrossRef]
- Botz, R.; Stüben, D.; Winckler, G.; Bayer, R.; Schmitt, M.; Faber, E. Hydrothermal gases offshore Milos Island, Greece. Chem. Geol. 1996, 130, 161–173. [Google Scholar] [CrossRef]
- Riedel, C.; Schmidt, M.; Botz, R.; Theilen, F. The Grimsey hydrothermal field offshore North Iceland: Crustal structure, faulting and related gas venting. Earth Planet. Sci. Lett. 2001, 193, 409–421. [Google Scholar] [CrossRef]
- Botz, R.; Wehner, H.; Worthington, T.J.; Schmidt, M.; Stoffers, P. Thermogenic hydrocarbons from the offshore Calypso hydrothermal field, Bay of Plenty, New Zealand. Chem. Geol. 2002, 186, 235–248. [Google Scholar] [CrossRef]
- De Ronde, C.E.J.; Stoffers, P.; Garbe-Schönberg, D.; Christenson, B.W.; Jones, B.; Manconi, R.; Browne, P.R.L.; Hissmann, K.; Botz, R.; Davy, B.W.; et al. Discovery of active hydrothermal venting in Lake Taupo, New Zealand. J. Volcanol. Geotherm. Res. 2002, 115, 257–275. [Google Scholar] [CrossRef]
- Forrest, M.J.; Ledesma-Vázquez, J.; Ussler, W., III; Kulongoski, J.T.; Hilton, D.R.; Greene, H.G. Gas geochemistry of a shallow submarine hydrothermal vent associated with the El Requesón fault zone, Bahía Concepción, Baja California Sur, México. Chem. Geol. 2005, 224, 82–95. [Google Scholar] [CrossRef]
- McCarthy, K.T.; Pichler, T.; Price, R.E. Geochemistry of Champagne Hot Springs shallow hydrothermal vent field and associated sediments, Dominica, Lesser Antilles. Chem. Geol. 2005, 224, 55–68. [Google Scholar] [CrossRef]
- Hall-Spencer, J.M.; Rodolfo-Metalpa, R.; Martin, S.; Ransome, E.; Fine, M.; Turner, S.M.; Rowley, S.J.; Tedesco, D.; Buia, M.-C. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 2008, 454, 96–99. [Google Scholar] [CrossRef]
- Fraile-Nuez, E.; González-Dávila, M.; Santana-Casiano, J.M.; Arístegui, J.; Alonso-González, I.J.; Hernández-León, S.; Blanco, M.J.; Rodríguez-Santana, A.; Hernández-Guerra, A.; Gelado-Caballero, M.D.; et al. Erratum: The submarine volcano eruption at the island of El Hierro: Physical-chemical perturbation and biological response. Sci. Rep. 2012, 2, 1–6. [Google Scholar] [CrossRef]
- Santana-Casiano, J.M.; González-Dávila, M.; Fraile-Nuez, E.; De Armas, D.; González, A.G.; Domínguez-Yanes, J.F.; Escanez, J. The natural ocean acidification and fertilization event caused by the submarine eruption of El Hierro. Sci. Rep. 2013, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Lomb, N.R. Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci. 1976, 39, 447–462. [Google Scholar] [CrossRef]
- Scargle, J.D. Studies in astronomical time series analysis. II—Statistical aspects of spectral analysis of unevenly spaced data. The Astrophys. J. 1982, 263, 835–853. [Google Scholar] [CrossRef]
- Daubechies, I. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 1990, 36, 961–1005. [Google Scholar] [CrossRef]
- Fraile-Nuez, E.; Machín, F.; Vélez-Belchí, P.; López-Laatzen, F.; Borges, R.; Benítez-Barrios, V.M.; Hernández-Guerra, A. Nine years of mass transport data in the eastern boundary of the North Atlantic Subtropical Gyre. J. Geophys. Res. 2010, 115, C09009. [Google Scholar] [CrossRef]
- Torrence, C.; Webster, P.J. Interdecadal changes in the ENSO-monsoon system. J. Climate 1999, 12, 2679–2690. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin. Process. Geophys. 2004, 11, 1–6. [Google Scholar] [CrossRef]
- Massoth, G.J.; Butterfield, D.A.; Lupton, J.E.; McDuff, R.E.; Lilley, M.D.; Jonasson, I.R. Submarine venting of phase-separated hydrothermal fluids at Axial Volcano, Juan de Fuca Ridge. Nature 1989, 340, 702–705. [Google Scholar] [CrossRef]
- Staudigel, H.; Hart, S.R.; Pile, A.; Bailey, B.E.; Baker, E.T.; Brooke, S.; Connelly, D.P.; Haucke, L.; German, C.R.; Hudson, I.; et al. Vailulu’u seamount, Samoa: Life and death on an active submarine volcano. Proc. Natl. Acad. Sci. USA 2006, 103, 6448–6453. [Google Scholar] [CrossRef]
- Egbert, G.D.; Bennett, A.F.; Foreman, M.G.G. TOPEX/POSEIDON tides estimated using a global inverse model. J. Geophys. Res. 1994, 99, 24821–24852. [Google Scholar] [CrossRef]
- Christopoulou, M.E.; Mertzimekis, T.J.; Nomikou, P.; Papanikolaou, D.; Carey, S.; Mandalakis, M. Influence of hydrothermal venting on water column properties in the crater of the Kolumbo submarine volcano, Santorini volcanic field (Greece). Geo-Mar.Lett. 2016, 36, 15–24. [Google Scholar] [CrossRef]
- Resing, J.A.; Baker, E.T.; Lupton, J.E.; Walker, S.L.; Butterfield, D.A.; Massoth, G.J.; Nakamura, K.-I. Chemistry of hydrothermal plumes above submarine volcanoes of the mariana arc. Geochem. Geophys. Geosyst. 2009, 10. [Google Scholar] [CrossRef]
- Baumberger, T.; Lilley, M.D.; Resing, J.A.; Lupton, J.E.; Baker, E.T.; Butterfield, D.A.; Olson, E.J.; Früh-Green, G.L. Understanding a submarine eruption through time series hydrothermal plume sampling of dissolved and particulate constituents: West Mata, 2008–2012. Geochem. Geophys. Geosyst. 2014, 15, 4631–4650. [Google Scholar] [CrossRef]
- Resing, J.A.; Rubin, K.H.; Embley, R.W.; Lupton, J.E.; Baker, E.T.; Dziak, R.P.; Baumberger, T.; Lilley, M.D.; Huber, J.A.; Shank, T.M.; et al. Active submarine eruption of boninite in the northeastern Lau Basin. Nat. Geosci. 2011, 4, 799–806. [Google Scholar] [CrossRef]
- Buck, N.J.; Resing, J.A.; Baker, E.T.; Lupton, J.E. Chemical Fluxes From a Recently Erupted Shallow Submarine Volcano on the Mariana Arc. Geochem. Geophys. Geosyst. 2018, 19, 1660–1673. [Google Scholar] [CrossRef]
- Tamburello, G.; Aiuppa, A.; Kantzas, E.P.; McGonigle, A.J.S.; Ripepe, M. Passive vs. active degassing modes at an open-vent volcano (Stromboli, Italy). Earth Planet. Sci. Lett. 2012, 359–360, 106–116. [Google Scholar] [CrossRef]
- Bouche, E.; Vergniolle, S.; Staudacher, T.; Nercessian, A.; Delmont, J.C.; Frogneux, M.; Cartault, F.; Le Pichon, A. The role of large bubbles detected from acoustic measurements on the dynamics of Erta ‘Ale lava lake (Ethiopia). Earth Planet. Sci. Lett. 2010, 295, 37–48. [Google Scholar] [CrossRef]
- Patrick, M.R.; Orr, T.; Wilson, D.; Dow, D.; Freeman, R. Cyclic spattering, seismic tremor, and surface fluctuation within a perched lava channel, Kīlauea Volcano. Bull. Volcanol. 2011, 73, 639–653. [Google Scholar] [CrossRef]
- Harris, A.; Johnson, J.; Horton, K.; Garbeil, H.; Ramm, H.; Pilger, E.; Flynn, L.; Mouginis-Mark, P.; Pirie, D.; Donegan, S.; et al. Ground-based infrared monitoring provides new tool for remote tracking of volcanic activity. Eos Trans. Am. Geophys. Union 2003, 84, 409–418. [Google Scholar] [CrossRef]
- Blackburn, E.A.; Wilson, L.; Sparks, R.S.J. Mechanisms and dynamics of strombolian activity. J. Geol. Soc. 1976, 132, 429–440. [Google Scholar] [CrossRef]
- Schnur, S.R.; Chadwick, W.W.; Embley, R.W.; Ferrini, V.L.; De Ronde, C.E.J.; Cashman, K.V.; Deardorff, N.D.; Merle, S.G.; Dziak, R.P.; Haxel, J.H.; et al. A decade of volcanic construction and destruction at the summit of NW Rota-1 seamount: 2004–2014. J. Geophys. Res. Solid Earth 2017, 122, 1558–1584. [Google Scholar] [CrossRef]
- Chevaldonné, P.; Desbruyères, D.; Haître, M.L. Time-series of temperature from three deep-sea hydrothermal vent sites. Deep Sea Res. Part. A. Oceanogr. Res. Papers 1991, 38, 1417–1430. [Google Scholar] [CrossRef]
- Schultz, A.; Dickson, P.; Elderfield, H. Temporal variations in diffuse hydrothermal flow at TAG. Geophys. Res. Lett. 1996, 23, 3471–3474. [Google Scholar] [CrossRef]
- Lenton, T.M. Early warning of climate tipping points. Nature Clim. Change 2011, 1, 201–209. [Google Scholar] [CrossRef]
- Wilson, C.J.N. Volcanoes: Characteristics, tipping points, and those pesky unknown unknowns. Elements 2017, 13, 41–46. [Google Scholar] [CrossRef]
- Ripepe, M.; Harris, A.J.L.; Marchetti, E. Coupled thermal oscillations in explosive activity at different craters of Stromboli volcano. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
Variable | Minimum | Maximum | Mean ±Standard | Maximum Anomaly | Reference Mean |
---|---|---|---|---|---|
θ (°C) | 17.10 | 20.80 | 18.47 ± 0.41 | +2.55 | 18.26 ± 0.51 |
Salinity | 35.62 | 36.99 | 36.64 ± 0.08 | −1.02 | 36.63 ± 0.07 |
σθ (kg∙m−3) | 25.03 | 26.83 | 26.41 ± 0.10 | −1.43 | 26.46 ± 0.07 |
pH (NBS units) | 6.92 | 8.17 | 7.86 ± 0.14 | −1.25 | 8.17 ± 0.06 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fraile-Nuez, E.; Santana-Casiano, J.M.; González-Dávila, M.; Vázquez, J.T.; Fernández-Salas, L.M.; Sánchez-Guillamón, O.; Palomino, D.; Presas-Navarro, C. Cyclic Behavior Associated with the Degassing Process at the Shallow Submarine Volcano Tagoro, Canary Islands, Spain. Geosciences 2018, 8, 457. https://doi.org/10.3390/geosciences8120457
Fraile-Nuez E, Santana-Casiano JM, González-Dávila M, Vázquez JT, Fernández-Salas LM, Sánchez-Guillamón O, Palomino D, Presas-Navarro C. Cyclic Behavior Associated with the Degassing Process at the Shallow Submarine Volcano Tagoro, Canary Islands, Spain. Geosciences. 2018; 8(12):457. https://doi.org/10.3390/geosciences8120457
Chicago/Turabian StyleFraile-Nuez, Eugenio, J. Magdalena Santana-Casiano, Melchor González-Dávila, Juan T. Vázquez, Luis Miguel Fernández-Salas, Olga Sánchez-Guillamón, Desirée Palomino, and Carmen Presas-Navarro. 2018. "Cyclic Behavior Associated with the Degassing Process at the Shallow Submarine Volcano Tagoro, Canary Islands, Spain" Geosciences 8, no. 12: 457. https://doi.org/10.3390/geosciences8120457
APA StyleFraile-Nuez, E., Santana-Casiano, J. M., González-Dávila, M., Vázquez, J. T., Fernández-Salas, L. M., Sánchez-Guillamón, O., Palomino, D., & Presas-Navarro, C. (2018). Cyclic Behavior Associated with the Degassing Process at the Shallow Submarine Volcano Tagoro, Canary Islands, Spain. Geosciences, 8(12), 457. https://doi.org/10.3390/geosciences8120457