Integrating Remote Sensing and Knowledge-Based Systems for Structural Lineament Mapping in the Rif Belt
Abstract
1. Introduction
2. Study Area
3. Data and Methods
3.1. Data
3.1.1. Data Used
3.1.2. Data Pre-Processing
3.2. Processing—Methods of SL Extraction
3.2.1. Method 1: Manual Extraction of FT-SL
3.2.2. Method 2: Semi-Automatic Supervised Extraction of FT-SL
3.2.3. Method 3: Spatial Filtering Coupled with Automatic Extraction of FT-SL
- Method 3—part 1: Band Extraction
- Method 3—part 2: Spatial Filtering
- ○
- Sobel Filter
- ○
- Laplacian Filter
- ○
- Kuan Filter
- This formulation dynamically adjusts smoothing intensity based on local homogeneity, with W(*t*) → 1 (identity) near edges (Ct ≫ Cu) and W(*t*) → 0 (full smoothing) in homogeneous regions (Ct ≈ Cu).
- Method 3—Part 3: Automatic extraction of FT-SL
3.2.4. Processing Workflow Summary
3.3. Knowledge Based System
3.4. Multi-Criteria Decision Analysis
4. Results
4.1. Statistics of SLM
4.2. Orientations of SLM
4.3. Density Distribution of SLM
4.4. Spatial-Correlation Between SLM Densities and Geological Map Densities
- r ≈ 1 signifies strong positive correlation;
- r > 0 indicates direct relationships (increasing SLM density corresponds to increasing geological feature density);
- r ≈ 0 suggests no linear relationship.
4.5. Knowledge Based MCDA
5. Discussion and Recommendations
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
AI | Artificial Intelligence |
ASTER | Advanced Spaceborne Thermal Emission and Reflection Radiometer |
CNN | Conventional Neural Network |
DEM | Digital Elevations Model |
DL | Deep Learning |
E | East |
ES | Expert System |
ESA | European Space Agency |
ENVI | Environment for Visualizing Images |
FTSL | Fault- and Thrust-based Structural Lineaments |
GAN | Generative Adversarial Network |
GDEM | Global Digital Elevation Model |
GIS | Geographic Information System |
GRD | Ground Range Detected |
IW | Interferometric Wide Swath |
KBS | Knowledge Based System |
MCDA | Multi-Criteria Decision Analysis |
MSI | Multispectral Instrument |
N | North |
OLI | Operational Land Imager |
PCA | Principal component analysis |
RS | Remote Sensing |
RSD | RSD |
S | South |
SAR | Synthetic Aperture Radar |
SL | Structural Lineaments |
SLM | Structural Lineaments Map |
SWIR | InfraRed |
TIR | Thermal InfraRed |
TIRS | Thermal InfraRed Sensor |
USGS | United States Geological Survey |
UTM | Universal Transverse Mercator projection |
ViT | Vision transformers |
VH | Vertical/Horizontal |
VNIR | Visible near-infrared |
VV | Vertical/Vertical |
W | West |
X | Latitude |
Y | Longitude |
Appendix B
Appendix C
LinMap_Method/Data/(Filter) | Ct | SumL (m) | LMin (m) | LMax (m) | LM (m) | LSD (m) | LRSD (%) | CI_1 | CI_2 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min (m) | Max (m) | PL (%) | Min (m) | Max (m) | PL (%) | ||||||||
Method_1/OLI_data | 78 | 132,591 | 232 | 3974 | 1722 | 728 | 42% | 1640 | 1804 | 9% | 1557 | 1887 | 13% |
OLI_data/AutoExtract | 4039 | 5,923,825 | 899 | 10,060 | 1467 | 638 | 43% | ||||||
Method_2/OLI_data | 2037 | 2,952,314 | 899 | 5145 | 1449 | 594 | 41% | 1436 | 1462 | 2% | 1423 | 1475 | 35% |
Method_3/OLI_B7_data/ Sobel_filter | 508 | 748,677 | 900 | 10,010 | 1483 | 718 | 48% | 1451 | 1515 | 3% | 1419 | 1547 | 18% |
Method_3/OLI_B7_data/ Laplacian_filter | 151 | 228,568 | 901 | 8720 | 1513 | 884 | 58% | 1441 | 1584 | 1% | 1369 | 1657 | 14% |
Method_3/OLI_B7_data/ Kuan_filter | 522 | 763,294 | 900 | 10,012 | 1462 | 669 | 46% | 1433 | 1491 | 5% | 1403 | 1521 | 9% |
Mean/OLI_data | 659 | 965,089 | 765 | 7572 | 1526 | 719 | 47% | 1480 | 1571 | 4% | 1434 | 1617 | 18% |
Method_1/S1B_data | 428 | 647,309 | 116 | 7722 | 1512 | 989 | 65% | 1464 | 1559 | 6% | 1416 | 1608 | 9% |
S1B_data/AutoExtract | 13,938 | 777,408 | 238 | 5450 | 558 | 331 | 59% | ||||||
Method_2/S1B_data | 7330 | 3,910,088 | 238 | 4961 | 536 | 308 | 57% | 532 | 539 | 1% | 529 | 543 | 2% |
Method_3/S1B_VV_data/ Sobel_filter | 8126 | 4,826,801 | 239 | 3775 | 594 | 360 | 61% | 590 | 598 | 1% | 586 | 602 | 2% |
Method_3/S1B_VV_data/ Laplacian_filter | 8509 | 5,030,777 | 239 | 5049 | 591 | 363 | 61% | 587 | 595 | 1% | 583 | 599 | 2% |
Method_3/S1B_VV_data/ Kuan_filter | 6085 | 3,198,089 | 238 | 2119 | 518 | 277 | 53% | 514 | 522 | 3% | 511 | 525 | 11% |
Mean/S1B_data | 6096 | 3,522,613 | 214 | 4725 | 750 | 459 | 59% | 737 | 763 | 2% | 725 | 775 | 5% |
Method_1/S2A_data | 74 | 142,913 | 378 | 5240 | 1931 | 813 | 42% | 1836 | 2025 | 12% | 1742 | 2120 | 23% |
S2A_data/AutoExtract | 1437 | 4,125,064 | 1800 | 13,236 | 2871 | 1301 | 45% | ||||||
Method_2/S2A_data | 752 | 2,135,575 | 1800 | 8578 | 2665 | 846 | 32% | 2634 | 2695 | 3% | 2603 | 2727 | 5% |
Method_3/S2A_B12_data/ Sobel_filter | 150 | 442,284 | 1802 | 9809 | 2949 | 1269 | 43% | 2845 | 3053 | 11% | 2742 | 3156 | 13% |
Method_3/S2A_B12_data/ Laplacian_filter | 152 | 445,882 | 1809 | 9451 | 2933 | 1227 | 42% | 2833 | 3033 | 11% | 2734 | 3132 | 14% |
Method_3/S2A_B12_data/ Kuan_filter | 137 | 412,265 | 1814 | 9451 | 3009 | 1328 | 44% | 2896 | 3122 | 9% | 2782 | 3236 | 15% |
Mean/S2A_data | 253 | 715,784 | 1521 | 8506 | 2697 | 1097 | 41% | 2609 | 2786 | 9% | 2521 | 2874 | 14% |
Geostructures/Geological maps | 1354 | 1,186,899 | 15 | 11,419 | 877 |
Appendix D
% Load the image (assuming it’s in the working directory) |
img = imread(‘OuedLaou_OLIB7.tif’); |
% Convert to double for processing |
img = im2double(img); |
% Define standard Sobel kernels (3 × 3) |
sobel_0deg = [1 0 −1; % Horizontal (0°) |
2 0 -2; |
1 0 -1]; |
sobel_90deg = [1 2 1; % Vertical (90°) |
0 0 0; |
−1 −2 −1]; |
sobel_45deg = [0 1 2; % Diagonal (45°) |
−1 0 1; |
−2 −1 0]; |
sobel_135deg = [2 1 0; % Anti-diagonal (135°) |
1 0 −1; |
0 −1 −2]; |
% Normalize kernels (optional but recommended) |
sobel_0deg = sobel_0deg/4; |
sobel_90deg = sobel_90deg/4; |
sobel_45deg = sobel_45deg/4; |
sobel_135deg = sobel_135deg/4; |
% Apply directional Sobel filters |
edge_0deg = imfilter(img, sobel_0deg, ‘conv’, ‘replicate’); |
edge_90deg = imfilter(img, sobel_90deg, ‘conv’, ‘replicate’); |
edge_45deg = imfilter(img, sobel_45deg, ‘conv’, ‘replicate’); |
edge_135deg = imfilter(img, sobel_135deg, ‘conv’, ‘replicate’); |
% Calculate gradient magnitude (combined edge strength) |
edge_magnitude = sqrt(edge_0deg.^2 + edge_90deg.^2 + edge_45deg.^2 + edge_135deg.^2); |
% Display results |
figure; |
subplot(2,3,1); imshow(img); title(‘Original Image’); |
subplot(2,3,2); imshow(edge_0deg,[]); title(‘0° Edges’); |
subplot(2,3,3); imshow(edge_45deg,[]); title(‘45° Edges’); |
subplot(2,3,4); imshow(edge_90deg,[]); title(‘90° Edges’); |
subplot(2,3,5); imshow(edge_135deg,[]); title(‘135° Edges’); |
subplot(2,3,6); imshow(edge_magnitude,[]); title(‘Gradient Magnitude’); |
% Save results (optional) |
imwrite(edge_0deg, ‘OuedLaou_Sobel_0deg.tif’); |
imwrite(edge_45deg, ‘OuedLaou_Sobel_45deg.tif’); |
imwrite(edge_90deg, ‘OuedLaou_Sobel_90deg.tif’); |
imwrite(edge_135deg, ‘OuedLaou_Sobel_135deg.tif’); |
imwrite(edge_magnitude, ‘OuedLaou_Sobel_Magnitude.tif’); |
%% 1. Image Loading and Preprocessing |
input_path = ‘OuedLaou_Sentinel2AB12.tif’; |
original_img = imread(input_path); |
% Convert to double and normalize to [0, 1] |
img = double(original_img); |
img = (img − min(img(:)))/(max(img(:)) − min(img(:))); |
% Apply Gaussian pre-smoothing (σ = 0.7 optimal for SWIR band) |
sigma = 0.7; % Standard deviation for Gaussian filter |
gauss_kernel = fspecial(‘gaussian’, ceil(3*sigma), sigma); |
smoothed_img = imfilter(img, gauss_kernel, ‘symmetric’); |
%% 2. 8-Connected Laplacian Kernel (L8) Implementation |
L8_kernel = [−1 −1 −1; % Standard 8-connected Laplacian |
−1 8 −1; |
−1 −1 −1]/8; % Normalization |
% Apply Laplacian filter |
laplacian_img = imfilter(smoothed_img, L8_kernel, ‘conv’, ‘symmetric’); |
%% 3. Zero-Crossing Detection (Edge Localization) |
% Calculate zero-crossings with adaptive threshold |
threshold = 0.02 * max(abs(laplacian_img(:))); % Empirical threshold for SWIR |
[zero_crossings, edge_map] = zerocross(laplacian_img, threshold); |
%% 4. Postprocessing for Geological Features |
% Morphological cleaning (remove small artifacts) |
cleaned_edges = bwmorph(edge_map, ‘clean’); |
% Thin edges to single-pixel width |
thin_edges = bwmorph(cleaned_edges, ‘thin’, Inf); |
%% 5. Visualization and Output |
figure; |
subplot(2,2,1); imshow(img, []); title(‘Original Image’); |
subplot(2,2,2); imshow(laplacian_img, []); title(‘Laplacian Filtered’); |
subplot(2,2,3); imshow(edge_map); title(‘Initial Edge Map’); |
subplot(2,2,4); imshow(thin_edges); title(‘Refined Lineaments’); |
% Save results |
imwrite(laplacian_img, ‘Laplacian_Filtered.tif’); |
imwrite(thin_edges, ‘Detected_Lineaments.tif’); |
%% Supporting Function for Zero-Crossing Detection |
function [zero_cross, edge_img] = zerocross(img, thresh) |
% Find zero-crossings with threshold |
[rows, cols] = size(img); |
zero_cross = false(rows, cols); |
edge_img = false(rows, cols); |
for i = 2:rows-1 |
for j = 2:cols-1 |
neighbor_vals = [img(i-1,j), img(i+1,j), img(i,j-1), img(i,j+1), … |
img(i-1,j-1), img(i-1,j+1), img(i+1,j-1), img(i+1,j+1)]; |
% Check for zero-crossing with sufficient slope |
if (any(img(i,j)*neighbor_vals < −thresh^2)) |
zero_cross(i,j) = true; |
edge_img(i,j) = true; |
end |
end |
end |
end |
%% 1. Input Preparation |
inputPath = ‘OuedLaou_Sentinel1BVV.tif’; |
outputPath = ‘OuedLaou_Sentinel1BVV_Filtered.tif’; |
% Read and preprocess SAR data |
sarData = imread(inputPath); |
sarData = double(sarData); |
% Check if data is in dB scale and convert to linear |
if mean(sarData(:)) < 50% Empirical threshold for dB detection |
sarLinear = 10.^(sarData/10); |
fprintf(‘Input converted from dB to linear scale\n’); |
else |
sarLinear = sarData; |
end |
%% 2. Parameter Configuration |
windowSize = 7; % Optimal for geological feature preservation |
cu = 0.5; % Initial speckle coefficient (updated adaptively) |
minWeight = 0.3; % Minimum weight for geological feature preservation |
% Create Gaussian kernel for weighted statistics |
[x,y] = meshgrid(−3:3); |
gaussKernel = exp(-(x.^2 + y.^2)/(2*(1.5^2))); |
gaussKernel = gaussKernel/sum(gaussKernel(:)); |
%% 3. Enhanced Kuan Filtering |
% Initialize output |
filteredImg = zeros(size(sarLinear)); |
% Pad image for border handling |
paddedImg = padarray(sarLinear, [33], ‘symmetric’); |
% Main processing loop |
for i = 1:size(sarLinear,1) |
for j = 1:size(sarLinear,2) |
% Extract local window with Gaussian weighting |
window = paddedImg(i:i+6, j:j+6); |
weightedWindow = window. * gaussKernel; |
% Compute local statistics |
localMean = sum(weightedWindow(:))/sum(gaussKernel(:)); |
localVar = sum((window(:)-localMean).^2.* gaussKernel(:))/sum(gaussKernel(:)); |
% Adaptive parameter adjustment |
ciSq = localVar/(localMean^2 + eps); |
cuSq = cu^2; |
% Enhanced weighting with geological preservation |
if ciSq <= cuSq |
weight = 0; % Full smoothing in homogeneous areas |
else |
weight = (1 − cuSq/ciSq)/(1 + cuSq); |
% Feature preservation logic |
edgeLikelihood = localVar/median(localVar(:)); |
if edgeLikelihood > 2.5% Geological edge detected |
weight = max(weight, minWeight); |
end |
end |
filteredImg(i,j) = sarLinear(i,j)*weight + localMean*(1-weight); |
end |
end |
Appendix E
Appendix F
References
- Zafaty, O.; Oukassou, M.; Si Mhamdi, H.; Tabuce, R.; Charrière, A. Integrated remote sensing data and field investigations for geological mapping and structural analysis. The case of SW Tichoukt ridge (Middle Atlas, Morocco). J. Afr. Earth Sci. 2023, 198, 104784. [Google Scholar] [CrossRef]
- Ranomenjanahary, F.L.; Srarfi, F.; Razafimahatratra, D.; Rakotomanana, D.; Hamdi, M.S.; Abidi, R.; Randriamalala, J.R.; Shimi, N.S. The potential of object-based classification for geological mapping: Applications to the volcanic region of Vakinankaratra (central Madagascar). J. Afr. Earth Sci. 2025, 228, 105641. [Google Scholar] [CrossRef]
- Avtar, R.; Komolafe, A.A.; Kouser, A.; Singh, D.; Yunus, A.P.; Dou, J.; Kumar, P.; Das Gupta, R.; Johnson, B.A.; Minh, H.V.T.; et al. Assessing sustainable development prospects through remote sensing: A review. Remote Sens. Appl. Soc. Environ. 2020, 20, 100402. [Google Scholar] [CrossRef]
- Corgne, S.; Magagi, R.; Yergeau, M.; Sylla, D. An integrated approach to hydro-geological lineament mapping of a semi-arid region of West Africa using Radarsat-1 and GIS. Remote Sens. Environ. 2010, 114, 1863–1875. [Google Scholar] [CrossRef]
- Si Mhamdi, H.; Raji, M.; Maimouni, S.; Oukassou, M. Fractures network mapping using remote sensing in the Paleozoic massif of Tichka (Western High Atlas, Morocco). Arab. J. Geosci. 2017, 10, 125. [Google Scholar] [CrossRef]
- Bentahar, I.; Raji, M. Comparison of Landsat OLI, ASTER, and Sentinel 2A data in lithological mapping: A Case study of Rich area (Central High Atlas, Morocco). Adv. Space Res. 2021, 67, 945–963. [Google Scholar] [CrossRef]
- Bachri, I.; Hakdaoui, M.; Raji, M.; Teodoro, A.C.; Benbouziane, A. Machine Learning Algorithms for Automatic Lithological Mapping Using Remote Sensing Data: A Case Study from Souk Arbaa Sahel, Sidi Ifni Inlier, Western Anti-Atlas, Morocco. ISPRS Int. J. Geo-Inf. 2019, 8, 248. [Google Scholar] [CrossRef]
- Amusuk, D.J.; Hashim, M.; Pour, A.B.; Musa, S.I. Utilization of Landsat-8 Data for Lithological Mapping of Basement Rocks of Plateau State North Central Nigeria. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 42, 335–337. [Google Scholar] [CrossRef]
- Shirmard, H.; Farahbakhsh, E.; Müller, R.D.; Chandra, R. A review of machine learning in processing remote sensing data for mineral exploration. Remote Sens. Environ. 2022, 268, 112750. [Google Scholar] [CrossRef]
- Wang, R.; Ziegler, M.; Volpi, M.; Manconi, A. Advanced identification of geological discontinuities with deep learning. Appl. Comput. Geosci. 2025, 27, 100256. [Google Scholar] [CrossRef]
- Yusof, N.; Ramli, M.F.; Pirasteh, S.; Shafri, H.Z.M. Landslides and lineament mapping along the Simpang Pulai to Kg Raja highway, Malaysia. Int. J. Remote Sens. 2011, 32, 4089–4105. [Google Scholar] [CrossRef]
- Marghany, M.; Hashim, M. Lineament Mapping Using Multispectral Remote Sensing Satellite Data. Res. J. Appl. Sci. 2010, 5, 126–130. [Google Scholar] [CrossRef]
- Takorabt, M.; Toubal, A.C.; Haddoum, H.; Zerrouk, S. Determining the role of lineaments in underground hydrodynamics using Landsat 7 ETM+ data, case of the Chott El Gharbi Basin (western Algeria). Arab. J. Geosci. 2018, 11, 76. [Google Scholar] [CrossRef]
- Ahmadi, H.; Pekkan, E. Fault-based geological lineaments extraction using remote sensing and gis—A review. Geosciences 2021, 11, 183. [Google Scholar] [CrossRef]
- Zoheir, B.; Emam, A.; Abdel-Wahed, M.; Soliman, N. Multispectral and Radar Data for the Setting of Gold Mineralization in the South Eastern Desert, Egypt. Remote Sens. 2019, 11, 1450. [Google Scholar] [CrossRef]
- Adhab, S.S. Lineament automatic extraction analysis for Galal Badra river basin using Landsat 8 satellite image. Iraqi J. Phys. 2019, 12, 44–55. [Google Scholar] [CrossRef]
- Soliman, A.; Han, L. Effects of vertical accuracy of digital elevation model (DEM) data on automatic lineaments extraction from shaded DEM. Adv. Space Res. 2019, 64, 603–622. [Google Scholar] [CrossRef]
- Caumon, G.; Collon-Drouaillet, P.; Le Carlier de Veslud, C.; Viseur, S.; Sausse, J. Surface-Based 3D Modeling of Geological Structures. Math. Geosci. 2009, 41, 927–945. [Google Scholar] [CrossRef]
- Elhag, M.; Alshamsi, D. Integration of remote sensing and geographic information systems for geological fault detection on the island of Crete, Greece. Geosci. Instrum. Methods Data Syst. 2019, 8, 45–54. [Google Scholar] [CrossRef]
- Aghaee, A.; Shamsipour, P.; Hood, S.; Haugaard, R. A convolutional neural network for semi-automated lineament detection and vectorisation of remote sensing data using probabilistic clustering: A method and a challenge. Comput. Geosci. 2021, 151, 104724. [Google Scholar] [CrossRef]
- Masoud, A.A.; Koike, K. Arid land salinization detected by remotely-sensed landcover changes: A case study in the Siwa region, NW Egypt. J. Arid Environ. 2006, 66, 151–167. [Google Scholar] [CrossRef]
- Radaideh, O.M.A.; Grasemann, B.; Melichar, R.; Mosar, J. Detection and analysis of morphotectonic features utilizing satellite remote sensing and GIS: An example in SW Jordan. Geomorphology 2016, 275, 58–79. [Google Scholar] [CrossRef]
- Laoufi, F.; Belbachir, A.-H.; Benabadji, N.; Zanoun, A. Une nouvelle méthode de cartographie de la région d’Oran (Algérie) à l’aide de la télédétection multispectrale. Comptes Rendus Geosci. 2011, 343, 653–663. [Google Scholar] [CrossRef]
- Masoud, A.; Koike, K. Applicability of computer-aided comprehensive tool (LINDA: LINeament Detection and Analysis) and shaded digital elevation model for characterizing and interpreting morphotectonic features from lineaments. Comput. Geosci. 2017, 106, 89–100. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.-X.; Laukamp, C.; West, G.; Gardoll, S. Quantified spatial relationships between gold mineralisation and key ore genesis controlling factors, and predictive mineralisation mapping, St Ives Goldfield, Western Australia. Ore Geol. Rev. 2013, 54, 157–166. [Google Scholar] [CrossRef]
- Jackisch, R.; Lorenz, S.; Kirsch, M.; Zimmermann, R.; Tusa, L.; Pirttijärvi, M.; Saartenoja, A.; Ugalde, H.; Madriz, Y.; Savolainen, M.; et al. Integrated Geological and Geophysical Mapping of a Carbonatite-Hosting Outcrop in Siilinjärvi, Finland, Using Unmanned Aerial Systems. Remote Sens. 2020, 12, 2998. [Google Scholar] [CrossRef]
- El Janati, M. Application of remotely sensed ASTER data in detecting alteration hosting Cu, Ag and Au bearing mineralized zones in Taghdout area, Central Anti-Atlas of Morocco. J. Afr. Earth Sci. 2019, 151, 95–106. [Google Scholar] [CrossRef]
- Sun, L.; Khan, S. Ground-based hyperspectral remote sensing of hydrocarbon-induced rock alterations at cement, Oklahoma. Mar. Pet. Geol. 2016, 77, 1243–1253. [Google Scholar] [CrossRef]
- Scafutto, R.D.M.; de Souza Filho, C.R.; de Oliveira, W.J. Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: Implications for onshore exploration and monitoring. ISPRS J. Photogramm. Remote Sens. 2017, 128, 146–157. [Google Scholar] [CrossRef]
- Diani, K.; Kacimi, I.; ElBelrhiti, H.; Zemzami, M.; Tabyaoui, H.; Masmoudi, L. Remote sensing and sig contribution for the identification of the fracturation influence on the drainage network architecture in the High Ziz River basin, Central High Atlas, Morocco. Limnol. Rev. 2019, 19, 149–158. [Google Scholar] [CrossRef]
- Saidi, A.; Bouramtane, T.; Achab, M.; El Janati, M.; Kassou, N.; Kacimi, I.; Tahiri, A.; Valles, V. The Hough transform algorithm coupled with spatial filtering for the study of geological structuring control on the drainage network: Application to the North Oulmes region, Morocco. Arab. J. Geosci. 2020, 13, 1026. [Google Scholar] [CrossRef]
- Bouramtane, T.; Kacimi, I.; Saidi, A.; Morarech, M.; Omari, K.; Kassou, N. Automatic detection and evaluation of geological linear features from remote sensing data using the hough transform algorithm in eastern anti-atlas (Morocco). In Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems, New York, NY, USA, 14–16 November 2017. [Google Scholar] [CrossRef]
- Sander, P. Lineaments in groundwater exploration: A review of applications and limitations. Hydrogeol. J. 2007, 15, 71–74. [Google Scholar] [CrossRef]
- Chandra, S.; Rao, V.A.; Krishnamurthy, N.S.; Dutta, S.; Ahmed, S. Integrated studies for characterization of lineaments used to locate groundwater potential zones in a hard rock region of Karnataka, India. Hydrogeol. J. 2006, 14, 1042–1051. [Google Scholar] [CrossRef]
- Ahmad, I.; Dar, M.A.; Andualem, T.G.; Teka, A.H. GIS-based multi-criteria evaluation of groundwater potential of the Beshilo River basin, Ethiopia. J. Afr. Earth Sci. 2020, 164, 103747. [Google Scholar] [CrossRef]
- Saepuloh, A.; Haeruddin, H.; Heriawan, M.N.; Kubo, T.; Koike, K.; Malik, D. Application of lineament density extracted from dual orbit of synthetic aperture radar (SAR) images to detecting fluids paths in the Wayang Windu geothermal field (West Java, Indonesia). Geothermics 2018, 72, 145–155. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; van Genderen, J. Detection of hydrothermal alteration zones in a tropical region using satellite remote sensing data: Bau goldfield, Sarawak, Malaysia. Ore Geol. Rev. 2013, 54, 181–196. [Google Scholar] [CrossRef]
- Ramli, M.F.; Yusof, N.; Yusoff, M.K.; Juahir, H.; Shafri, H.Z.M. Lineament mapping and its application in landslide hazard assessment: A review. Bull. Eng. Geol. Environ. 2010, 69, 215–233. [Google Scholar] [CrossRef]
- Geiß, C.; Taubenböck, H. Remote sensing contributing to assess earthquake risk: From a literature review towards a roadmap. Nat. Hazards 2013, 68, 7–48. [Google Scholar] [CrossRef]
- Dudhani, S.; Sinha, A.K.; Inamdar, S.S. Assessment of small hydropower potential using remote sensing data for sustainable development in India. Energy Policy 2006, 34, 3195–3205. [Google Scholar] [CrossRef]
- Abdelkareem, M.; Hamimi, Z.; El-Bialy, M.Z.; Khamis, H.; Abdel Wahed, S.A. Integration of remote-sensing data for mapping lithological and structural features in the Esh El-Mallaha area, west Gulf of Suez, Egypt. Arab. J. Geosci. 2021, 14, 497. [Google Scholar] [CrossRef]
- Panagiotakis, C.; Kokinou, E. Linear Pattern Detection of Geological Faults via a Topology and Shape Optimization Method. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 3–11. [Google Scholar] [CrossRef]
- Goetz, A.F.H.; Rowan, L.C. Geologic Remote Sensing. Science 1981, 211, 781–791. [Google Scholar] [CrossRef]
- Rezaei, A.; Hassani, H.; Moarefvand, P.; Golmohammadi, A. Lithological mapping in Sangan region in Northeast Iran using ASTER satellite data and image processing methods. Geol. Ecol. Landsc. 2020, 4, 59–70. [Google Scholar] [CrossRef]
- Ninomiya, Y.; Fu, B. Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials. Ore Geol. Rev. 2019, 108, 54–72. [Google Scholar] [CrossRef]
- Raharimahefa, T.; Kusky, T.M. Structural and remote sensing analysis of the Betsimisaraka Suture in northeastern Madagascar. Gondwana Res. 2009, 15, 14–27. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M. Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eastern Islamic Republic of Iran. J. Taibah Univ. Sci. 2015, 9, 155–166. [Google Scholar] [CrossRef]
- Jourda, J.P.; Kouamé, K.J.; Saley, M.B.; Kouadio, B.H.; Oga, Y.S.; Deh, S. Groundwater Pollution in Africa, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Xu, C.G.; Anwar, A. Based on the Decision Tree Classification of Remote Sensing Image Classification Method Application. Appl. Mech. Mater. 2013, 316–317, 193–196. [Google Scholar] [CrossRef]
- Abdelouhed, F.; Ahmed, A.; Abdellah, A.; Mohammed, I. Lineament mapping in the Ikniouen area (Eastern Anti-Atlas, Morocco) using Landsat-8 Oli and SRTM data. Remote Sens. Appl. Soc. Environ. 2021, 23, 100606. [Google Scholar] [CrossRef]
- HOBBS, W.H. Lineaments of the Atlantic Border region. Bull. Geol. Soc. Am. 1904, 15, 483–506. [Google Scholar] [CrossRef]
- Soto-Pinto, C.; Arellano-Baeza, A.; Sánchez, G. A new code for automatic detection and analysis of the lineament patterns for geophysical and geological purposes (ADALGEO). Comput. Geosci. 2013, 57, 93–103. [Google Scholar] [CrossRef]
- Koch, M.; Mather, P.M. Lineament mapping for groundwater resource assessment: A comparison of digital Synthetic Aperture Radar (SAR) imagery and stereoscopic Large Format Camera (LFC) photographs in the Red Sea Hills, Sudan. Int. J. Remote Sens. 1997, 18, 1465–1482. [Google Scholar] [CrossRef]
- Solomon, S.; Ghebreab, W. Lineament characterization and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea. J. Afr. Earth Sci. 2006, 46, 371–378. [Google Scholar] [CrossRef]
- Aretouyap, Z.; Billa, L.; Jones, M.; Richter, G. Geospatial and statistical interpretation of lineaments: Salinity intrusion in the Kribi-Campo coastland of Cameroon. Adv. Space Res. 2020, 66, 844–853. [Google Scholar] [CrossRef]
- Zeng, P.; Song, X.; Yang, H.; Wei, N.; Du, L. Digital Soil Mapping of Soil Organic Matter with Deep Learning Algorithms. ISPRS Int. J. Geo-Inf. 2022, 11, 299. [Google Scholar] [CrossRef]
- Ranjbari, M.R.; Vagheei, R.; Salehi, H. Integration of Landsat-8 and Sentinel-1 dataset to extract geological lineaments in complex formations of Tepal mountain area, Shahrood, north Iran. Adv. Space Res. 2023, 71, 936–945. [Google Scholar] [CrossRef]
- Shevyrev, S.L. Algorithmization of remote analysis of structural and material parageneses of gold ore regions. Vestn. VSU. Ser. Geol. 2017, 115–121. [Google Scholar]
- Verger, A.; Sánchez-Zapero, J.; Weiss, M.; Descals, A.; Camacho, F.; Lacaze, R.; Baret, F. GEOV2: Improved smoothed and gap filled time series of LAI, FAPAR and FCover 1 km Copernicus Global Land products. Int. J. Appl. Earth Obs. Geoinf. 2023, 123, 103479. [Google Scholar] [CrossRef]
- Haji, T.A.; Moumni, Y.; Msaddek, M.H. Fault-style analysis and seismic interpretation: Implications for the structural issues of the South-eastern Atlas in Tunisia. J. Afr. Earth Sci. 2020, 172, 103962. [Google Scholar] [CrossRef]
- You, Z.; Hao, Y.; Hu, W.; Shen, S.; Wu, P.; Li, Y. Strength analysis of hydrate-bearing sandy sediments in excess gas and excess water based on drained triaxial compression tests. Eng. Geol. 2023, 325, 107292. [Google Scholar] [CrossRef]
- Zhen, J.; Jiang, X.; Xu, Y.; Miao, J.; Zhao, D.; Wang, J.; Wang, J.; Wu, G. Mapping leaf chlorophyll content of mangrove forests with Sentinel-2 images of four periods. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102387. [Google Scholar] [CrossRef]
- Wei, R.; Ye, C.; Sui, T.; Zhang, H.; Ge, Y.; Li, Y. A feature enhancement framework for landslide detection. Int. J. Appl. Earth Obs. Geoinf. 2023, 124, 103521. [Google Scholar] [CrossRef]
- Gao, Y.; Sun, X.; Liu, C. A General Self-Supervised Framework for Remote Sensing Image Classification. Remote Sens. 2022, 14, 4824. [Google Scholar] [CrossRef]
- Javhar, A.; Chen, X.; Bao, A.; Jamshed, A.; Yunus, M.; Jovid, A.; Latipa, T. Comparison of Multi-Resolution Optical Landsat-8, Sentinel-2 and Radar Sentinel-1 Data for Automatic Lineament Extraction: A Case Study of Alichur Area, SE Pamir. Remote Sens. 2019, 11, 778. [Google Scholar] [CrossRef]
- Fu, B.; Ninomiya, Y.; Lei, X.; Toda, S.; Awata, Y. Mapping active fault associated with the 2003 Mw 6.6 Bam (SE Iran) earthquake with ASTER 3D images. Remote Sens. Environ. 2004, 92, 153–157. [Google Scholar] [CrossRef]
- Novak, I.D.; Soulakellis, N. Identifying geomorphic features using LANDSAT-5/TM data processing techniques on Lesvos, Greece. Geomorphology 2000, 34, 101–109. [Google Scholar] [CrossRef]
- Rajan Girija, R.; Mayappan, S. Mapping of mineral resources and lithological units: A review of remote sensing techniques. Int. J. Image Data Fusion 2019, 10, 79–106. [Google Scholar] [CrossRef]
- Rowan, L.C.; Mars, J.C. Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data. Remote Sens. Environ. 2003, 84, 350–366. [Google Scholar] [CrossRef]
- Abrams, M.; Blusson, A.; Carrere, V.; Nguyen, T.; Rabu, Y. Image processing applications for geologic mapping. IBM J. Res. Dev. 1985, 29, 177–187. [Google Scholar] [CrossRef]
- Vanderbrug, G.J. Line Detection in Satellite Imagery. IEEE Trans. Geosci. Electron. 1976, 14, 37–44. [Google Scholar] [CrossRef]
- Wang, J.; Howarth, P.J. Use of the Hough transform in automated lineament. IEEE Trans. Geosci. Remote Sens. 1990, 28, 561–567. [Google Scholar] [CrossRef]
- El-Qassas, R.A.Y.; Ahmed, S.B.; Abd-ElSalam, H.F.; Abu-Donia, A.M. Integrating of Remote Sensing and Airborne Magnetic Data to Outline the Geologic Structural Lineaments That Controlled Mineralization Deposits for the Area around Gabal El-Niteishat, Central Eastern Desert, Egypt. Geomaterials 2021, 11, 1–21. [Google Scholar] [CrossRef]
- Sichugova, L.V.; Jamolov, A.T.; Movlanov, J.J. Statistical Analysis of Lineaments Using Landsat 8 Data: A Case Study of The Fergana Valley (East Uzbekistan). Am. J. Appl. Sci. 2021, 3, 83–92. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M.; Ali, T.A. Automated detection of lineaments express geological linear features of a tropical region using topographic fabric grain algorithm and the SRTM DEM. Geocarto Int. 2021, 36, 76–95. [Google Scholar] [CrossRef]
- Adiri, Z.; El Harti, A.; Jellouli, A.; Lhissou, R.; Maacha, L.; Azmi, M.; Zouhair, M.; Bachaoui, E.M. Comparison of Landsat-8, ASTER and Sentinel 1 satellite remote sensing data in automatic lineaments extraction: A case study of Sidi Flah-Bouskour inlier, Moroccan Anti Atlas. Adv. Space Res. 2017, 60, 2355–2367. [Google Scholar] [CrossRef]
- Scheiber, T.; Fredin, O.; Viola, G.; Jarna, A.; Gasser, D.; Łapińska-Viola, R. Manual extraction of bedrock lineaments from high-resolution LiDAR data: Methodological bias and human perception. GFF 2015, 137, 362–372. [Google Scholar] [CrossRef]
- Ghosh, S.; Sivasankar, T.; Anand, G. Performance evaluation of multi-parametric synthetic aperture radar data for geological lineament extraction. Int. J. Remote Sens. 2021, 42, 2574–2593. [Google Scholar] [CrossRef]
- Abduh, A.G.; Usman, F.C.A.; Tampoy, W.M.; Manyoe, I.N. Remote Sensing Analysis of Lineaments using Multidirectional Shaded Relief from Digital Elevation Model (DEM) in Olele Area, Gorontalo. J. Phys. Conf. Ser. 2021, 1783, 012095. [Google Scholar] [CrossRef]
- Cetin, E.; Cakir, Z.; Meghraoui, M.; Ergintav, S.; Akoglu, A.M. Extent and distribution of aseismic slip on the Ismetpaşa segment of the North Anatolian Fault (Turkey) from Persistent Scatterer InSAR. Geochem. Geophys. Geosyst. 2014, 15, 2883–2894. [Google Scholar] [CrossRef]
- Elliott, J.R.; Biggs, J.; Parsons, B.; Wright, T.J. InSAR slip rate determination on the Altyn Tagh Fault, northern Tibet, in the presence of topographically correlated atmospheric delays. Geophys. Res. Lett. 2008, 35, L12309. [Google Scholar] [CrossRef]
- Hu, L.; Dai, K.; Xing, C.; Li, Z.; Tomás, R.; Clark, B.; Shi, X.; Chen, M.; Zhang, R.; Qiu, Q.; et al. Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101886. [Google Scholar] [CrossRef]
- Parcharidis, I.; Kokkalas, S.; Fountoulis, I.; Foumelis, M. Detection and Monitoring of Active Faults in Urban Environments: Time Series Interferometry on the Cities of Patras and Pyrgos (Peloponnese, Greece). Remote Sens. 2009, 1, 676–696. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.-H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in landslide investigations: A review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef]
- Börlin, N.; Grussenmeyer, P. Bundle Adjustment with and Without Damping. Photogramm. Rec. 2013, 28, 396–415. [Google Scholar] [CrossRef]
- Meade, B.J. Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space. Comput. Geosci. 2007, 33, 1064–1075. [Google Scholar] [CrossRef]
- Hamdani, N.; Baali, A. Fracture Network Mapping Using Landsat 8 OLI Data and Linkage with the Karst System: A Case Study of the Moroccan Central Middle Atlas. Remote Sens. Earth Syst. Sci. 2019, 2, 1–17. [Google Scholar] [CrossRef]
- Hajaj, S.; El Harti, A.; Jellouli, A. Assessment of Hyperspectral, Multispectral, Radar, and Digital Elevation Model data in structural lineaments mapping: A case study from Ameln valley shear zone, Western Anti-Atlas Morocco. Remote Sens. Appl. Soc. Environ. 2022, 27, 100819. [Google Scholar] [CrossRef]
- Guo, F.; Hu, D.; Schlink, U. A new nonlinear method for downscaling land surface temperature by integrating guided and Gaussian filtering. Remote Sens. Environ. 2022, 271, 112915. [Google Scholar] [CrossRef]
- Akshatha, K.R.; Karunakar, A.K.; Satish Shenoy, B.; Phani Pavan, K.; Dhareshwar, C.V.; Johnson, D.G. Manipal-UAV person detection dataset: A step towards benchmarking dataset and algorithms for small object detection. ISPRS J. Photogramm. Remote Sens. 2023, 195, 77–89. [Google Scholar] [CrossRef]
- Ge, W.; Cheng, Q.; Tang, Y.; Jing, L.; Gao, C. Lithological Classification Using Sentinel-2A Data in the Shibanjing Ophiolite Complex in Inner Mongolia, China. Remote Sens. 2018, 10, 638. [Google Scholar] [CrossRef]
- Ran, W.; Wang, J.; Yang, K.; Bai, L.; Rao, X.; Zhao, Z.; Xu, C. Raster Map Line Element Extraction Method Based on Improved U-Net Network. ISPRS Int. J. Geo-Inf. 2022, 11, 439. [Google Scholar] [CrossRef]
- Hakimi, M.H.; Najaf, A.A. Origin of crude oils from oilfields in the Zagros Fold Belt, southern Iraq: Relation to organic matter input and paleoenvironmental conditions. Mar. Pet. Geol. 2016, 78, 547–561. [Google Scholar] [CrossRef]
- Frankel, K.L.; Dolan, J.F.; Finkel, R.C.; Owen, L.A.; Hoeft, J.S. Spatial variations in slip rate along the Death Valley-Fish Lake Valley fault system determined from LiDAR topographic data and cosmogenic 10 Be geochronology. Geophys. Res. Lett. 2007, 34, L18303. [Google Scholar] [CrossRef]
- Dawson, C.W.; Wilby, R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 2001, 25, 80–108. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Ahmadi, S.A.; Amani, M.; Mohammadzadeh, A.; Jamali, S. Application of Artificial Neural Networks for Mangrove Mapping Using Multi-Temporal and Multi-Source Remote Sensing Imagery. Water 2022, 14, 244. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, H.; Wang, C.; Hou, Z.; Zheng, Z.; Shen, S.; Cheng, Q.; Feng, Z.; Wang, X.; Lv, H.; et al. Geoscience knowledge graph in the big data era. Sci. China Earth Sci. 2021, 64, 1105–1114. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, J.; Yang, J.; Wu, Z. Remote Sensing Image Scene Classification via Self-Supervised Learning and Knowledge Distillation. Remote Sens. 2022, 14, 4813. [Google Scholar] [CrossRef]
- Yin, J.; Wu, F.; Qiu, Y.; Li, A.; Liu, C.; Gong, X. A Multiscale and Multitask Deep Learning Framework for Automatic Building Extraction. Remote Sens. 2022, 14, 4744. [Google Scholar] [CrossRef]
- Wang, C.; Li, Y.; Chen, J.; Ma, X. Named entity annotation schema for geological literature mining in the domain of porphyry copper deposits. Ore Geol. Rev. 2023, 152, 105243. [Google Scholar] [CrossRef]
- Jellouli, A.; El Harti, A.; Adiri, Z.; Chakouri, M.; El Hachimi, J.; Bachaoui, E.M. Application of optical and radar satellite images for mapping tectonic lineaments in kerdous inlier of the Anti-Atlas belt, Morocco. Remote Sens. Appl. Soc. Environ. 2021, 22, 100509. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, M.; Wang, C.; Dong, S.; Chen, J.; Wang, J.; Yu, H.; Huang, J.; Chang, L.; Wang, B. GeoMinLM: A Large Language Model in Geology and Mineral Survey in Yunnan Province. Ore Geol. Rev. 2025, 182, 106638. [Google Scholar] [CrossRef]
- Qiu, Q.; Xie, Z.; Wu, L.; Tao, L.; Li, W. BiLSTM-CRF for geological named entity recognition from the geoscience literature. Earth Sci. Inform. 2019, 12, 565–579. [Google Scholar] [CrossRef]
- de la Varga, M.; Schaaf, A.; Wellmann, F. GemPy 1.0: Open-source stochastic geological modeling and inversion. Geosci. Model Dev. 2019, 12, 1–32. [Google Scholar] [CrossRef]
- Haneena Jasmine, P.; Arun, S. Machine learning applications in structural engineering—A review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1114, 012012. [Google Scholar] [CrossRef]
- Papadopoulos, C.; Spiliotis, M.; Pliakas, F.; Gkiougkis, I.; Kazakis, N.; Papadopoulos, B. Hybrid Fuzzy Multi-Criteria Analysis for Selecting Discrete Preferable Groundwater Recharge Sites. Water 2022, 14, 107. [Google Scholar] [CrossRef]
- Ma, X. Knowledge graph construction and application in geosciences: A review. Comput. Geosci. 2022, 161, 105082. [Google Scholar] [CrossRef]
- Greco, S.; Ehrgott, M.; Figueira, J.R. Multiple Criteria Decision Analysis; Springer: New York, NY, USA, 2016; Volume 233. [Google Scholar] [CrossRef]
- Martín-Martín, M.; Guerrera, F.; Cañaveras, J.C.; Alcalá, F.J.; Serrano, F.; Maaté, A.; Hlila, R.; Maaté, S.; Sánchez-Navas, A.; Miclăus, C.; et al. Miocene evolution of the External Rif Zone (Morocco): Comparison with similar and lateral southern Mediterranean Tethyan margins. Sediment. Geol. 2024, 464, 106619. [Google Scholar] [CrossRef]
- Guerrera, F.; Martín-Martín, M.; Tramontana, M. Evolutionary geological models of the central-western peri-Mediterranean chains: A review. Int. Geol. Rev. 2021, 63, 65–86. [Google Scholar] [CrossRef]
- Chalouan, A.; Michard, A.; Feinberg, H.; Montigny, R.; Saddiqi, O. La construction de la chaîne du Rif (Maroc): Un nouveau scenario tectonique. Bull. Soc. Geol. Fr. 2001, 172, 603–616. [Google Scholar] [CrossRef]
- Chalouan, A.; Michard, A.; El Kadiri, K.H.; Frizon de Lamotte, D.; Soto, J.I.; Saddiqi, O. Continental Evolution: The Geology of Morocco; Springer: Berlin/Heidelberg, Germany, 2008; Volume 116, p. 424. [Google Scholar]
- Criniti, S.; Martín-Martín, M.; Hlila, R.; Maaté, A.; Maaté, S. Detrital signatures of the Ghomaride Culm cycle (Rif Cordillera, N Morocco): New constraints for the northern Gondwana plate tectonics. Mar. Pet. Geol. 2024, 165, 106861. [Google Scholar] [CrossRef]
- Campbell, B.A. A rough-surface scattering function for Titan radar studies. Geophys. Res. Lett. 2007, 34, L14203. [Google Scholar] [CrossRef]
- Abrams, M.; Tsu, H.; Hulley, G.; Iwao, K.; Pieri, D.; Cudahy, T.; Kargel, J. The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) after fifteen years: Review of global products. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 292–301. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M. Structural geology mapping using PALSAR data in the Bau gold mining district, Sarawak, Malaysia. Adv. Space Res. 2014, 54, 644–654. [Google Scholar] [CrossRef]
- Moghtaderi, A.; Moore, F.; Mohammadzadeh, A. The application of advanced space-borne thermal emission and reflection (ASTER) radiometer data in the detection of alteration in the Chadormalu paleocrater, Bafq region, Central Iran. J. Asian Earth Sci. 2007, 30, 238–252. [Google Scholar] [CrossRef]
- Gad, S.; Kusky, T. ASTER spectral ratioing for lithological mapping in the Arabian–Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Res. 2007, 11, 326–335. [Google Scholar] [CrossRef]
- Di Tommaso, I.; Rubinstein, N. Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina. Ore Geol. Rev. 2007, 32, 275–290. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, Y.; Park, T.-Y.S.; Hong, J.K.; Hashim, M.; Woo, J.; Ayoobi, I. Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica. Polar Sci. 2018, 16, 23–46. [Google Scholar] [CrossRef]
- Amer, R.; Kusky, T.; El Mezayen, A. Remote sensing detection of gold related alteration zones in Um Rus area, Central Eastern Desert of Egypt. Adv. Space Res. 2012, 49, 121–134. [Google Scholar] [CrossRef]
- Suzen, M.L.; Toprak, V. Filtering of satellite images in geological lineament analyses: An application to a fault zone in Central Turkey. Int. J. Remote Sens. 1998, 19, 1101–1114. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Koike, K.; Nagano, S.; Ohmi, M. Lineament analysis of satellite images using a Segment Tracing Algorithm (STA). Comput. Geosci. 1995, 21, 1091–1104. [Google Scholar] [CrossRef]
- Shi, Z.; Fung, K.B. A comparison of digital speckle filters. In Proceedings of the IGARSS ‘94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; Volume 4, pp. 2129–2133. [Google Scholar] [CrossRef]
- Jordan, G.; Schott, B. Application of wavelet analysis to the study of spatial pattern of morphotectonic lineaments in digital terrain models. A case study. Remote Sens. Environ. 2005, 94, 31–38. [Google Scholar] [CrossRef]
- Perfetto, S.; Wilder, J.; Walther, D.B. Effects of Spatial Frequency Filtering Choices on the Perception of Filtered Images. Vision 2020, 4, 29. [Google Scholar] [CrossRef]
- Tu, J.; Yang, B. A Sobel-TV Based Hybrid Model for Robust Image Denoising. Appl. Math. 2014, 5, 1310–1316. [Google Scholar] [CrossRef]
- Favalli, M.; Fornaciai, A. Visualization and comparison of DEM-derived parameters. Application to volcanic areas. Geomorphology 2017, 290, 69–84. [Google Scholar] [CrossRef]
- Yeomans, C.M.; Head, M.; Lindsay, J.J. Application of the tilt derivative transform to bathymetric data for structural lineament mapping. J. Struct. Geol. 2021, 146, 104301. [Google Scholar] [CrossRef]
- Davies, E.R. Constraints on the design of template masks for edge detection. Pattern Recognit. Lett. 1986, 4, 111–120. [Google Scholar] [CrossRef]
- Rosenfeld, A. A nonlinear edge detection technique. Proc. IEEE 1970, 58, 814–816. [Google Scholar] [CrossRef]
- Davis, L.S. A survey of edge detection techniques. Comput. Graph. Image Process. 1975, 4, 248–270. [Google Scholar] [CrossRef]
- Grebby, S.; Cunningham, D.; Naden, J.; Tansey, K. Application of airborne LiDAR data and airborne multispectral imagery to structural mapping of the upper section of the Troodos ophiolite, Cyprus. Int. J. Earth Sci. 2012, 101, 1645–1660. [Google Scholar] [CrossRef]
- Rahnama, M.; Gloaguen, R. TecLines: A MATLAB-Based Toolbox for Tectonic Lineament Analysis from Satellite Images and DEMs, Part 1: Line Segment Detection and Extraction. Remote Sens. 2014, 6, 5938–5958. [Google Scholar] [CrossRef]
- Farahbakhsh, E.; Chandra, R.; Olierook, H.K.; Scalzo, R.; Clark, C.; Reddy, S.M.; Müller, R.D. Computer vision-based framework for extracting tectonic lineaments from optical remote sensing data. Int. J. Remote Sens. 2020, 41, 1760–1787. [Google Scholar] [CrossRef]
- Marr, D.; Hildreth, E. Theory of edge detection. Proc. R. Soc. London Ser. B Biol. Sci. 1980, 207, 187–217. [Google Scholar] [CrossRef]
- Chorowicz, J.; Rouis, T.; Rudant, J.-P.; Manoussis, S. Computer Aided Recognition of Relief Patterns on Radar Images Using a Syntax Analysis. Remote Sens. Environ. 1998, 64, 221–233. [Google Scholar] [CrossRef]
- Zlatopolsky, A.A. Program LESSA (Lineament Extraction and Stripe Statistical Analysis) automated linear image features analysis—Experimental results. Comput. Geosci. 1992, 18, 1121–1126. [Google Scholar] [CrossRef]
- Akram, M.S.; Mirza, K.; Zeeshan, M.; Ali, I. Correlation of Tectonics with Geologic Lineaments Interpreted from Remote Sensing Data for Kandiah Valley, Khyber-Pakhtunkhwa, Pakistan. J. Geol. Soc. India 2019, 93, 607–613. [Google Scholar] [CrossRef]
- Gannouni, S.; Gabtni, H. Structural Interpretation of Lineaments by Satellite Image Processing (Landsat TM) in the Region of Zahret Medien (Northern Tunisia). J. Geogr. Inf. Syst. 2015, 7, 119–127. [Google Scholar] [CrossRef]
- Martin, D.M.; Smith, D.R. Comparing SMART and ELECTRE methods for multi-criteria decision analysis: A case study evaluating conservation strategies. Environ. Sustain. Indic. 2025, 27, 100764. [Google Scholar] [CrossRef]
- Choo, E.U.; Schoner, B.; Wedley, W.C. Interpretation of criteria weights in multicriteria decision making. Comput. Ind. Eng. 1999, 37, 527–541. [Google Scholar] [CrossRef]
- Hung, L.Q.; Batelaan, O.; De Smedt, F. Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam. Proc. SPIE 2005, 5983, 59830T. [Google Scholar] [CrossRef]
- Rafiq, J.; Abu-Mahfouz, I.S.; Chavanidis, K.; Arrofi, D.; Soupios, P. Spatial distribution of structural lineaments in the Al-Lith geothermal field, western Saudi Arabia: Remote sensing and aeromagnetic data analysis. J. Asian Earth Sci. X 2025, 13, 100191. [Google Scholar] [CrossRef]
Boundary Coordinates (m) | Area (m2) | ||||
---|---|---|---|---|---|
X1 | X2 | Y1 | Y2 | ||
Study area | 495,100 | 532,850 | 488,650 | 543,500 | 1,978,421,419 |
Zone A | 495,100 | 513,545 | 516,175 | 543,500 | 504,807,018 |
Zone B | 513,545 | 532,850 | 516,175 | 543,500 | 458,228,620 |
Zone C | 495,100 | 513,545 | 488,650 | 516,175 | 509,789,361 |
Zone D | 513,545 | 532,850 | 488,650 | 516,175 | 505,596,420 |
Oued-Laou Watershed | 495,100 | 529,525 | 490,073 | 542,627 | 937,603,657 |
Gomarides and Septides Complex | Dorsale Calcaire Complex | Flyschs and External Domains | Zone C | Total Study Area | |
---|---|---|---|---|---|
Area (km2) | 314.49 | 707.84 | 955.92 | 509.79 | 1978.25 |
Poucent/Study area | 15.90% | 35.78% | 48.32% | 25.77% | 100% |
Structures Count | 99 | 1015 | 240 | 17 | 1354 |
Faults | 34 | 493 | 152 | 0 | 678 |
Thrusts | 65 | 522 | 88 | 17 | 676 |
Length Struct Min | 15 | 14 | 46 | - | 14 |
Length Struct Max | 6722 | 8973 | 11,419 | 11,419 | 11,419 |
Length Struct Mean | 786 | 695 | 1709 | 1839 | 876 |
Length Struct Sum | 108,632 | 246,679 | 327,974 | 32,662 | 118,780 |
RS Data | Acquisition Date | Number | ID_Products |
---|---|---|---|
Landsat-8 OLI | 18 August 2021 | 2 | LC08_L1TP_201035_20210808_20210818_01_T1 |
LC08_L1TP_201036_20210808_20210818_01_T1 | |||
Sentinel-1 B | 16 August 2021 | 1 | S1B_IW_GRDH_1SDV_20210816T181728_20210816T181753_028275_035FA5_0653 |
Sentinel-2 A | 6 August 2021 | 4 | S2A_OPER_MSI_L1C_TL_VGS2_ 20210806T130919_A031980_T30STE |
S2A_OPER_MSI_L1C_TL_VGS2_ 20210806T130919_A031980_T30SUD | |||
S2A_OPER_MSI_L1C_TL_VGS2_ 20210806T130919_A031980_T30SUE | |||
S2A_OPER_MSI_L1C_TL_VGS2_ 20210806T130919_A031980_T30STD | |||
ASTER-GDEM | 19 January 2021 | 1 | ASTGTM_N35W006 |
Remote Sensing Data | ||||
---|---|---|---|---|
Landsat-8 OLI | Sentinel-1B | Sentinel-2A | ||
SL mapping | Method 1 | LinMap/Method1_OLI | LinMap/Method1_S1B | LinMap/Method1_S2A |
Method 2 | LinMap/Method2_OLI | LinMap/Method2_S1B | LinMap/Method2_S2A | |
Method 3-S | LinMap/Method3_OLI_B7_SF | LinMap/Method3_S1B_VV_SF | LinMap/Method3_S2A_B12_SF | |
Method 3-L | LinMap/Method3_OLI_B7_LF | LinMap/Method3_S1B_VV_LF | LinMap/Method3_S2A_B12_LF | |
Method 3-K | LinMap/Method3_OLI_B7_KF | LinMap/Method3_S1B_VV_KF | LinMap/Method3_S2A_B12_KF |
Objectives | Criteria | Units of Measurement | Min Value | Max Value | Very Satisfactory Criteria | Slightly Satisfactory Criteria | Not Satisfactory Criteria |
---|---|---|---|---|---|---|---|
Code-Value | Code-Value | Code-Value | |||||
//Good!// SL Statistics | SL_Count | number | 74 | 8509 | 2 | 1 | 0 |
SL_Sum_Length | Meters | 132,591 | 5,030,777 | 2 | 1 | 0 | |
SL_Length_Min | Meters | 116 | 1814 | 2 | 1 | 0 | |
SL_Length_Max | Meters | 2119 | 10,060 | 2 | 1 | 0 | |
SL_Length_Mean | Meters | 518 | 3009 | 2 | 1 | 0 | |
SL_Length_CI | Meters | 514 | 2896 | 2 | 1 | 0 | |
//Good!// SL Orientation | Vector_Mean | Degrees | 0.2 | 179.4 | 6 | 3 | 0 |
Vector_CI | Degrees | 0.5 | 150.2 | 6 | 3 | 0 | |
//Good!// SL Density | Density_Max | km/km2 | 0.79 | 10.15 | 6 | 3 | 0 |
Density_Mean | km/km2 | 0.07 | 2.38 | 6 | 3 | 0 | |
//Good!// Correlation Coefficient | DCC_Zone-A | % | 4.1 | 69.4 | 4 | 2 | 0 |
DCC_Zone-B | % | 4.1 | 72.8 | 4 | 2 | 0 | |
DCC_Zone-D | % | 1.0 | 67.9 | 4 | 2 | 0 |
FT-SL Maps (/Method/RSD/(Filter)) | Count | SumL (m) | LMin (m) | LMax (m) | LM (m) | LRSD (%) | CI1 (%) | CI2 (%) |
---|---|---|---|---|---|---|---|---|
Method_1/OLI_data | 78 | 132,591 | 232 | 3974 | 1722 | 42% | 9% | 13% |
OLI_data/AutoExtract | 4039 | 5,923,825 | 899 | 10,060 | 1467 | 43% | ||
Method_2/OLI_data | 2037 | 2,952,314 | 899 | 5145 | 1449 | 41% | 2% | 35% |
Method_3/OLI_B7_data/Sobel_filter | 508 | 748,677 | 900 | 10,010 | 1483 | 48% | 3% | 18% |
Method_3/OLI_B7_data/Laplacian_filter | 151 | 228,568 | 901 | 8720 | 1513 | 58% | 1% | 14% |
Method_3/OLI_B7_data/Kuan_filter | 522 | 763,294 | 900 | 10,012 | 1462 | 46% | 5% | 9% |
Method_1/S1B_data | 428 | 647,309 | 116 | 7722 | 1512 | 65% | 6% | 9% |
S1B_data/AutoExtract | 13,938 | 777,408 | 238 | 5450 | 558 | 59% | ||
Method_2/S1B_data | 7330 | 3,910,088 | 238 | 4961 | 536 | 57% | 1% | 2% |
Method_3/S1B_VV_data/Sobel_filter | 8126 | 4,826,801 | 239 | 3775 | 594 | 61% | 1% | 2% |
Method_3/S1B_VV_data/Laplacian_filter | 8509 | 5,030,777 | 239 | 5049 | 591 | 61% | 1% | 2% |
Method_3/S1B_VV_data/Kuan_filter | 6085 | 3,198,089 | 238 | 2119 | 518 | 53% | 3% | 11% |
Method_1/S2A_data | 74 | 142,913 | 378 | 5240 | 1931 | 42% | 12% | 23% |
S2A_data/AutoExtract | 1437 | 4,125,064 | 1800 | 13,236 | 2871 | 45% | ||
Method_2/S2A_data | 752 | 2,135,575 | 1800 | 8578 | 2665 | 32% | 3% | 5% |
Method_3/S2A_B12_data/Sobel_filter | 150 | 442,284 | 1802 | 9809 | 2949 | 43% | 11% | 13% |
Method_3/S2A_B12_data/Laplacian_filter | 152 | 445,882 | 1809 | 9451 | 2933 | 42% | 11% | 14% |
Method_3/S2A_B12_data/Kuan_filter | 137 | 412,265 | 1814 | 9451 | 3009 | 44% | 9% | 15% |
Geostructures/Geological maps | 1354 | 1,186,899 | 15 | 11,419 | 877 |
FT-SL Maps (/Method/RSD/(Filter)) | Vector Mean | Confidence Interval |
---|---|---|
Method_1/OLI_data | 101.7 | 35.8 |
Method_2/OLI_data | 20.6 | 6.3 |
Method_3/OLI_B7_data/Sobel_filter | 160.1 | 150.2 |
Method_3/OLI_B7_data/Laplacian_filter | 126.2 | 25.6 |
Method_3/OLI_B7_data/Kuan_filter | 172.6 | 53.7 |
Mean/OLI_data | 152.2 | 54.3 |
Method_1/S1B_data | 151.6 | 3.5 |
Method_2/S1B_data | 178.3 | 2.7 |
Method_3/S1B_VV_data/Sobel_filter | 0.3 | 0.5 |
Method_3/S1B_VV_data/Laplacian_filter | 0.2 | 0.5 |
Method_3/S1B_VV_data/Kuan_filter | 179.4 | 0.5 |
Mean/S1B_data | 174.0 | 1.5 |
Method_1/S2A_data | 130.9 | 27.2 |
Method_2/S2A_data | 174.9 | 12.2 |
Method_3/S2A_B12_data/Sobel_filter | 164.3 | 52.5 |
Method_3/S2A_B12_data/Laplacian_filter | 169.1 | 33.5 |
Method_3/S2A_B12_data/Kuan_filter | 141.2 | 89.2 |
Mean/S2A_data | 156.1 | 42.9 |
Geostructures/Geological maps | 144.3 | 3.8 |
FT-SL Maps (/Method/RSD/(Filter)) | Density_Min (km/km2) | Density_Max (km/km2) | Density_Mean (km/km2) | Density_Ratio |
---|---|---|---|---|
Method_1/OLI_data | 0 | 0.793 | 0.064 | 11% |
Method_2/OLI_data | 0 | 5.079 | 1.284 | 222% |
Method_3/OLI_B7_data/Sobel_filter | 0 | 2.838 | 0.416 | 72.0% |
Method_3/OLI_B7_data/Laplacian_filter | 0 | 1.662 | 0.355 | 61.5% |
Method_3/OLI_B7_data/Kuan_filter | 0 | 1.88 | 0.362 | 62.7% |
Mean/OLI_data | 0 | 2.450 | 0.496 | 86% |
Method_1/S1B_data | 0 | 1.66 | 0.31 | 54% |
Method_2/S1B_data | 0 | 7.26 | 1.90 | 329% |
Method_3/S1B_VV_data/Sobel_filter | 0 | 5.82 | 2.268 | 393.5% |
Method_3/S1B_VV_data/Laplacian_filter | 0 | 6.02 | 2.363 | 409.9% |
Method_3/S1B_VV_data/Kuan_filter | 0 | 8.97 | 1.484 | 257.4% |
Mean/S1B_data | 0 | 5.946 | 1.665 | 289% |
Method_1/S2A_data | 0 | 0.79 | 0.07 | 12% |
Method_2/S2A_data | 0 | 10.15 | 0.83 | 140% |
Method_3/S2A_B12_data/Sobel_filter | 0 | 1.21 | 0.216 | 36.7% |
Method_3/S2A_B12_data/Laplacian_filter | 0 | 1.18 | 0.219 | 37.2% |
Method_3/S2A_B12_data/Kuan_filter | 0 | 1.21 | 0.2038 | 34.5% |
Mean/S2A_data | 0 | 2.908 | 0.308 | 52% |
Geostructures/Geological maps | 0 | 3.676 | 0.578 |
FT-SL Maps (/Method/RSD/(Filter)) | DCC Zone A | DCC Zone B | DCC Zone D | DCC Zones ABD |
---|---|---|---|---|
Method_1/OLI_data | 0.271 | 0.171 | 0.245 | 0.229 |
Method_2/OLI_data | 0.299 | 0.374 | 0.414 | 0.363 |
Method_3/OLI_B7_data/Sobel_filter | 0.242 | 0.077 | 0.183 | 0.167 |
Method_3/OLI_B7_data/Laplacian_filter | 0.041 | 0.041 | 0.142 | 0.048 |
Method_3/OLI_B7_data/Kuan_filter | 0.188 | 0.066 | 0.221 | 0.158 |
Mean_Methods/OLI_data | 0.208 | 0.146 | 0.241 | 0.193 |
Method_1/S1B_data | 0.387 | 0.250 | 0.585 | 0.407 |
Method_2/S1B_data | 0.694 | 0.728 | 0.679 | 0.700 |
Method_3/S1B_VV_data/Sobel_filter | 0.343 | 0.266 | 0.180 | 0.263 |
Method_3/S1B_VV_data/Laplacian_filter | 0.323 | 0.280 | 0.183 | 0.262 |
Method_3/S1B_VV_data/Kuan_filter | 0.281 | 0.264 | 0.287 | 0.278 |
Mean_Methods/S1B_data | 0.406 | 0.358 | 0.383 | 0.382 |
Method_1/S2A_data | 0.321 | 0.301 | 0.251 | 0.291 |
Method_2/S2A_data | 0.324 | 0.401 | 0.401 | 0.376 |
Method_3/S2A_B12_data/Sobel_filter | 0.267 | 0.186 | 0.083 | 0.179 |
Method_3/S2A_B12_data/Laplacian_filter | 0.258 | 0.167 | 0.01 | 0.138 |
Method_3/S2A_B12_data/Kuan_filter | 0.225 | 0.214 | 0.029 | 0.156 |
Mean_Methods/S2A_data | 0.279 | 0.254 | 0.155 | 0.228 |
FT-SL Maps (/Method/RSD) | Objective 1 | Objective 2 | Objective 3 | Objective 4 | MCDA Score/Method | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SL_Count | SL_Sum_Length | SL_Length_Min | SL_Length_Max | SL_Length_Mean | SL_Length_CI | Vector_Mean | Vector_CI | Density_Max | Density_Mean | DCC_Zone-A | DCC_Zone-B | DCC_Zone-D | ||||
Method_1/OLI_data | 10 | |||||||||||||||
Method_2/OLI_data | 30 | |||||||||||||||
Method_3/OLI_B7/Sobel_f | 22 | |||||||||||||||
Method_3/OLI_B7/Laplac_f | 15 | |||||||||||||||
Method_3/OLI_B7/Kuan_f | 16 | |||||||||||||||
Method_1/S1B_data | 35 | |||||||||||||||
Method_2/S1B_data | 24 | |||||||||||||||
Method_3/S1B_VV/Sobel_f | 17 | |||||||||||||||
Method_3/S1B_VV/Laplac_f | 17 | |||||||||||||||
Method_3/S1B_VV/Kuan_f | 21 | |||||||||||||||
Method_1/S2A_data | 17 | |||||||||||||||
Method_2/S2A_data | 29 | |||||||||||||||
Method_3/S2A_B12/Sobel_f | 15 | |||||||||||||||
Method_3/S2A_B12/Laplac_f | 14 | |||||||||||||||
Method_3/S2A_B12/Kuan_f | 15 | |||||||||||||||
MCDA Score/Criteria | 5 | 5 | 18 | 13 | 9 | 14 | 54 | 54 | 33 | 33 | 22 | 18 | 16 | |||
MCDA Score/Objective | 64 | 108 | 66 | 56 | ||||||||||||
Very satisfactory criteria | Slightly satisfactory Criteria | Not satisfactory Criteria |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alaoui, M.M.; Kacimi, I.; Diani, K.; Morarech, M.; Soulaimani, S.; Elhag, M. Integrating Remote Sensing and Knowledge-Based Systems for Structural Lineament Mapping in the Rif Belt. Geosciences 2025, 15, 336. https://doi.org/10.3390/geosciences15090336
Alaoui MM, Kacimi I, Diani K, Morarech M, Soulaimani S, Elhag M. Integrating Remote Sensing and Knowledge-Based Systems for Structural Lineament Mapping in the Rif Belt. Geosciences. 2025; 15(9):336. https://doi.org/10.3390/geosciences15090336
Chicago/Turabian StyleAlaoui, Meriyam Mhammdi, Ilias Kacimi, Khadija Diani, Moad Morarech, Saâd Soulaimani, and Mohammed Elhag. 2025. "Integrating Remote Sensing and Knowledge-Based Systems for Structural Lineament Mapping in the Rif Belt" Geosciences 15, no. 9: 336. https://doi.org/10.3390/geosciences15090336
APA StyleAlaoui, M. M., Kacimi, I., Diani, K., Morarech, M., Soulaimani, S., & Elhag, M. (2025). Integrating Remote Sensing and Knowledge-Based Systems for Structural Lineament Mapping in the Rif Belt. Geosciences, 15(9), 336. https://doi.org/10.3390/geosciences15090336