Previous Article in Journal
Short-Term Geomorphological Changes of the Sabato River (Southern Italy)
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Pliocene Marine Bivalvia from Vale Farpado (Pombal, Portugal): Palaeoenvironmental and Palaecological Significance

by
Ricardo J. Pimentel
1,2,*,
Pedro M. Callapez
1,2,3,
Mahima Pai
4,
Paulo Legoinha
5 and
Pedro A. Dinis
3,6
1
Grupo de Investigación PaleoIbérica, Departamento de Geología, Geografía y Medio Ambiente, Universidad de Alcalá, 28805 Alcalá de Henares, Spain
2
CITEUC—Centro de Investigação da Terra e do Espaço, Departamento de Ciências da Terra, Universidade de Coimbra, 3030-790 Coimbra, Portugal
3
Departamento de Ciências da Terra, Universidade de Coimbra, 3030-790 Coimbra, Portugal
4
Laboratory of Paleoceanography, Institute of Oceanology Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
5
GEOBIOTEC, Departamento de Ciências da Terra, NOVA FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
6
MARE—Centro de Ciências do Mar e do Ambiente, Departamento de Ciências da Terra, Universidade de Coimbra, 3030-790 Coimbra, Portugal
*
Author to whom correspondence should be addressed.
Geosciences 2025, 15(8), 309; https://doi.org/10.3390/geosciences15080309
Submission received: 30 June 2025 / Revised: 30 July 2025 / Accepted: 6 August 2025 / Published: 8 August 2025
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)

Abstract

The western Iberian marine Pliocene represents a key transitional zone between tropical and boreal molluscan faunas. Recent studies at the rediscovered fossil locality of Vale Farpado have yielded 34 bivalve species, distributed among 18 families. The most diverse families identified are Veneridae and Pectinidae. The assemblage is predominantly composed of suspension- and deposit-feeding taxa, with no evidence of carnivorous feeding strategies. Most taxa exhibit an infaunal life habitat. Initial colonising bivalve communities inhabited mobile, gravel-dominated substrates, where coarse clasts and disarticulated bioclasts provided stable microhabitats for epifaunal species. Over time, later assemblages became established, primarily on sandy substrates. Palaeoenvironmental indicators, including molluscs and foraminifera, suggest that these benthic communities occupied the infralittoral zone, at depths generally shallower than 30 metres, and the sea surface temperatures were broadly subtropical. However, periodic incursions of cooler, nutrient-rich waters driven by upwelling systems influenced local conditions, enhancing primary productivity and supporting a taxonomically rich and ecologically complex benthic ecosystem. The bivalve assemblages of Vale Farpado thus contribute valuable insights into the palaeoecology and biogeographical dynamics of the Pliocene North Atlantic, particularly in the context of sea surface temperature gradients and bivalve faunal interchange between temperate and tropical marine realms.

1. Introduction

The first mentions of the existence of Pliocene marine units with invertebrate assemblages, including mollusc bivalves, in mainland Portugal, date back to the late 19th century and reveal the existence of several exposures north of the Tagus River, near diapiric areas of the Mesozoic Lusitanian Basin [1]. In the first decade of the 20th century, a significant systematic and stratigraphic study was made on the bivalves found in these Pliocene contexts located between the regions of Caldas da Rainha and Leiria from the onshore of the West Portuguese Margin (WPM) [2]. This was achieved through extensive fieldwork and palaeontological sampling made by the Geological Commission of Portugal, which resulted in the creation of a large collection with Piacenzian faunas housed in the museum of the Geological Survey, in Lisbon. By the 1930s, newly discovered Pliocene fossil sites in the Marinha Grande coastal area led to a collaboration with Reginal Cox (1897–1965), a leading palaeontologist of the British Museum (Natural History), and resulted in the publication of new works, one of which described bivalve molluscs [3].
Subsequently, during the 1950s, an extensive campaign of cartographic work for the 1:50,000 geological mapping of the Mondego basin (west-central Portugal) led to the discovery of several Pliocene fossil sites in the Carnide area (Pombal), which yielded rich and diverse assemblages of marine molluscs, including many bivalves, all of which are correlative to those of Caldas da Rainha [4].
The discovery of the Vale do Freixo fossil site (Pombal) in the 1980s [5] gave new impetus to the study of the Pliocene marine molluscs in Portugal, particularly gastropods (e.g., [6,7,8,9,10,11,12]), bivalves [13,14,15,16], and polyplacophorans [17,18]. At Vale do Freixo, scaphopod molluscs are also represented, alongside other invertebrate groups such as anthozoans, bryozoans, serpulids, brachiopods, echinoids [7,19], and barnacles [20]. Vertebrate studies at Vale do Freixo have focused on fish otoliths [21], and pollen and dinoflagellate analysis have also been carried out (e.g., [5,22]).
The Pliocene age of the Vale do Freixo assemblage is based on studies of calcareous nannofossils [23], which identified the CN12a biozone of Okada and Bukry [24]. Furthermore, based on the gastropod assemblage, Vale do Freixo has been assigned to the uppermost Zanclean to lower Piacenzian [5,7,9]. Isotopic data (87Sr/86Sr) obtained from valves of Lissochlamys excisa (Bronn, 1831) [25] placed the lower boundary at 3.52 Ma (Piacenzian) [7].
The original Pliocene fossil sites documented in the cartographic works of the 1950s were progressively lost during the following years, covered by natural slope deposits, local roads or buildings, or difficult to access due to vegetation cover and landscape changes. However, fieldwork conducted from 2019 onwards enabled the re-identification of the Vale Farpado fossil beds. The present work aims to update the taxonomic list of bivalve molluscs found at this fossil site, building upon previous studies of correlative assemblages represented at Vale do Freixo [13,14,15,16]—the most recently discovered and the most studied fossil site of this age in the county. Simultaneously, this work seeks to draw general palaeoenvironmental conclusions and relate them to other investigations carried out at Vale Farpado, particularly those focusing on foraminifera [26,27,28,29,30]. Moreover, an analysis of the Pliocene bivalve assemblages known from the onshore of the WPM, in comparison with contemporary counterparts, offers valuable insights into the prospective composition of forthcoming changes with “warm guests” in the bivalve communities of the west Iberian seashore as a response to ongoing global warming [31].

2. Geographical and Stratigraphical Settings

The fossil site of Vale Farpado was found in a woodland area located about 2 km WNW of the rural village of Carnide (Pombal municipality, west-central Portugal) (Figure 1a,b). The study outcrop is exposed along a local forest trail, on the western side of the Carnide Valley, at the coordinates: 39°53′46.91″ N; 008°45′22.42″ W.
The fossiliferous beds belong to the Carnide Formation and are locally subhorizontal and rest unconformably upon middle Miocene lacustrine claystones from the Amor Formation [32,33,34] (Figure 2). The 1:50.000 Geological Map of Portugal (sheet 23-A, Pombal) identifies this unit as the lower part of the Pliocene regional stratigraphic succession known as “P—Marine Pliocene of the Carnide Valley” [35].
As in other correlative fossil sites with marine assemblages of the Carnide parish area, the lithofacies association is siliciclastic and finning-upwards in nature (Figure 2 and Figure 3a,b). The stratigraphic record is organised as a transgressive parasequence lying over a thick non-marine clayish bed (bed “1”) (Figure 2). It consists of a continuous, 0.50 m thick condensed bed (bed “2”), highly fossiliferous, beginning with a 0.15 m thick basal conglomerate rich in well-rounded clasts of basic rocks, quartz, and quartzite, along with pavements and lenses of disarticulated valves of medium-to large-sized bivalves, mostly belonging to genera Pecten and Ostrea (Figure 2 and Figure 3c,e). This is followed by greyish, fine to very fine sands (0.35 m thick), characterised by poorly sorted and highly asymmetrical grains [30] (Figure 2 and Figure 3c,d). Bed “2” is overlain by a three-centimetre-thick layer of dark grey claystone (bed “3”) (Figure 2). Bed “4” (0.25 m) consists of fine-grained yellow to light brown fossiliferous sands containing abundant articulated specimens of Lissochlamys excisa (Figure 2). The top of the fossiliferous section at Vale Farpado is covered by a siliciclastic unit composed of well-sorted siltstones and finely graded sandstones [30] (Figure 2).
The age of the Vale Farpado marine assemblage, based on calcareous nannofossils [5], lies between the NN16 and NN18 biozones [36], corresponding roughly to a timespan from the late Zanclean to the Gelasian (Pleistocene). Pai [30] discusses the occurrence of Globigerinella obesa (Bolli, 1957) [37] in fossiliferous beds “2” to “4”, and also the presence of Globigerinella pseudobesa (Salvatorini, 1967) [38], who suggests that a Zanclean age cannot be excluded (cf. [39,40]).

3. Material and Methods

Due to the extensive changes that occurred in the local agricultural landscape during the 1970s and 1980s, which resulted in the widespread establishment of eucalyptus plantations, a detailed fieldwork recognition was necessary to identify outcrops with the Carnide Formation and new exposures at Vale Farpado. Bivalve sampling was conducted in each bed, following the stratigraphic section. Large specimens were individually extracted from the outcrop. A 10 kg volumetric bulk sample was collected from beds “2” and “4” (Figure 2 and Figure 3). Fieldwork also included taphonomic observations.
In the laboratory, individual fossil shells were prepared using dry-cleaning methods. The bulk samples were washed through a column of sieves with mesh sizes ranging from 2 mm to 0.125 mm. Macro- and microfossils from these fractions were picked using a binocular stereomicroscope Nikon© SMZ800 and photographed with a Canon© EOS 550D camera with a Sigma© 50 mm F2.8 DG macro lens available at the Earth Sciences Department, University of Coimbra, Portugal. The studied specimens were numbered and catalogued and are housed (with other additional unnumbered Mollusca shell remains from the same locality) in the Vale Farpado palaeontological collections of the Department of Earth Sciences, University of Coimbra (DCT-VFp), Portugal. Bivalvia systematics mainly follows Bieler et al. [41,42], Carter et al. [43], and Huber [44] for Tellinidae and Pérez [45] for Carditidae. For the specific determination of the bivalve assemblage, we referred to the works of Brocchi [46], Chirli [47,48,49], Dollfus and Cotter [2], Holmes [50], Huber [44,51], La Perna [52,53], Lauriat-Rage [54,55,56], Lozano-Francisco [57], Pimentel [13], Pimentel et al. [16], and Sacco [58,59,60,61,62,63,64]. For the Gastropoda, we follow the work of Silva [7]. The compilation of comparative tables detailing the diversity of Portuguese Pliocene bivalves was undertaken based on a comprehensive review of published studies concerning Pliocene marine stratigraphic units located north of the River Tagus [1,2,3,13,14,16,35,65,66,67,68].

4. Systematic Palaeontology

This study is based on a total of 354 bivalve specimens (Figure 4), the majority of which are disarticulated valves; only six individuals are preserved in articulation. Indeterminate and highly fragmented material was excluded from the dataset. Two specimens assigned to the Tellinidae, one to Ensis sp., two to Gari sp., and two to Spisula sp. could not be identified to species level due to the inaccessibility of diagnostic morphological features, and therefore are not included in the taxonomic checklist. The most abundant taxa from the study collection are Lissochlamys excisa (84 specimens, including two articulated individuals), Megacardita striatissima (64), Pecten benedictus (44), Glycymeris glycymeris (36), Ostrea edulis (19), and Laevastarte fusca (18). The Bivalvia checklist from Vale Farpado comprises 34 species distributed by 18 families, with the most diverse being Veneridae (six species) and Pectinidae (four species).
Class: Bivalvia Linnaeus, 1758 [69]
  Subclass: Protobranchia Pelseneer, 1889 [70]
     Order: Nuculida Dall, 1889 [71]
       Superfamily: Nuculoidea Gray, 1824 [72]
           Family: Nuculidae Gray, 1824 [72]
                Genus Ennucula Iredale, 1931 [73]
                   Ennucula laevigata (J. Sowerby, 1818) [74]
                Genus: Nucula Lamarck, 1799 [75]
                   Nucula nucleus (Linnaeus, 1758) [69]

     Order: Nuculanida J.G. Carter, D.C. Campbell and M.R. Campbell, 2000 [76]
       Superfamily: Nuculanoidea H. Adams and A. Adams, 1858 [77]
           Family: Nuculanidae H. Adams and A. Adams, 1858 [77]
                Genus: Lembulus Risso, 1826 [78]
                   Lembulus pella (Linnaeus, 1758) [69]

  Subclass: Autobranchia Grobben, 1894 [79]
  Infraclass: Pteriomorphia Beurlen, 1944 [80]
     Order: Arcida Stoliczka, 1871 [81]
       Superfamily: Arcoidea Lamarck, 1809 [82]
           Family: Noetiidae Stewart, 1930 [83]
                Genus: Striarca Conrad, 1862 [84]
                   Striarca lactea (Linnaeus, 1758) [69]
           Family: Glycymerididae Dall, 1908 [85]
               Subfamily: Glycymeridinae Dall, 1908 [85]
                Genus: Glycymeris da Costa, 1778 [86]
                   Glycymeris glycymeris (Linnaeus, 1758) [69]

     Order: Ostreida Férussac, 1822 [87]
       Superfamily: Ostreoidea Rafinesque, 1815 [88]
           Family: Ostreidae Rafinesque, 1815 [88]
               Subfamily: Ostreinae Rafinesque, 1815 [88]
                Genus: Ostrea Linnaeus, 1758 [69]
                   Ostrea edulis Linnaeus, 1758 [69]

     Order: Pectinida Gray, 1854 [89]
       Superfamily: Pectinoidea Rafinesque, 1815 [88]
           Family: Pectinidae Rafinesque, 1815 [88]
               Subfamily: Pectininae Rafinesque, 1815 [88]
                Genus: Flexopecten Sacco, 1897 [59]
                   Flexopecten flexuosus (Poli, 1795) [90]
                Genus: Pecten O.F. Müller, 1776 [91]
                   Pecten benedictus Lamarck, 1819 [92]
               Subfamily: Palliolinae Korobkov in Eberzin, 1960 [93]
                Genus: Lissochlamys Sacco, 1897 [59]
                   Lissochlamys excisa (Bronn, 1831) [25]
               Subfamily: Pedinae Bronn, 1862 [94]
                Genus: Mimachlamys Iredale, 1929 [95]
                   Mimachlamys varia (Linnaeus, 1758) [69]

       Superfamily: Anomioidea Rafinesque, 1815 [88]
           Family: Anomiidae Rafinesque, 1815 [88]
                Genus: Heteranomia Winckworth, 1922 [96]
                   Heteranomia squamula (Linnaeus, 1758) [69]
                Genus: Pododesmus Philippi, 1837 [97]
                   Pododesmus squama (Gmelin, 1791) [98]

Infraclass: Heteroconchia Hertwig, 1895 [99]
     Superorder: Imparidentia Bieler, Mikkelsen and Giribet in Bieler et al., 2014 [42]
     Order: Carditida Dall, 1889 [71]
       Superfamily: Crassatelloidea Férussac, 1822 [87]
           Family: Astartidae d’Orbigny, 1844 [100]
                Genus: Digitaria S.V. Wood, 1853 [101]
                   Digitaria digitaria (Linnaeus, 1758) [69]
                Genus: Laevastarte Hinsch, 1952 [102]
                   Laevastarte fusca (Poli, 1791) [103]

       Superfamily: Carditoidea Férussac, 1822 [87]
           Family: Carditidae Férussac, 1822 [87]
               Subfamily: Venericardiinae Chavan, 1969 [104]
                Genus: Cardites Link, 1807 [105]
                   Cardites antiquatus (Linnaeus, 1758) [69]
                Genus: Megacardita Sacco, 1899 [62]
                   Megacardita striatissima (Cailliaud in Mayer, 1868) [106]
               Subfamily: Scalaricarditinae Pérez, 2019 [45]
                Genus: Coripia de Gregorio, 1885 [107]
                   Coripia corbis (Philippi, 1836) [108]
                Genus: Scalaricardita Sacco, 1899 [62]
                   Scalaricardita scalaris (J. de C. Sowerby, 1825) [109]

     Order: Lucinida Gray, 1854 [89]
       Superfamily: Lucinoidea J. Fleming, 1828 [110]
           Family: Lucinidae J. Fleming, 1828 [110]
               Subfamily: Lucininae J. Fleming, 1828 [110]
                Genus: Megaxinus Brugnone, 1880 [111]
                   Megaxinus transversus (Bronn, 1831) [25]

     Order: Adapedonta Cossmann and Peyrot, 1909 [112]
       Superfamily: Solenoidea Lamarck, 1809 [82]
           Family: Pharidae H. Adams and A. Adams, 1856 [77]
               Subfamily: Cultellinae Davies, 1935 [113]
                Genus: Ensis Schumacher, 1817 [114]
                   Ensis cf. siliqua (Linnaeus, 1758) [69]

     Order: Cardiida Férussac, 1822 [87]
       Superfamily: Cardioidea Lamarck, 1809 [82]
           Family: Cardiidae Lamarck, 1809 [82]
               Subfamily: Orthocardiinae Schneider, 2002 [115]
                Genus: Europicardium Popov, 1977 [116]
                   Europicardium multicostatum (Brocchi, 1814) [46]

       Superfamily: Tellinoidea Blainville, 1814 [117]
           Family: Tellinidae Blainville, 1814 [117]
               Subfamily: Arcopagiinae Huber, Langleit and Kreipl in Huber, 2015 [44]
                Genus: Arcopagia T. Brown, 1827 [118]
                   Arcopagia crassa (Pennant, 1777) [119]
           Family: Psammobiidae J. Fleming, 1828 [110]
                Genus: Gari Schumacher, 1817 [114]
                   Gari depressa (Pennant, 1777) [119]
                   Gari tellinella (Lamarck, 1818) [120]

     Order: Venerida Gray, 1854 [89]
       Superfamily: Mactroidea Lamarck, 1809 [82]
           Family: Mactridae Lamarck, 1809 [82]
               Subfamily: Mactrinae Lamarck, 1809 [82]
                Genus: Mactra Linnaeus, 1767 [121]
                   Mactra stultorum (Linnaeus, 1758) [69]
       Superfamily: Ungulinoidea Gray, 1854 [122]
           Family: Ungulinidae Gray, 1854 [122]
                Genus: Diplodonta Bronn, 1831 [25]
                   Diplodonta rotundata (Montagu, 1803) [123]

       Superfamily: Veneroidea Rafinesque, 1815 [88]
           Family: Veneridae Rafinesque, 1815 [88]
                Genus: Callista Poli, 1791 [103]
                   Callista chione (Linnaeus, 1758) [69]
                Genus: Chamelea Mörch, 1853 [124]
                   Chamelea gallina (Linnaeus, 1758) [69]
                Genus: Clausinella Gray, 1851 [125]
                   Clausinella fasciata (da Costa, 1778) [86]
                Genus: Gouldia C.B. Adams, 1847 [126]
                   Gouldia minima (Montagu, 1803) [123]
                Genus: Timoclea T. Brown, 1827 [118]
                   Timoclea ovata (Pennant, 1777) [119]
                Genus: Venus Linnaeus, 1758 [69]
                   Venus casina Linnaeus, 1758 [69]

     Order: Myida Stoliczka, 1870 [81]
       Superfamily: Myoidea Lamarck, 1809 [82]
            Family: Corbulidae Lamarck, 1818 [120]
                Genus: Corbula Bruguière, 1797 [127]
                   Corbula revoluta (Brocchi, 1814) [46]
                Genus: Varicorbula Grant and Gale, 1931 [128]
                    Varicorbula gibba (Olivi, 1792) [129]

5. Discussion

5.1. Diversity and Comparison with Other Correlative Assemblages of the WPM

In the Vale Farpado outcrop, 34 species have been identified so far (taxonomic check list and Table 1, Table 2 and Table 3). From the work conducted in the marine Pliocene of Carnide during the 1950s, 48 species of bivalves were recorded [4,35]. However, it should be noted that this count was made considering the whole diversity of the collections yielded from the various fossiliferous outcrops (Bouchada, Carnide de Cima, Igreja de Carnide, Vale da Cabra, and Vale Farpado).
The bivalve assemblage in Vale do Freixo comprises 85 species distributed among 32 families and 75 genera, making it the most diverse bivalve mollusc fauna of the Portuguese Pliocene [13,16]. The difference in the number of species identified between Vale do Freixo and Vale Farpado may be partly due to collection bias, as the sampling area and volume in Vale Farpado were smaller.
Considering all published works, 90 species are referenced for the marine Pliocene of Pombal (Table 1, Table 2 and Table 3). This number exceeds the total of 78 species referenced for the marine Pliocene from the southern regions of Caldas da Rainha (Águas Santas, Casal do Negreiro, Nadadouro, and Salir do Porto), Nazaré (Famalicão), Alcobaça (Paredes de Vitória), Marinha Grande (Mina, and Matos), and Leiria (Monte Real) [2,3] (Table 1, Table 2 and Table 3). The whole taxonomical diversity of the Pliocene bivalve molluscs recorded from the onshore of the WPM, in the Iberian Peninsula, currently reaches a number of 115 species [16], plus three additional taxa let in open nomenclature (Modiolus sp., Gregariella sp., and Gastrochaena sp.) (Table 1, Table 2 and Table 3).

5.2. Taphonomic Imprint of the Bivalve Assemblages

The taphonomic analysis of the Vale Farpado palaeontological site focuses on fossil-bearing strata “2” and “4” (Figure 2 and Figure 3). Although both strata belong to the same locality, they exhibit significant differences in lithofacies characteristics and biostratinomic processes within the bivalve assemblages.
At the base of bed “2”, larger valves predominantly attributed to the genera Ostrea, Glycymeris, Pecten, and Palliolum are present, always disarticulated and reoriented after biostratonomic necrocinesis [152]. The inner mould infilling of these larger valves has a composition and texture analogous to the remaining sandy and bioclastic matrix of the basal conglomerate (Figure 5a). The fragmentation rate is low, with most valves remaining complete or near-complete. Despite this, they show considerable fragility, often displaying pre-existing post-burial fractures, and breaking readily, as a consequence of structural weakening induced by biostratonomic bioerosion followed by diagenetic compression and partial dissolution.
These bioclasts appear to have undergone post-mortem dispersal and subsequent hydrodynamic concentration, as evidenced by the preferential orientation of valves with the commissural plane facing downward—an equilibrium configuration typically associated with medium to high energy depositional environments. Nonetheless, despite the presence of abrasion, overall abrasion is minimal, and diagnostic wear features, such as umbonal truncation or sliding abrasion marks, are absent on Glycymeris (Figure 4a,b). This lack of significant wear contrasts with the inferred depositional energy conditions implied by valve orientation and may suggest a lower hydrodynamic regime than otherwise presumed [153]. Macrogastropods, in contrast, are generally more fragmented, particularly at the outer lip (labrum) and apex (Figure 5b), with some specimens exhibiting signs of significant mechanical reworking. This taphonomic imprint may reflect episodes of moderate hydrodynamic energy; alternatively, it may be attributable to extended exposure of the thanatocoenosis on the seafloor. The fossil assemblage thus constitutes a classic example of time-averaging [154], involving temporal mixing of biogenic remains from multiple generations within the same palaeocommunity.
The oryctocoenosis lacks preferred orientation patterns. The bioclasts are predominantly sub-horizontal with random spatial distribution, and the shell packing is matrix-supported. Fossil concentration is more pronounced relative to bed “4”, plausibly due to greater sediment compaction and/or reduced sedimentation rates.
The large valves displayed as colonisable hard substrates, as evidenced by the high frequency of bioerosional traces and encrusting organisms (Figure 5c–f). The abundance of boring sponges, loose vermetids, balanids, and bryozoans suggests widespread encrustation. On the shells from bed “2” numerous serpulids, balanids and bryozoan encrustations remain well preserved and are easily observable (Figure 5d,f). Nevertheless, on bed “2”, the prevailing hydrodynamic regime, exposure duration, and subsequent sedimentary compaction appear to have hindered the preservation of most of the balanid encrustations in situ. These balanomorph barnacles are preserved in various forms, including complete shells and disarticulated plates. The largest individuals—almost invariably represented by disarticulated plates and scuta—are found in bed “2”. The best-preserved specimens are found in bed “4”, which remain articulated but typically lack opercular plates, and occur in clusters on the valves of L. excisa. These barnacles preferentially colonise the marginal areas of the host shell, concentrating the larger ones on auricles and near the umbo (Figure 5g). Together, they exhibit an exceptional state of preservation and encompass a range of ontogenetic stages, often retaining traces of their original colour (Figure 5g). The occurrence of this exceptional preservation degree in bed “4” can be related to rapid burial conditions with minimal post-depositional reworking.
On bed “2”, biostratinomic bioerosion is particularly prominent on the larger Pecten and Glycymeris valves, including trace fossils such as Entobia isp. and Maeandropolydora isp. (Figure 5c–e). The bioeroders included endolithic algae, microendolithic bacteria, boring sponges and certain gastropods, all of which contributed significantly to early post-mortem taphonomic alteration. The presence of bioerosional and encrustation features on both the internal and external valve surfaces further supports their predominantly post-mortem origin (Figure 5c,d). The larger Pecten and Palliolum shells typically exhibit chromatic alteration to dark grey hues (Figure 4p and Figure 5c,d,f), although delicate morphological features of the bivalves remain well preserved. Notably, the preservation of Arcopagia lamellae and Palliolum auricles is common (Figure 4p,q,pp). No in situ individuals were identified, apart from encrusting epibionts.
In bed “4”, articulated valves of L. excisa dominate the macrofossil assemblage, as seen frequently encrusted by balanids preserved in life position. These shells are notably lighter in colour, contrasting with the darker shells recovered from bed “2” (Figure 4p,q,t and Figure 5g).

5.3. Palaeobiology and Depositional Setting

Besides bivalves, the molluscan assemblages of beds “2” and “4” from Vale Farpado fossil site locality also encompass representatives of Scaphopoda and Gastropoda (Figure 5b,h–j). Other macro-and mesofaunal components of the original biocenosis also include small solitary scleractinian corals assigned to the family Turbinoliidae, encrusting bryozoans, serpuloid polychaetes, balanomorph barnacles, regular echinoids, decapod crustacean fragments, and fish otoliths (Figure 4r and Figure 5d,f,g,k–n). In addition, both benthic and planktonic foraminifera are widely present [26,27,28,29,30]. The foraminiferal assemblage exhibits considerable diversity across beds “2” to “4”. In contrast, bed “5” yielded no fossil specimens. Benthic foraminifera dominate all three beds, encompassing a total of 58 species. Planktonic foraminifera are also present within these beds, represented by 11 species in total (see [30], Tables 8.2.1 and 8.2.2). Collectively, these assemblages are indicative of a fully marine depositional setting characterised by a complex and diversified trophic web.
As noted by Stanley [155], the life habits of the majority of bivalve species can be inferred with a high degree of confidence from shell morphology. However, in very small bivalves, irrespective of shell form, a broader range of lifestyles may occur, as functional constraints lessen with decreasing body size and life habits do not necessarily fall into discrete categories [155]. The bivalve assemblage from Vale Farpado was predominantly composed of endobenthic species with suspension-feeder strategies (Table 4, Figure 6).
The suspension-feeding species were largely sessile or slightly vagile, exhibiting minimal lateral mobility except when dislodged by hydrodynamic events such as storms or strong currents. Vertical repositioning occurred occasionally as individuals increased in size, facilitating continued access to the water column for filter feeding [157]. In contrast, deposit-feeding taxa demonstrated more active horizontal displacement, migrating within the substrate to exploit organic material [157].
Given that the substrate was predominantly composed of unconsolidated silts and sands, it is plausible that many species were adapted for rapid burrowing, when necessary. These would have possessed shell morphologies typically associated with high-efficiency infaunal locomotion—namely, flattened, blade-like, or cylindrical forms [155]. Taxa characterised by more robust and heavily ornamented valves likely correspond to slower, shallow-tier burrowers (e.g., C. antiquatus, D. digitaria, M. striatissima), where such morphological traits may have conferred increased stability near the sediment–water interface [155]. In these forms, obliquely oriented shell sculpture (Figure 4aa,cc,gg) may have further facilitated sediment displacement during burrowing [155].
The Pectinoida present within the Vale Farpado assemblage were predominantly extant taxa exhibiting an epibenthic swimming mode of life (Table 4). Among the extinct representatives, L. excisa is inferred to have shared a similar life style, given its thin shell, broad umbonal angle, and pronounced auricular symmetry (Figure 4p,q,t and Figure 5g)—features consistent with a swimming epibenthic lifestyle [155]. However, other species such as M. varia and T. multistriata were adapted to a sessile way of life attached by a byssus to other shells of available hard substrates.
Initial sedimentation on the transgressive surface of bed “2” occurred atop a firmground represented by an indurated claystone substrate. The basal part is markedly coarse-grained and heterometric, incorporating well-rounded clasts of variable dimensions and composition, with a first percentile larger than 10 cm. This siliciclastic component of facies is mixed with biostratonomical concentrations of medium-to large-sized disarticulated grouped as lenses and large shell pavements. These coquinas are a highly efficient mechanism of taphonomic feedback (sensu Kidwell and Jablonski [158]), promoting the establishment of a diverse suite of epizoans within an otherwise soft-bottom environment. Most valves belong to large Glycymeris, Ostrea and Pecten specimens whose surfaces are infested by different degrees of Entobia boring networks, besides other bioerosional features. Of the 354 specimens analysed, 24 exhibit perforations attributable to Oichnos isp., with 11 of these occurring in valves of Glycymeris. The identification of Oichnus isp. borings provide direct evidence of durophagous predation on bivalve shells by carnivorous gastropods (Figure 4o,pp,ss and Figure 5a).
Recent studies on Foraminifera assemblages from this outcrop [30] disclose in bed “2” a main occurrence of Cibicides refulgens Montfort, 1808 [159], also suggestive of the existence of a hard substrate exposed through a high hydrodynamic environment [160,161,162].
Bed “4” has a higher silt fraction compared to the underlying beds and may be representative of a relatively low-energy environment with more fine-graded facies [30]. The abundance of articulated individuals of L. excisa in life and paraautochtonous positions reinforces this assumption.
An overview of the bathymetric range of the studied bivalve species, many of which have modern representatives along the Atlantic European seashore, shows that typical intertidal species are lacking (e.g., Mytilus). Most taxa have broad distributions in both the infralittoral and circalittoral zones of the continental shelf (e.g., [163]). However, the common occurrence of small limpet shells Patella pellucida Linnaeus, 1758 [69] (Figure 5j) suggests infralittoral depths compatible with Laminariales kelp beds [8]. This seaweed, whose bathymetric dispersion can serve to establish the lower limit of the infralittoral zone, can grow to depths of 35 m, but in the seashore of mainland Portugal it is rare to observe it beyond 24 m [164]. The presence of the gastropods Neverita olla (de Serres, 1829) [165] and Diodora italica (Defrance, 1820) [166] (Figure 5h,i) also corroborates these conclusions, as their present-day habitat does not extend beyond the infralittoral zone (e.g., [156]). Foraminifera indices also indicate a shallow shelf domain, where the planktonic/benthic ratio points to an infralittoral environment [30]. According to Cardoso [29] (Table 10, p. 192), the predominance of certain species of benthic foraminifera, such as Ammonia beccarii (Linnaeus, 1758) [69], Elphidium crispum (Linnaeus, 1758) [69], and Lobatula lobatula (Walker and Jacob, 1798) [167], also indicates an infralittoral range for the Vale Farpado palaeoenvironment.
During the Pliocene Epoch, specifically within the mid-Piacenzian Warm Period (3.260–3.025 Ma), atmospheric CO2 concentrations are estimated to have reached up to 450 ppm [168,169]. This interval was characterised by elevated global sea surface temperatures (SSTs) in the North Atlantic [170,171,172] and a marked reduction in latitudinal SST gradients across its mid-latitudes when compared to present-day conditions [173]. These palaeoclimatic conditions likely facilitated the presence of thermophilic bivalve taxa along the west-central coast of the Iberian Peninsula [174]. Supporting evidence includes the co-occurrence of several warm-water bivalve species at the Vale Farpado locality, such as E. multicostatum, L. excisa, and C. revoluta. These assemblages are consistent with previous palaeontological studies of bivalves from the near Vale do Freixo site [13,16], as well as faunal analyses based on gastropod communities [7,8,9,175]. However, the recent studies on benthic foraminifera assemblages from the Vale Farpado fossil site [30], indicate cool temperate shelf seas (cf. [161,176]). The coldness could be attributed to seasonal upwelling that was already present along the western Portuguese coast during the Pliocene [8,177].
Both the onset and subsequent intensification of Northern Hemisphere glaciations—occurring around 3.3 Ma and 2.7 Ma, respectively—were associated with a decline in atmospheric CO2 concentration levels [178]. In the Mediterranean and most likely the nearby Atlantic areas, these major environmental changes were related to a loss of biodiversity among marine bivalves [179], as well as the Pleistocene migration of “northern-guests”, which was more pronounced during the Calabrian Stage [180]. Following 2.0 Ma, maximum atmospheric CO2 concentrations fell to values characteristic of Early Pleistocene glacial periods [178]. These shifts, coupled with the concomitant reduction in SSTs, are thought to have driven a latitudinal retraction in the biogeographic distribution of thermophilous bivalve species along the WPM. Certain taxa, such as C. foliaceolamellosus, undergone regional extinction and still exist towards lower latitudes in west African coast [181]. Projected increase in sea-temperature related to human activities (e.g., [182,183]) may reinitiate larval dispersal from warm-affinity bivalve assemblages within the Mediterranean Sea and the north-western African coast (Morocco, western Sahara, Mauritania, and Senegal) [184], potentially enabling a future re-establishment of viable populations along the west coast of Portugal.

6. Conclusions

This study documents the fossiliferous beds of the Carnide Formation at Vale Farpado and presents a taxonomic inventory of the Bivalvia (Mollusca) represented at the outcrop. The bivalve assemblage comprises 34 species distributed among 18 families, with the highest diversity recorded within the Veneridae (six species) and Pectinidae (four species).
The assemblage is dominated by suspension-feeders and detritivores, primarily of infaunal habitat. The early palaeocommunity seems to have colonised mobile, predominantly gravelly substrates, later becoming established on finer-grained silty and sandy substrates within the infralittoral zone. These habitats were situated in subtropical marine settings influenced by colder upwelling currents. The majority of the taxa identified are extant and presently inhabit the Atlantic coast of the western margin of the Iberian Peninsula. However, the assemblage also includes several extinct thermophilic species, as well as extant taxa that are currently restricted to the warmer waters of the West African coast.
The recent analysis of foraminiferal assemblages from Vale Farpado provides additional support for the palaeoenvironmental interpretations previously proposed for the Carnide Formation. Furthermore, the possibility of a Zanclean age for the Carnide Formation remains plausible and cannot be definitively excluded. Ongoing and future field investigations aim to enhance the taxonomic resolution of the Vale Farpado outcrop by expanding the sampling effort, thereby enabling a more comprehensive reconstruction of the bivalve palaeocommunity structure and diversity.

Author Contributions

Conceptualization, R.J.P. and P.M.C.; data curation, R.J.P., P.M.C., M.P., P.L., and P.A.D.; investigation, R.J.P., P.M.C., M.P., P.L., and P.A.D.; methodology, R.J.P., P.M.C., M.P., P.L., and P.A.D.; resources, R.J.P., P.M.C., M.P., P.L., and P.A.D.; supervision, R.J.P. and P.M.C.; writing—original draft, R.J.P. and P.M.C.; writing—review and editing, R.J.P., P.M.C., M.P., P.L., and P.A.D. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no funding.

Acknowledgments

This work is dedicated to the memory of António Botto, our colleague and friend who recently passed away, and who devoted his life to the collection and study of recent and Neogene molluscs. The authors wish to express their sincere appreciation to Geosciences for the esteemed invitation to submit and publish this article. The authors gratefully acknowledge the valuable suggestions provided by the three anonymous reviewers, which have significantly contributed to the improvement of this work. The authors gratefully acknowledge the support of the CITEUC, GEOBIOTEC, and MARE research centres of the FCT (Portugal); and the PALEOIBERICA consolidated research group at the University of Alcalá (Spain).

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Choffat, P. Observations sur le Pliocéne du Portugal. Bull. Soc. Belg. Géol. Paléontol. d’Hydrol. 1889, 3, 119–123. [Google Scholar]
  2. Dollfus, G.F.; Cotter, J.C.B. Mollusques tertiaires du Portugal. Le Pliocène au Nord du Tage (Plaisancian). Pelecypoda. Mem. Com. Serv. Geol. Port 1909, 40, 1–103. [Google Scholar]
  3. Cox, L.R. Pliocene Mollusca from Portugal. Mem. E Not. 1936, 9, 47–75. [Google Scholar]
  4. Teixeira, C.; Zbyszewski, G. Note sur le Pliocène de la Région à l’Ouest de Pombal. Comun. Dos Serv. Geol. Port. 1951, 32, 295–302. [Google Scholar]
  5. Diniz, F.; Silva, C.M.; Cachão, M. O Pliocénico de Pombal (Bacia do Mondego, Portugal Oeste): Biostratigrafia, Paleoecologia e Paleobiogeografia. Est. Quatern. 2016, 14, 41–59. [Google Scholar] [CrossRef]
  6. Silva, C.M. Gastrópodes pliocénicos marinhos de Vale de Freixo (Pombal, Portugal). Sistemática, Tafonomia, Paleoecologia. MSc Dissertation, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal, 1993. [Google Scholar]
  7. Silva, C.M. Gastrópodes Pliocénicos Marinhos de Portugal. Sistemática, Paleoecologia, Paleobiologia, Paleobiogeografia. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 2001. [Google Scholar]
  8. Silva, C.M.; Landau, B.M.; Domènech, R.; Martinell, J. Pliocene Atlanto-Mediterranean biogeography of Patella pellucida (Gastropoda, Patellidae): Palaeoceanographic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 233, 225–234. [Google Scholar] [CrossRef]
  9. Silva, C.M.; Landau, B.M.; Domènech, R.; Martinell, J. Pliocene Atlantic Molluscan Assemblages from the Mondego Basin (Portugal): Age and Palaeoceanographic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2010, 285, 248–254. [Google Scholar] [CrossRef]
  10. Silva, C.M.; Landau, B.M.; La Perna, R. Biogeography of Iberian Atlantic Neogene marginelliform gastropods (Marginellidae, Cystiscidae): Global change and transatlantic colonization. J. Paleontol. 2011, 85, 1052–1066. [Google Scholar] [CrossRef]
  11. Landau, B.M.; Silva, C.M. The genus Sveltia (Gastropoda, Cancellariidae) in the Atlantic Pliocene of Iberia with a new species from the Cenozoic Mondego Basin of Portugal. J. Paleontol. 2022, 96, 143–151. [Google Scholar] [CrossRef]
  12. Landau, B.M.; Bakker, P.A.J.; Silva, C.M. The Inella group (Gastropoda: Triphoridae, Triphorinae) in the south-western Iberian Pliocene: First records with two new species. Basteria 2023, 87, 116–126. [Google Scholar]
  13. Pimentel, R. Bivalvia (Mollusca) do Pliocénico de Vale de Freixo (Pombal). MSc Thesis, Universidade Nova de Lisboa, Almada, Portugal, 2018. [Google Scholar]
  14. Pimentel, R.; Callapez, P.; Legoinha, P. Lista taxonómica preliminar dos moluscos bivalves do Pliocénico marinho da jazida de Vale de Freixo (Pombal, Portugal). In Atas do IX Simpósio da Margem Ibérica Atlântica; Cunha, P.P., Dias, J., Veríssimo, H., Duarte, L.V., Dinis, P., Lopes, F.C., Bessa, A.F., Carmo, J.A., Eds.; Departamento de Ciências da Terra da Universidade de Coimbra: Coimbra, Portugal, 2018; pp. 225–226. ISBN 978-989-98914-2-5. [Google Scholar]
  15. Pimentel, R.; Callapez, P.; Legoinha, P. First occurrence of Cardilia michelottii Deshayes, 1844 (Bivalvia, Cardiliidae) in the Iberian Pliocene. Boletín Real Soc. Esp. Hist. Nat. 2019, 113, 87–94. [Google Scholar] [CrossRef]
  16. Pimentel, J.R.; Callapez, P.M.; Legoinha, P. Pliocene marine Bivalvia of Vale do Freixo (Pombal, Portugal): Updated taxonomic list and discusión. Geol. Acta 2021, 19, 1–23. [Google Scholar] [CrossRef]
  17. Dell’Angelo, B.; Silva, C.M. Polyplacophora from the Pliocene of Vale de Freixo: Central-west Portugal. Boll. Malacol. 2003, 39, 7–16. [Google Scholar]
  18. Dell’Angelo, B.; Landau, B.M.; Silva, C.M.; Sosso, M. Biogeography of northeastern Atlantic Neogene chitons (Mollusca, Polyplacophora): New data from the Pliocene of Portugal. J. Paleontol. 2022, 96, 814–838. [Google Scholar] [CrossRef]
  19. Pereira, P. Echinoidea from the Neogene of Portugal mainland. Palaeontos 2010, 18, 1–154. [Google Scholar]
  20. Ferreira, F.; Pereira, S.; Silva, C.M. Balanídeos do Pliocénico de Vale de Freixo (Pombal, Portugal): Dados preliminares. In Abstracts IX Congresso Jovens Investigadores em Geociências, LEG 2019, Évora, Portugal, 23–24 November 2019; Silva, V., Batista, A., Silva, M., Eds.; Centro Ciência Viva de Estremoz: Estremoz, Portugal, 2019; pp. 67–70. [Google Scholar]
  21. Nolf, D.; Silva, C.M. Otolithes de Poissons Pliocènes (Plaisancien) de Vale de Freixo, Portugal. Rev. Micropaleontol. 1997, 40, 273–282. [Google Scholar]
  22. Vieira, M.; Sousa, L.; Pais, J.; Pereira, D. Estudo Palinológico do Pliocénico de Vale do Freixo. In Livro de Resumos do VII Congresso Nacional de Geologia, Estremoz, Portugal, 29 June to 4 July 2006; Sociedade Geológica de Portugal: Évora, Portugal, 2006; pp. 673–676. [Google Scholar]
  23. Cachão, M. Posicionamento Biostratigráfico da Jazida Pliocénica de Carnide (Pombal). Gaia 1990, 2, 11–16. [Google Scholar]
  24. Okada, H.; Bukry, D. Supplementary modification and introduction of code numbers to the low-latitude coccolith biostratigraphic zonation. Mar. Micropaleontol. 1980, 5, 321–325. [Google Scholar] [CrossRef]
  25. Bronn, H.G. Italiens Tertiär-Gebilde und Deren Organische Einschlusse; Karl Groos: Heidelberg, Germany, 1831. [Google Scholar]
  26. Rocha, A.T.; Ferreira, J.M. Estudo dos foraminíferos fósseis do pliocénico da região de Pombal. Rev. Fac. Ciênc. Lisb. 2ª Série-C 1953, 3, 129–156. [Google Scholar]
  27. Carvalho, G.S.; Colom, G. Contribuição para o estudo da micropaleontologia dos depósitos detríticos pliocénicos de Portugal. Memórias E Notícias 1954, 37, 37–60. [Google Scholar]
  28. Ferreira, J.M. Ocorrência das famílias Lagenidae e Globigerinidae no Pliocénico de Pombal. In Comunicações do XXV Congresso Luso-Espanhol para o Progresso das Ciências; Sevilha, Spain, 23–26 November 1960; Associação Portuguesa para o Progresso das Ciências: Lisboa, Portugal, 1960; p. 7. [Google Scholar]
  29. Cardoso, J.L. O Pliocénico marinho de Caldas da Rainha e de Pombal. Sedimentologia e Micropaleontologia. Enquadramento Paleogeográfico e Paleoecológico. In Volume d’hommage au Géologue Georges Zbyszewski; Recherche sur les Civilisations: Paris, France, 1984; pp. 155–201. ISBN 2 86538-116-1. [Google Scholar]
  30. Pai, M. Quantitative Analysis of Foraminifera and Sedimentology of the Marine Pliocene of Vale Farpado (Pombal, West Portugal) and its Palaeoenvironmental Interpretation. MSc Thesis, University Nova de Lisboa, Almada, Portugal, 2021. [Google Scholar]
  31. Callapez, P.M.; Danielsen, R.; Castilho, A. Occurrences of the amphi-Atlantic brown mussel Perna perna (Linné, 1758) (Mollusca, Bivalvia) in South Portugal since the Atlantic “climatic optimum”. Est. Quatern. 2012, 8, 13–21. [Google Scholar] [CrossRef]
  32. Cachão, M. Contribuição para o Estudo do Pliocénico Marinho Português. MSc Dissertation, Universidade de Lisboa, Lisboa, Portugal, 1989. [Google Scholar]
  33. Pais, J.; Cunha, P.P.; Legoinha, P. Litostratigrafia do Cenozóico de Portugal. In Ciências Geológicas: Ensino e Investigação—Geologia Clássica; Neiva, J.M.C., Ribeiro, A., Victor, L.M., Noronha, F., Ramalho, M., Eds.; Associação Portuguesa de Geólogos e Sociedade Geológica de Portugal: Lisboa, Portugal, 2010; Volume 1, pp. 365–376. ISBN 978-989-96669-0-0. [Google Scholar]
  34. Pais, J.; Cunha, P.P.; Pereira, D.; Legoinha, P.; Dias, R.; Moura, D.; da Silveira, A.B.; Kullberg, J.C.; González-Delgado, J.A. The Paleogene and Neogene of western Iberia (Portugal): A Cenozoic Record in the European Atlantic Domain; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
  35. Manuppella, G.; Zbyszewski, G.; Veiga Ferreira, O. Carta Geológica de Portugal na Escala de 1:50 000. Notícia Explicativa da Folha 23-A, Pombal; Serviços Geológicos de Portugal: Lisboa, Portugal, 1978. [Google Scholar]
  36. Martini, E. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Proceedings of the 2nd Planktonic Conference, Rome, Italy, 23–28 September 1970; Farinacci, A., Ed.; Tecnoscienza: Rome, Italy, 1971; Volume 2, pp. 739–785. [Google Scholar]
  37. Bolli, H.M. Planktonic foraminifera from the Oligocene-Miocene Cipero and Lengua formations of Trinidad, BWI. Bull. U.S. Natl. Mus. 1957, 215, 97–131. [Google Scholar]
  38. Salvatorini, G. Alcune nuove specie di foraminiferi del Miocene Superiore della Toscana Marittima. Atti Soc. Tosc. Sci. Nat. Mem. Serie A 1967, 73, 1–13. [Google Scholar]
  39. Kennett, J.P.; Srinivasan, M.S. Neogene Planktonic Foraminifera: A Phylogenetic Atlas; Hutchinson Ross: Stroudsburg, PA, USA, 1983; ISBN 978-0879330705. [Google Scholar]
  40. Spezzaferri, S.; Coxall, H.K.; Olsson, R.K.; Hemleben, C.H. Taxonomy, biostratigraphy, and phylogeny of Oligocene Globigerina, Globigerinella, and Quiltyella n. gen. In Atlas of Oligocene Planktonic Foraminifera; Wade, B.S., Olsson, R.K., Pearson, P.N., Huber, B.T., Berggren, W.A., Eds.; Cushman Foundation for Foraminiferal Research: Lawrence, KS, USA, 2018; Volume 46, pp. 179–214. [Google Scholar]
  41. Bieler, R.; Carter, J.G.; Coan, E.V. Classification of Bivalve Families. Malacologia 2010, 52, 113–133. [Google Scholar] [CrossRef]
  42. Bieler, R.; Mikkelsen, P.M.; Collins, T.M.; Glover, E.A.; González, V.L.; Graff, D.L.; Harper, E.M.; Healy, J.; Kawauchi, G.Y.; Sharma, P.P.; et al. Investigating the Bivalve Tree of Life—an exemplar-based approach combining molecular and novel morphological characters. Invertebr. Syst. 2014, 28, 32–115. [Google Scholar] [CrossRef]
  43. Carter, J.G.; Altaba, C.R.; Anderson, L.C.; Araujo, R.; Biakov, A.S.; Bogan, A.E.; Campbell, D.C.; Campbell, M.; Chen, J.H.; Cope, J.C.W.; et al. A synoptical classification of the Bivalvia (Mollusca). Paleontol. Contrib. 2011, 4, 1–47. [Google Scholar]
  44. Huber, M. Compendium of Bivalves 2: A full-color guide to the remaining seven families. In A Systematic Listing of 8,500 Bivalve Species and 10,500 Synonyms; ConchBooks: Hackenheim, Germany, 2015; ISBN 978-3939767633. [Google Scholar]
  45. Pérez, D.E. Phylogenetic relationships of the family Carditidae (Bivalvia: Archiheterodonta). J. Syst. Palaeontol. 2019, 17, 1359–1395. [Google Scholar] [CrossRef]
  46. Brocchi, G. Conchiologia Fossile Subapennina, con Osservazioni Geologiche Sugli Apennini e sul Suolo Adiacente; Dalla Stamperia Reale: Milano, Italy, 1814; Volume 2. [Google Scholar]
  47. Chirli, C. Malacofauna Pliocenica Toscana. Bivalvia: Pteriomorphia Beurlen, 1894; Privately published: Firenze, Italy, 2014; Volume 10. [Google Scholar]
  48. Chirli, C. Malacofauna Pliocenica Toscana. Bivalvia: Heteroconchia Hertwig, 1895; Privately published: Firenze, Italy, 2015; Volume 11. [Google Scholar]
  49. Chirli, C. Malacofauna Pliocenica Toscana. Bivalvia: Heteroconchia Hertwig, 1895—Protobranchia Pelsener, 1889; Privately published: Firenze, Italy, 2016; Volume 12. [Google Scholar]
  50. Holmes, A. Phylogenetics of British saddle oysters (bivalvia: Anomiidae)—A review of the shell morphology, internal anatomy and genetics of Pododesmus in British waters. J. Conchol. 2017, 42, 317–325. [Google Scholar]
  51. Huber, M. Compendium of Bivalves. In A Full-Color Guide to 3300 of the World’s Marine Bivalves. A Status on Bivalvia After 250 Years of Research; ConchBooks: Hackenheim, Germany, 2010; ISBN 978-3939767282. [Google Scholar]
  52. La Perna, R. Revision on the Nuculanidae (Bivalvia: Protobranchia) from the Cerulli Irelli collection (Mediterranean, Pleistocene). Palaeontogr. Ital. 2007, 91, 109–140. [Google Scholar]
  53. La Perna, R. A revision of the genus Europicardium Popov, 1977 (Bivalvia: Cardiidae) from the European Neogene: Tracking palaeogeography and climate changes. J. Syst. Palaeontol. 2017, 15, 287–312. [Google Scholar] [CrossRef]
  54. Lauriat-Rage, A. Les Bivalves du Redonien (Pliocène atlantique de France). Signification stratigraphique et paléobiogéographique. Mém. Mus. Natl. D’histoire Nat. Sci. Terre 1981, 45, 1–173. [Google Scholar]
  55. Lauriat-Rage, A. Les Astartidae (Bivalvia) du Redonien (Pliocène atlantique de France). Systématique, Biostratigraphie, Biogéographie. Mém. Mus. Natl. D’histoire Nat. Sci. Terre 1982, 48, 1–118. [Google Scholar]
  56. Lauriat-Rage, A. Les Bivalves du Pliocene de Normandie. Bull. Mus. Natl. Hist. Nat. 1986, 1, 3–51. [Google Scholar]
  57. Lozano-Francisco, M.C. Los bivalvos del Plioceno de la Provincia de Málaga. Ph.D. Thesis, University of Málaga, Málaga, Spain, 1997. [Google Scholar]
  58. Sacco, F. I Molluschi del Terreni Terziarii del Piemonte e della Liguria; Carlo Clausen: Torino, Italy, 1897; Volume 23. [Google Scholar]
  59. Sacco, F. I Molluschi del Terreni Terziarii del Piemonte e della Liguria; Carlo Clausen: Torino, Italy, 1897; Volume 24. [Google Scholar]
  60. Sacco, F. I Molluschi del Terreni Terziarii del Piemonte e della Liguria; Carlo Clausen: Torino, Italy, 1898; Volume 25. [Google Scholar]
  61. Sacco, F. I Molluschi del Terreni Terziarii del Piemonte e della Liguria; Carlo Clausen: Torino, Italy, 1898; Volume 26. [Google Scholar]
  62. Sacco, F. I Molluschi del Terreni Terziarii del Piemonte e della Liguria; Carlo Clausen: Torino, Italy, 1899; Volume 27. [Google Scholar]
  63. Sacco, F. I Molluschi del Terreni Terziarii del Piemonte e della Liguria; Carlo Clausen: Torino, Italy, 1900; Volume 28. [Google Scholar]
  64. Sacco, F. I Molluschi del Terreni Terziarii del Piemonte e della Liguria; Carlo Clausen: Torino, Italy, 1901; Volume 29. [Google Scholar]
  65. Zbyszewski, G. Étude structurale de l’aire typhonique de Caldas da Rainha. Mem. Serv. Geol. Port. 1959, 3, 1–182. [Google Scholar]
  66. Zbyszewski, G.; Camarate França, J.; Veiga Ferreira, O.; Matos, M.; Carreira de Deus, P.; Oliveira, J.; Rodrigues, L.; Rodrigues, A.; Nery, F. Carta Geológica de Portugal na escala 1:50000. Notícia Explicativa da Folha 26-B, Alcobaça; Serviços Geológicos de Portugal: Lisboa, Portugal, 1961. [Google Scholar]
  67. Zbyszewski, G.; Moitinho de Almeida, F. Carta Geológica de Portugal na escala 1:50 000. Notícia Explicativa da Folha 26-D, Caldas da Rainha; Serviços Geológicos de Portugal: Lisboa, Portugal, 1960. [Google Scholar]
  68. Carvalho, M.; Callapez, P.M.; Ferreira Soares, A. First record of Similipecten similis (Laskey, 1811) (Mollusca, Bivalvia, Pectinacea) in the Pliocene of Portugal. Portugala 2005, 5, 29–30. [Google Scholar]
  69. Linnaeus, C. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis, Editio Decima, Reformata; Laurentius Salvius: Stockholm, 1758. [Google Scholar]
  70. Pelseneer, P. Sur la classification phylogenetique de pelecypods. Bull. sci. Fr. Belg. 1889, 20, 27–52. [Google Scholar]
  71. Dall, W.H. On the hinge of pelecypods and its development, with an attempt toward a better subdivision of the group. Am. J. Sci. 1889, 3, 445–462. [Google Scholar] [CrossRef]
  72. Gray, J.E. A Supplement to the Appendix of Captain Perry’s Voyage for the Discovery of a North West Passage in the Years 1819–1820, Containing an Account of the Subjects of Natural History; Appendix X. Natural history, shells; J. Murray: London, UK, 1824. [Google Scholar]
  73. Iredale, T. Australian molluscan notes. Nº I. Rec. Aust. Mus. 1931, 18, 201–235. [Google Scholar] [CrossRef]
  74. Sowerby, J. The Mineral Conchology of Great Britain; or, Coloured Figures and Descriptions of Those Remains of Testaceous Animals or Shells, Which Have Been Preserved at Various Times and Depths in the Earth; B. Arding and Merrett: London, UK, 1815–1818; Volume 2. [Google Scholar]
  75. Lamarck, J.-B.M. Prodrome d’une nouvelle classification des coquilles, comprenant une rédaction appropriée des caractères génériques, et l’établissement d’un grand nombre de genres nouveaux. Mem. Soc. D’histoire Nat. Paris 1799, 1, 63–91. [Google Scholar]
  76. Carter, J.G.; Campbell, D.C.; Campbell, M.R. Cladistic perspectives on early bivalve evolution. In The Evolutionary Biology of the Bivalvia. Geological Society Special Publication 177; Harper, E.M., Taylor, J.D., Crame, J.A., Eds.; The Geological Society: London, UK, 2000; pp. 47–79. [Google Scholar]
  77. Adams, H.; Adams, A. The Genera of Recent Mollusca Arranged According to Their Organisation; Van Voorst: London, UK, 1853–1858; Volume 1–2. [Google Scholar]
  78. Risso, A. Histoire Naturelle des Principales Productions de l’Europe Méridionale et Principalement de Celles des Environs de Nice et des Alpes-Maritime; Mollusques, E.G., Ed.; Levrault: Paris, France, 1826; Volume 4. [Google Scholar]
  79. Grobben, C. Zur Kenntniss der Morphologie, der Verwandtschafts verhältnisse und des Systems der Mollusken. Kais. Akad. Wiss. (Math.-Naturwissenschaftlichen Cl.) Sitzungsberichte 1894, 103, 61–86. [Google Scholar]
  80. Beurlen, K. Beiträge zur Stammesgeschichte der Muscheln. Mathematisch-Naturwissenschaftlichen Abteilung der Bayerischen Akademie der Wissenschaften zu München, Sitzungsberichte 1944, 1–2, 133–145. [Google Scholar]
  81. Stoliczka, F. Cretaceous fauna of southern India. The Pelecypoda, with a review of all known genera of this class, fossil and recent. Mem. Geol. Soc. India (Palaeontol. Indica) 1870–1871, 3, 1–535. [Google Scholar]
  82. Lamarck, J.B.M.d. Philosophie Zoologique, ou Exposition des Considérations Relative à l’Histoire Naturelle des Animaux; Chez Dentu et l’Auteur: Paris, France, 1809; Volume 1–2. [Google Scholar]
  83. Stewart, R.B. Gabb’s California Cretaceous and Tertiary type lamellibranchs. Spec. Publ. Acad. Nat. Sci. Phila. 1930, 3, 1–314. [Google Scholar]
  84. Conrad, T.A. Descriptions of new genera, subgenera and species of Tertiary and Recent shells. Proc. Acad. Nat. Sci. USA 1862, 14, 284–291. [Google Scholar]
  85. Dall, W.H. Reports on the dredging operations off the west coast of Central America to the Galapagos, to the West coast of Mexico, and in the Gulf of California, in charge of Alexander Agassiz, carried on by the U.S. Fish Commission steamer “Albatross,” during 1891, Lieut. Commander Z.L. Tanner, U.S.N., commanding. XXXVII. Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge of Alexander Agassiz, by the U.S. Fish Commission steamer “Albatross,” from October, 1904, to March, 1905, Lieut. commander L.M. Garrett, U.S.N., commanding. XIV. The Mollusca and the Brachiopoda. Bull. Mus. Comp. Zool. Harv. Coll. 1908, 43, 205–487. [Google Scholar]
  86. da Costa, E.M. Historia Naturalis Testaceorum Britanniae, or, The British Conchology. In Containing the Descriptions and Other Particulars of Natural History of the Shells of Great Britain and Ireland: Illustrated with Figures; Millan, White, Elmsley and Robson: London, UK, 1778. [Google Scholar]
  87. Férussac, A.E.J. Tableaux systématiques généraux de l’embranchement des mollusques, divisés en familles naturelles, suivis d’une table alphabétique générale et synonymique de toutes les dénominations génériques connues. In Tableaux Systématiques. Tableaux Systématiques des Animaux Mollusques. Classés en Familles Naturelles, dans Lesquels on a Etabli la Concordance de tous les Systèmes; Suivis d’un Prodrome Général Pour tous les Mollusques Terrestres ou Fluviatiles, Vivants ou Fossiles; Arthus-Bertrand: Paris, France, 1821–1822. [Google Scholar]
  88. Rafinesque, C.S. Analyse de la Nature ou Tableau de l’University et des Corps Organisés; Jean Barravecchia: Palermo, Italy, 1815. [Google Scholar]
  89. Gray, J.E. A revision of the genera of some of the families of conchifera or bivalve shells. Ann. Mag. Nat. Hist. Zool. Bot. Geol. 1854, 13, 408–418. [Google Scholar] [CrossRef]
  90. Poli, J.X. Testacea Utriusque Siciliae Eorumque Historia et Anatome Tabulis Aeneis Illustrata; Regio Typographei: Parma, Italy, 1795; Volume 2, pp. 75–264. [Google Scholar]
  91. Müller, O.F. Zoologiae Danicae Prodromus, seu Animalium Daniae et Norvegiae Indigenarum Characteres, Nomina, et Synonyma Imprimis Popularium; Hallageri: Copenhagen, Denmark, 1776. [Google Scholar]
  92. Lamarck, J.B.M.d. Histoire Naturelle des Animaux sans Vertèbres; Author’s Edition: Paris, France, 1819; Volume 6. [Google Scholar]
  93. Eberzin, A.G. Molliuski—Pantsirnye, Dvustvorchatye, Lopatonogie. In Osnovy Paleontologii. Spravochnik Dlyapaleontologov i Geologov SSSR.; Orlov, Y.A., Ed.; Akademia Nauk: Moscow, Russia, 1960; Volume 3. [Google Scholar]
  94. Bronn, H.G. Die Klassen und Ordnungen der Weichthiere (Malacozoa). In Wissenschaftlich Dargestellt in Wort und Bild, (Malacozoa Acephala); Winter: Leipzig and Heidelberg, Germany, 1862; Volume 3. [Google Scholar]
  95. Iredale, T. Mollusca from the continental shelf of eastern Australia. Rec. Aust. Mus. 1929, 17, 157–189. [Google Scholar] [CrossRef]
  96. Winckworth, R. Notes on the British species of Anomia. Proc. Malacol. Soc. Lond. 1922, 15, 32–34. [Google Scholar]
  97. Philippi, R.A. Pododesmus, ein neues Genus der Acephalen. Arch. Naturgesch. 1837, 3, 385–387. [Google Scholar]
  98. Gmelin, J.F. (Ed.) Caroli a Linnaei Systema Naturae per Regna Tria Naturae, 10th ed.; G.E. Beer: Leipzig, Germany, 1791; Volume 1, pp. 3021–3910. [Google Scholar]
  99. Hertwig, R. Lehrbuch der Zoologie, 3rd ed.; Gustav Fischer: Jena, Germany, 1895. [Google Scholar]
  100. d’Orbigny, A. Paléontologie Française, Terrains Crétacés. Lamellibranchia; Chez Arthus Bertrand: Paris, France, 1843–1848; Volume 3. [Google Scholar]
  101. Wood, S.V. A Monograph of the Crag Mollusca with Descriptions of Shells from the Upper Tertiaries of the British Isles. Bivalves; Palæontographical Society: London, UK, 1851–1857; Volume 2, Part 2. [Google Scholar]
  102. Hinsch, W. Leitende Molluskengruppen im Obermiocän und Unterpliocän des östlichen Nordseebeckens. Geol. Jahrb. 1952, 67, 143–194. [Google Scholar]
  103. Poli, J.X. Testacea Utriusque Siciliae Eorumque Historia et Anatome Tabulis Aeneis Illustrata; Regio Typographei: Parma, Italy, 1791; Volume 1. [Google Scholar]
  104. Chavan, A. Superfamily Carditacea. In Treatise on Invertebrate Paleontology. Mollusca 6, Bivalvia; Moore, R.C., Ed.; Geological Society of America and University of Kansas: Boulder, CO, USA; Lawrence, CA, USA, 1969; Part N; Volume 1–2, pp. 543–561. [Google Scholar]
  105. Link, D.H.F. Beschreibung der Naturalien-Sammlung der Universität zu Rostock; Adlers Erben: Rostock, Germany, 1807; Part 3; pp. 101–165. [Google Scholar]
  106. Mayer, K. Description de Coquilles fossiles des terrains tertiaires supérieurs. J. Conchyl. 1868, 16, 187–190. [Google Scholar]
  107. de Gregorio, A. Studi su talune conchiglie mediterranee viventi e fossili con una rivista del genere Vulsella. Bull. Della Soc. Malacol. Ital. 1885, 10, 129–288. [Google Scholar]
  108. Philippi, R.A. Enumeratio Molluscorum Siciliae cum Viventium tum in Tellure Tertiaria Fossilium, Quae in Itinere suo Observavit; Schropp: Berlin, Germany, 1836; Volume 1. [Google Scholar]
  109. Sowerby, J. de C. The Mineral Conchology of Great Britain: Or, Coloured Figures and Descriptions of Those Remains of Testaceous Animals or Shells, Which Have Been Preserved at Various Times and Depths in the Earth; R. Taylor: London, UK, 1825; Volume 5. [Google Scholar]
  110. Fleming, J. A History of British Animals, Exhibiting the Descriptive Characters and Systematical Arrangement of the Genera and Species of Quadrupeds, Birds, Reptiles, Fishes, Mollusca, and Radiata of the United Kingdom; including the Indigenous, Extirpated, and Extinct Kinds, Together with Periodical and Occasional Visitants; Bell and Bradfute: Edinburgh, Scotland; James Duncan: London, UK, 1828. [Google Scholar]
  111. Brugnone, G. Le conchiglie plioceniche selle vicinaze di Caltanisetta. Bolletino Soc. Malacol. Ital. 1880, 6, 85–158. [Google Scholar]
  112. Cossmann, M.; Peyrot, A. Conchologie Néogénique de l’Aquitaine. Pélécypodes; A. Saugnac: Bordeaux, France, 1909; Volume 1, Part 1. [Google Scholar]
  113. Davies, A.M. Tertiary Faunas. A Textbook for Oilfield Palaeontologists and Students of Geology. In The Composition of Tertiary Faunas; Thomas Murby and Co.: London, UK, 1935; Volume 1. [Google Scholar]
  114. Schumacher, C.F. Essai d’un Nouveau Système des Habitations des Vers Testacés avec XXII Planches; L’Imprimerie de Ma. le directeur Schultz: Copenhagen, Denmark, 1817. [Google Scholar]
  115. Schneider, J.A. Phylogeny of cardiid bivalves (cockles and giant clams): Revision of the Cardiinae and the importance of fossils in explaining disjunct biogeographical distributions. Zool. J. Linn. Soc. 2002, 136, 321–369. [Google Scholar] [CrossRef]
  116. Popov, S.V. Mikrostruktura rakoviny i sistematika kardiid. Tr. Paleontol. Inst. Akad. Nauk SSSR 1977, 153, 1–124. [Google Scholar]
  117. Blainville, H.-M.D.d. Mémoire sur la classification méthodique des animaux mollusques, et établissement d’une nouvelle considération pour y parvenir. Bull. Sci. Par Soc. Philomatique Paris Zool. 1814, 1814, 175–180. [Google Scholar]
  118. Brown, T. Illustrations of the Conchology of Great Britain and Ireland. Drawn from Nature; Lizars, W.H., Lizars, D., Highley, S., Eds.; Wentworth Press: Edinburgh/London, UK, 1827. [Google Scholar]
  119. Pennant, T. British Zoology: Crustacea. Mollusca. Testacea; William Eyres: London, UK, 1777; Volume 4. [Google Scholar]
  120. Lamarck, J.B.M.d. Histoire Naturelle des Animaux sans Vertèbres; Deterville/Verdière: Paris, France, 1818; Volume 5. [Google Scholar]
  121. Linnaeus, C. Systema Naturae per Regna tria Naturae, Secundum Classes, Ordines, GENERA, species, cum Characteribus, Differentiis, Synonymis, Locis, Editio Duodécima; Laurentius Salvius: Stockholm, Sweden, 1767; pp. 533–1327. [Google Scholar]
  122. Gray, J.E. Additions and corrections to the arrangement of the families of bivalve shells. Ann. Mag. Nat. Hist. Zool. Bot. Geol. 1854, 14, 21–28. [Google Scholar] [CrossRef]
  123. Montagu, G. Testacea Britannica or Natural History of British Shells, Marine, Land, and Fresh-Water, Including the Most Minute: Systematically Arranged and Embellished with Figures; J. White: London, UK, 1803; Volume 1–2. [Google Scholar]
  124. Mörch, O.A.L. Catalogus Conchyliorum quae Reliquit D. Alphonso d’Aguirra and Gadea Comes de Yoldi. Acephala, Annulata, Cirripedia, Echinodermata; L. Klein: Copenhagen, Denmark, 1853; Volume 2. [Google Scholar]
  125. Gray, J.E. List of the Specimens of British Animals in the Collection of the British Museum. Mollusca Acephala and Brachiopoda; Taylor: London, UK, 1851; Part 7. [Google Scholar]
  126. Adams, C.B. Catalogue of the Genera and Species of Recent Shells in the Collection of C.B. Adams; Justus Cobb: Middlebury, VT, USA, 1847. [Google Scholar]
  127. Bruguière, J.G. Tableau encyclopédique et méthodique des trois règnes de la nature. In Vers, Coquilles, Mollusques et Polypiers; H. Agasse: Paris, France, 1797; Part 19; pp. 190–286. [Google Scholar]
  128. Grant, U.S.; Gale, H.R. Catalogue of the marine Pliocene and Pleistocene Mollusca of California and adjacent region. Mem. San Diego Soc. Nat. Hist. 1931, 1, 1–1036. [Google Scholar]
  129. Olivi, G. Zoologia Adriatica, Ossia Catalogo Ragionato Degli Animali del Golfo e Della Lagune di Venezia; G. Remondini e fl.: Bassano, Italy, 1792. [Google Scholar]
  130. Philippi, R.A. Enumeratio Molluscorum Siciliae cum Viventium tum in Tellure Tertiaria Fossilium, quae in Itinere suo Observavit; Eduard Anton: Halle, Germany, 1844; Volume 2. [Google Scholar]
  131. Lamarck, J.B.M.d. Suite des Mémoires sur les fossiles des arredores de Paris. Ann. Mus. Hist. Nat. Paris 1805, 6, 214–221. [Google Scholar]
  132. Cocconi, G. Enumerazione sistematica dei molluschi miocenici e pliocenici di Parma e Piacenza. Mem. Dell’ Accad. Delle Sci. Dell’istituto Bologna 1873, 3, 1–372. [Google Scholar]
  133. Laskey, J. Account of North British Testacea. Mem. Wernerian Nat. Hist. Soc. 1811, 1, 370–414. [Google Scholar]
  134. Sowerby I, G.B. The Genera of Recent and Fossil Shells, for the Use of Students, in Conchology and Geology; Privately published: London, UK, 1821–1825; Volume 1. [Google Scholar]
  135. Goldfuss, G.A. Petrefacta Germaniae tam ea, quae in Museo Universitatis Regiae Borussicae Fridericiae Wilhelmiae Rhenanae Servantur quam alia Quaecunque in Museis Hoeninghusiano, Muensteriano Aliisque Extant, Iconibus et Descriptionibus Illustrata; Arnz & Comp.: Düsseldorf, Germany, 1833–1841; Part 2. [Google Scholar]
  136. Mayer, K. Découverte des couches à Congéries dans le bassin du Rhône. Vierteljahresschr. Naturforschenden Ges. Zür. 1871, 16, 185–203. [Google Scholar]
  137. Costa, O.G. Osservazioni Zoologiche Intorno ai Testacei dell’Isola di Pantelleria; Tipografia della Minerva: Napoli, Italy, 1829. [Google Scholar]
  138. Born, I. Index Rerum Naturalium Musei Caesarei Vindobonensis. Verzeichniss der Natürlichen Seltenheiten des K.K. Naturalien Kabinets zu Wien. Schalthiere; Officina Krausiana: Vienna, Austria, 1778; Part 1. [Google Scholar]
  139. Sowerby, G.B., II. The Conchological Illustrations; or Coloured Figures of Hitherto Unfigured Recent Shells; Privately published: London, UK, 1834–1840. [Google Scholar]
  140. Bucquoy, E.; Dautzenberg, P.h.; Dollfus, G. Les Mollusques marins du Roussillon. Pèlècypodes; J.-B. Baillière & Fils: Paris, France, 1887–1898; Volume 2. [Google Scholar]
  141. Sowerby, J. The Mineral Conchology of Great Britain; or Coloured Figures and Descriptions of Those Remains of Testaceous Animals or Shells, Which Have Been Preserved at Various Times and Depths in the Earth; Privately Published: London, UK, 1826–1835; Volume 6. [Google Scholar]
  142. Wood, W. Observations on the hinges of British Bivalve shells. Trans. Linn. Soc. Lond. 1802, 6, 154–176. [Google Scholar] [CrossRef]
  143. Montagu, G. Supplement to Testacea Britannica with Additional Plates; Woolmer: Exeter, UK, 1808. [Google Scholar]
  144. Helbling, G.S. Beyträge zur Kenntniß neuer und seltener Konchylien. Aus einigen Wienerischen Sammlungen. Abh. Einer Priv. Böhmen Zur Aufn. Der Math. Der Vaterländischen Gesch. Und Der Naturgeschichte 1779, 4, 102–131. [Google Scholar]
  145. Deshayes, G.P.; Cardilia, G. Magasin de Zoologie, d’Anatomie Comparée et de Paléontologie; Typer Publishing House Inc.: Châteauguay, QC, Canada, 1844; Volume 6, pp. 1–8. [Google Scholar]
  146. Dillwyn, L.W. A Descriptive Catalogue of Recent Shells, Arranged According to the Linnean Method; with Particular Attention to the Synonymy; John and Arthur Arch: London, UK, 1817; Volume 1–2. [Google Scholar]
  147. Retzius, A.J. Venus lithophaga descripta. Mem. Acad. Sci. Turin. 1788, 3, 11–14, Mémoires des Correspondans. [Google Scholar]
  148. de Basterot, B. Description géologique du bassin tertiaire du sud-ouest de la France. Mem. Soc. D’histoire Nat. Paris 1825, 2, 1–100. [Google Scholar]
  149. Fischer, P. Untitled description of Scintilla recondita. In Les Fonds de la mer. Étude internationale sur les Particularités Nouvelles des Regions Sous-Marines; de Folin, L., Périer, L., Eds.; Savy: Paris, France, 1872–1876; Volume 2. [Google Scholar]
  150. Costa, O.G. Catalogo Sistematico e Ragionato de’ Testacei Delle Due Sicilie; Tipografia della Minerva: Napoli, Italy, 1830. [Google Scholar]
  151. Fischer, P. Description d’une nouvelle espèce de Kellia des mers d’Europe. J. Conchyl. 1867, 15, 194–195. [Google Scholar]
  152. Fernández-López, S. Tafonomía y Fosilización. In Tratado de Paleontología; Meléndez, B., Ed.; Consejo Superior de Investigaciones Científicas: Madrid, Spain, 1999; pp. 51–107. [Google Scholar]
  153. Fernández-López, S. Temas de Tafonomía; Departamento Paleontología, Universidad Complutense de Madrid: Madrid, Spain, 2000. [Google Scholar]
  154. Fürsich, F.T.; Aberhan, M. Significance of time-averaging for palaeo community analysis. Lethaia 1990, 23, 143–152. [Google Scholar] [CrossRef]
  155. Stanley, S.M. Relation of shell form to life habits in the Bivalvia (Mollusca). Geol. Soc. Am. Mem. 1970, 125, 1–296. [Google Scholar]
  156. Santos, A. Bivalves Marinhos do Miocénio Superior (Tortoniano superior) de Cacela (Algarve, Portugal). MSc Dissertation, Unidade de Ciências e Tecnologias dos Recursos Aquáticos, Universidade do Algarve, Faro, Portugal, 2000. [Google Scholar]
  157. Stanley, S.M. Treatise Online no. 72: Part N, Revised, Volume 1, Chapter 19: Evolutionary Ecology of the Bivalvia. Treatise Online. [CrossRef]
  158. Kidwell, S.M.; Jablonski, D. Taphonomic feedback: Ecological consequences of shell accumulation. In Biotic Interactions in Recent and Fossil Benthic Communities; Tevesz, M.J.S., McCall, P.L., Eds.; Springer: New York, NY, USA, 2014; pp. 195–248. ISBN 978-1-4757-0742-7. [Google Scholar]
  159. Montfort, P.D. Conchyliologie Systématique et Classification Méthodique des Coquilles; Schoell: Paris, France, 1808; Volume 1. [Google Scholar]
  160. Langer, M.R. Epiphytic foraminifera. Mar. Micropaleontol. 1993, 20, 235–265. [Google Scholar] [CrossRef]
  161. Murray, J.W. Ecology and Applications of Benthic Foraminifera; Cambridge University Press: Cambridge, UK, 2006; ISBN 978-0521070096. [Google Scholar]
  162. Bernasconi, E.; Cusminsky, G.; Gordillo, S. Distribution of foraminifera from South Shetland Islands (Antarctic): Ecology and taphonomy. Reg. Stud. Mar. Sci. 2019, 29, 100653. [Google Scholar] [CrossRef]
  163. Poppe, G.T.; Goto, Y. European seashells. Scaphopoda, Bivalvia, Cephalopoda; Verlag Christa Hemmen: Wiesbaden, Germany, 1993; Volume 2, ISBN 978-3925919114. [Google Scholar]
  164. Saldanha, L. Fauna submarina atlântica, 3rd ed.; Publicações Europa-América: Lisboa, Portugal, 1997; ISBN 978-9721038752. [Google Scholar]
  165. Serres, M.d. Géognosie des Terrains Tertiaires, ou Tableau des Principaux Animaux Invertébrés des Terrains Marins Tertiaires du Midi de la France; Pomathio-Durville: Paris, France, 1829. [Google Scholar]
  166. Defrance, J.L.M. Fissurella. In Dictionnaire des Sciences Naturelles, dans Lequel on Traite Méthodiquement des Différens êtres de la Nature, Considérés Soit en eux-mêmes, D’après l’état Actuel de nos Connoissances, Soit Relativement à L’utilité qu’en Peuvent Retirer la Médecine, L’agriculture, le Commerce et les Artes; Suivi d’une Biographie des Plus Célèbres Naturalistes; Cuvier, F., Ed.; F.G. Levrault/Le Normant: Strasbourg/Paris, France, 1820; Volume 17, pp. 76–79. [Google Scholar]
  167. Walker, G.; Jacob, E. Descriptions of Nautilus lobatulus. In Essays on the Microscope: Containing a Practical Description of the Most Improved Microscopes; a General History of Insects, Their Transformations, Peculiar Habits, and Œconomy: An Account of the Various Species, and Singular Properties, of the Hydræ and Vorticellæ: A Description of Three Hundred and Eighty-Three Animalcula: With a Concise Catalogue of Interesting Objects: A view of the Organization of Timber, and the Configuration of Salts, When Under the Microscope; Adams, A., Kanmacher, F., Eds.; Dillon and Keating: London, UK, 1798; p. 642. [Google Scholar]
  168. Martínez-Botí, M.; Foster, G.; Chalk, T.; Rohling, E.J.; Sexton, P.F.; Lunt, D.J.; Pancost, R.D.; Badger, M.P.S.; Schmidt, D.N. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 2015, 518, 49–54. [Google Scholar] [CrossRef]
  169. Haywood, A.M.; Dowsett, H.J.; Dolan, A.M.; Rowley, D.; Abe-Ouchi, A.; Otto-Bliesner, B.; Chandler, M.A.; Hunter, S.J.; Lunt, D.J.; Pound, M.; et al. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: Scientific objectives and experimental design. Clim. Past 2012, 12, 663–675. [Google Scholar] [CrossRef]
  170. Dowsett, H.J.; Poore, R.Z. Pliocene sea surface temperatures of the North Atlantic Ocean at 3.0 Ma. Quat. Sci. Rev. 1991, 10, 189–204. [Google Scholar] [CrossRef]
  171. Dowsett, H.J.; Chandler, M.A.; Cronin, T.M.; Dwyer, G.S. Middle Pliocene sea surface temperature variability. Paleoceanography 2005, 20, PA2014. [Google Scholar] [CrossRef]
  172. Dowsett, H.; Dolan, A.; Rowley, D.; Moucha, R.; Forte, A.M.; Mitrovica, J.X.; Pound, M.; Salzmann, U.; Robinson, M.; Chandler, M.; et al. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Clim. Past 2016, 12, 1519–1538. [Google Scholar] [CrossRef]
  173. Naafs, B.D.A.; Voelker, A.H.L.; Karas, C.; Andersen, N.; Sierro, F.J. Repeated near-collapse of the Pliocene sea surface temperature gradient in the North Atlantic. Paleoceanogr. Paleoclimatology 2020, 35, e2020PA003905. [Google Scholar] [CrossRef]
  174. Monegatti, P.; Raffi, S. Mediterranean-Middle Eastern Atlantic Façade: Molluscan biogeography & ecobiostratigraphy throughout the Late Neogene. Açoreana Rev. Estud. Açoreanos 2007, 5, 126–139. [Google Scholar]
  175. Silva, C.M.; Landau, B.M. A idade da malacofauna pliocénica da Bacia do Mondego (Portugal) e suas implicações paleoceanográficas. Portugala 2009, 14, 43–46. [Google Scholar]
  176. Murray, J.W. Benthic foraminiferal assemblages: Criteria for the distinction of temperate and subtropical carbonate environments. In Micropaleontology of Carbonate Environments; Hart, M.B., Ed.; Halsted Press: New York, NY, USA, 1987; pp. 9–20. ISBN 9780470207628. [Google Scholar]
  177. Cachão, M. Utilização de nanofósseis calcários em biostratigrafia, paleoceanografia e paleoecologia. Aplicações ao Neogénico do Algarve (Portugal) e do Mediterrâneo Ocidental (ODP 653) e à problemática de Coccolithus pelagicus. Ph.D. Thesis, Universidade de Lisboa, Lisboa, Portugal, 1995. [Google Scholar]
  178. Bartoli, G.; Hönisch, B.; Zeebe, R.E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations. Paleoceanography 2011, 26, PA4213. [Google Scholar] [CrossRef]
  179. Mondanaro, A.; Dominici, S.; Danise, S. Response of Mediterranean Sea bivalves to Pliocene–Pleistocene environmental changes. Palaeontology 2024, 62, e12696. [Google Scholar] [CrossRef]
  180. Crippa, G.; Azzarone, M.; Bottini, C.; Crespi, S.; Felletti, F.; Marini, M.; Petrizzo, M.R.; Scarponi, D.; Raffi, S.; Raineri, G. Bio- and lithostratigraphy of lower Pleistocene marine successions in western Emilia (Italy) and their implications for the first occurrence of Arctica islandica in the Mediterranean Sea. Quat. Res. 2019, 92, 549–569. [Google Scholar] [CrossRef]
  181. Cosel, R.v.; Gofas, S. Marine Bivalves of Tropical West Africa; Muséum National d’Histoire Naturelle: Paris, France, 2019; ISBN 9782856538883. [Google Scholar]
  182. Seki, O.; Foster, G.L.; Schmidt, D.N.; Mackensen, A.; Kawamura, K.; Pancost, R.D. Alkenone and boron-based Pliocene pCO2 records. Earth Planet. Sci. Lett. 2010, 292, 201–211. [Google Scholar] [CrossRef]
  183. NOAA (National Oceanic and Atmospheric Administration). Trends in Atmospheric Carbon Dioxide. Available online: https://www.esrl.noaa.gov/gmd/ccgg/trends/ (accessed on 4 April 2025).
  184. Saupe, E.E.; Hendricks, J.R.; Portell, R.W.; Dowsett, H.J.; Haywood, A.; Hunter, S.J.; Lieberman, B.S. Macroevolutionary consequences of profound climate change on niche evolution in marine molluscs over the past three million years. Proc. R. Soc. B 2014, 281, 20141995. [Google Scholar] [CrossRef]
Figure 1. Geographical context of Vale Farpado (Pombal, west-central Portugal). (a) General location of the site in the Iberian context. (b) Location of the Vale Farpado in the Carnide area. A magenta asterisk indicates the location of Vale Farpado. Green numerical values represent elevation points in metres above sea level.
Figure 1. Geographical context of Vale Farpado (Pombal, west-central Portugal). (a) General location of the site in the Iberian context. (b) Location of the Vale Farpado in the Carnide area. A magenta asterisk indicates the location of Vale Farpado. Green numerical values represent elevation points in metres above sea level.
Geosciences 15 00309 g001
Figure 2. Stratigraphic section of the Vale Farpado fossil site (Pombal, west-central Portugal).
Figure 2. Stratigraphic section of the Vale Farpado fossil site (Pombal, west-central Portugal).
Geosciences 15 00309 g002
Figure 3. The early Pliocene fossil site of Vale Farpado (Pombal, west-central Portugal). (a,b) Panoramic views of the section during field-work procedures, showing the local exposure of Carnide Fm (beds “2” to “5”). (c) Detail of the basal conglomerate and sandstone facies of bed “2”, with bulk-samples collected for micropalaeontological analysis. (d) Detail of the highly fossiliferous grey sandstone facies of bed “2”. (e) Sampling the rich coquina with Ostrea, Pecten, and Glycymeris valves from the basal conglomerate of bed “2”.
Figure 3. The early Pliocene fossil site of Vale Farpado (Pombal, west-central Portugal). (a,b) Panoramic views of the section during field-work procedures, showing the local exposure of Carnide Fm (beds “2” to “5”). (c) Detail of the basal conglomerate and sandstone facies of bed “2”, with bulk-samples collected for micropalaeontological analysis. (d) Detail of the highly fossiliferous grey sandstone facies of bed “2”. (e) Sampling the rich coquina with Ostrea, Pecten, and Glycymeris valves from the basal conglomerate of bed “2”.
Geosciences 15 00309 g003
Figure 4. Marine Pliocene Bivalvia from the Vale Farpado fossil site (Carnide, Pombal, west-central, Portugal). (a) Glycymeris glycymeris lv, elv (DCT-VFa-B132). (b) G. glycymeris lv, ilv (srn). (c) Ostrea edulis rv, elv (DCT-VFa-B124). (d) O. Edulis rv, ilv (srn). (e) Nucula nucleus lv, elv (DCT-VFa-B300). (f) N. nucleus lv, ilv (srn). (g) Lembulus pella rv, elv (DCT-VFa-B304). (h) L. pella rv, ilv (srn). (i) Flexopecten flexuosus lv, elv (DCT-VFa-B285). (j) F. flexuosus lv, ilv (srn). (k) F. flexuosus rv, elv (DCT-VFa-B288). (l) F. flexuosus rv, ilv (srn). (m) Pecten benedictus [juvenile] lv, elv (DCT-VFa-B290). (n) P. benedictus [juvenile] lv, ilv (srn). (o) Heteranomia squamula lv, elv (DCT-VFa-B305). (p) Lissochlamys excisa lv, elv (DCT-VFa-B112). (q) L. excisa lv, ilv (DCT-VFa-B244). (r) Pododesmus squama lv, elv (DCT-VFa-B153). (s) P. squama lv, ilv (srn). (t) L. excisa rv, elv (DCT-VFa-B252). (u) Mimachlamys varia lv, elv (DCT-VFa-B2). (v) M. varia lv, ilv (srn). (w) M. varia rv, elv (DCT-VFa-B3). (x) M. varia rv, ilv (srn). (y) Laevastarte fusca lv, elv (DCT-VFa-B6). (z) L. fusca lv, ilv (srn). (aa) Digitaria digitaria rv, elv (DCT-VFa-B295). (bb) D. digitaria rv, ilv (srn). (cc) Cardites antiquatus lv, elv (DCT-VFa-B66). (dd) C. antiquatus lv, ilv (DCT-VFa-B67). (ee) Coripia corbis rv, elv (DCT-VFa-B315). (ff) C. corbis rv, ilv (srn). (gg) Megacardita striatissima lv, elv (DCT-VFa-B47). (hh) M. striatissima lv, ilv (srn). (ii) Scalaricardita scalaris rv, elv (DCT-VFa-B333). (jj) S. scalaris rv, ilv (srn). (kk) Megaxinus transversus lv, elv (DCT-VFa-B158). (ll) M. transversus lv, ilv (srn). (mm) Ensis cf. siliqua lv, elv (DCT-VFa-B207). (nn) E. cf. siliqua lv, ilv (srn). (oo) Europicardium multicostatum rv, elv (DCT-VFa-B131). (pp) Arcopagia crassa lv, elv (DCT-VFa-B155). (qq) A. crassa lv, ilv (srn). (rr) Gari depressa rv, elv (DCT-VFa-B154). (ss) Gari tellinella lv, elv (DCT-VFa-B152). (tt) Gouldia minima rv, elv (DCT-VFa-B341). (uu) Mactra stultorum as, elv (DCT-VFa-B161). (vv) Varicorbula gibba rv, elv (DCT-VFa-B348). (ww) V. gibba rv, ilv (srn). (xx) Venus casina rv, elv (DCT-VFa-B157). (yy) V. casina rv, ilv (srn). (zz) Callista chione rv, elv (DCT-VFa-B149). (aaa) Corbula revoluta rv, ilv (DCT-VFa-B294). (bbb) C. revoluta rv, elv (srn). (ccc) Clausinella fasciata rv, elv (DCT-VFa-B310). (ddd) C. fasciata rv, ilv (srn). Abbreviations: as—articulated specimen; elv—external lateral view; ilv—internal lateral view; lv—left valve; rv—right valve; srn—same reference number. Scale bar = 2 cm (ad,m,n,p,q,t,gg,hh,mmss,uu,xxzz); 1 cm (el,o,r,s,uff,iill,tt,vv,ww,aaaddd).
Figure 4. Marine Pliocene Bivalvia from the Vale Farpado fossil site (Carnide, Pombal, west-central, Portugal). (a) Glycymeris glycymeris lv, elv (DCT-VFa-B132). (b) G. glycymeris lv, ilv (srn). (c) Ostrea edulis rv, elv (DCT-VFa-B124). (d) O. Edulis rv, ilv (srn). (e) Nucula nucleus lv, elv (DCT-VFa-B300). (f) N. nucleus lv, ilv (srn). (g) Lembulus pella rv, elv (DCT-VFa-B304). (h) L. pella rv, ilv (srn). (i) Flexopecten flexuosus lv, elv (DCT-VFa-B285). (j) F. flexuosus lv, ilv (srn). (k) F. flexuosus rv, elv (DCT-VFa-B288). (l) F. flexuosus rv, ilv (srn). (m) Pecten benedictus [juvenile] lv, elv (DCT-VFa-B290). (n) P. benedictus [juvenile] lv, ilv (srn). (o) Heteranomia squamula lv, elv (DCT-VFa-B305). (p) Lissochlamys excisa lv, elv (DCT-VFa-B112). (q) L. excisa lv, ilv (DCT-VFa-B244). (r) Pododesmus squama lv, elv (DCT-VFa-B153). (s) P. squama lv, ilv (srn). (t) L. excisa rv, elv (DCT-VFa-B252). (u) Mimachlamys varia lv, elv (DCT-VFa-B2). (v) M. varia lv, ilv (srn). (w) M. varia rv, elv (DCT-VFa-B3). (x) M. varia rv, ilv (srn). (y) Laevastarte fusca lv, elv (DCT-VFa-B6). (z) L. fusca lv, ilv (srn). (aa) Digitaria digitaria rv, elv (DCT-VFa-B295). (bb) D. digitaria rv, ilv (srn). (cc) Cardites antiquatus lv, elv (DCT-VFa-B66). (dd) C. antiquatus lv, ilv (DCT-VFa-B67). (ee) Coripia corbis rv, elv (DCT-VFa-B315). (ff) C. corbis rv, ilv (srn). (gg) Megacardita striatissima lv, elv (DCT-VFa-B47). (hh) M. striatissima lv, ilv (srn). (ii) Scalaricardita scalaris rv, elv (DCT-VFa-B333). (jj) S. scalaris rv, ilv (srn). (kk) Megaxinus transversus lv, elv (DCT-VFa-B158). (ll) M. transversus lv, ilv (srn). (mm) Ensis cf. siliqua lv, elv (DCT-VFa-B207). (nn) E. cf. siliqua lv, ilv (srn). (oo) Europicardium multicostatum rv, elv (DCT-VFa-B131). (pp) Arcopagia crassa lv, elv (DCT-VFa-B155). (qq) A. crassa lv, ilv (srn). (rr) Gari depressa rv, elv (DCT-VFa-B154). (ss) Gari tellinella lv, elv (DCT-VFa-B152). (tt) Gouldia minima rv, elv (DCT-VFa-B341). (uu) Mactra stultorum as, elv (DCT-VFa-B161). (vv) Varicorbula gibba rv, elv (DCT-VFa-B348). (ww) V. gibba rv, ilv (srn). (xx) Venus casina rv, elv (DCT-VFa-B157). (yy) V. casina rv, ilv (srn). (zz) Callista chione rv, elv (DCT-VFa-B149). (aaa) Corbula revoluta rv, ilv (DCT-VFa-B294). (bbb) C. revoluta rv, elv (srn). (ccc) Clausinella fasciata rv, elv (DCT-VFa-B310). (ddd) C. fasciata rv, ilv (srn). Abbreviations: as—articulated specimen; elv—external lateral view; ilv—internal lateral view; lv—left valve; rv—right valve; srn—same reference number. Scale bar = 2 cm (ad,m,n,p,q,t,gg,hh,mmss,uu,xxzz); 1 cm (el,o,r,s,uff,iill,tt,vv,ww,aaaddd).
Geosciences 15 00309 g004
Figure 5. Selected specimens of Pliocene marine invertebrates, ichnotaxa, and teleost otolith recovered from the Vale Farpado site (Pombal, west-central, Portugal). (a) Glycymeris valve with conglomerate matrix and a Megacardita striatissima left valve with Oichnos isp. (b) Turritellinae with broken apex dv (un). (c) Pecten benedictus with Entobia isp. and scleractinian coral lv, elv (DCT-VFa-B74). (d) P. benedictus with Entobia isp. and encrusting bryozoans lv, ilv (DCT-VFa-B74). (e) Glycymeris with Maeandropolydora isp. lv, elv (DCT-VFa-B68). (f) P. benedictus with balanids lv, elv (DCT-VFa-B96). (g) Lissochlamys excisa with balanids rv, elv (DCT-VFa-B222). (h) Neverita olla av (un). (i) Diodora italica av (un). (j) Patella pellucida [over lv of L. excisa (DCT-VFa-B291)]. (k) Turbinoliidae (un). (l) Echinidea [over matrix with rv of L. excisa (DCT-VFa-B292)]. (m) Decapoda claw (un). (n) Fish otolith of (un). Abbreviations: av-apical view; dv-dorsal view; elv-external lateral view; ilv-internal lateral view; lv-left valve; of-outer face; rv-right valve; un-unnumbered specimen. Scale bar = 1.5 cm (a,cf); 1 cm (b,gi,l); 0.5 cm (j,k,m,n).
Figure 5. Selected specimens of Pliocene marine invertebrates, ichnotaxa, and teleost otolith recovered from the Vale Farpado site (Pombal, west-central, Portugal). (a) Glycymeris valve with conglomerate matrix and a Megacardita striatissima left valve with Oichnos isp. (b) Turritellinae with broken apex dv (un). (c) Pecten benedictus with Entobia isp. and scleractinian coral lv, elv (DCT-VFa-B74). (d) P. benedictus with Entobia isp. and encrusting bryozoans lv, ilv (DCT-VFa-B74). (e) Glycymeris with Maeandropolydora isp. lv, elv (DCT-VFa-B68). (f) P. benedictus with balanids lv, elv (DCT-VFa-B96). (g) Lissochlamys excisa with balanids rv, elv (DCT-VFa-B222). (h) Neverita olla av (un). (i) Diodora italica av (un). (j) Patella pellucida [over lv of L. excisa (DCT-VFa-B291)]. (k) Turbinoliidae (un). (l) Echinidea [over matrix with rv of L. excisa (DCT-VFa-B292)]. (m) Decapoda claw (un). (n) Fish otolith of (un). Abbreviations: av-apical view; dv-dorsal view; elv-external lateral view; ilv-internal lateral view; lv-left valve; of-outer face; rv-right valve; un-unnumbered specimen. Scale bar = 1.5 cm (a,cf); 1 cm (b,gi,l); 0.5 cm (j,k,m,n).
Geosciences 15 00309 g005
Figure 6. Lifestyle (a) and trophic niches (b) of Pliocene bivalve molluscs from Vale Farpado. Abbreviations: D—deposit feeder; En—endobenthic; Sen—semi-endobenthic; Epc—cemented epibenthic; Epb—byssate epibenthic; Eps—free-swimming epibenthic; S—suspension feeder. (Adapted from [57,155,156].) Values are expressed as percentages (%).
Figure 6. Lifestyle (a) and trophic niches (b) of Pliocene bivalve molluscs from Vale Farpado. Abbreviations: D—deposit feeder; En—endobenthic; Sen—semi-endobenthic; Epc—cemented epibenthic; Epb—byssate epibenthic; Eps—free-swimming epibenthic; S—suspension feeder. (Adapted from [57,155,156].) Values are expressed as percentages (%).
Geosciences 15 00309 g006
Table 1. Comparison between the species of bivalve molluscs from Subclass Protobranchia mentioned in this work for Vale Farpado and those mentioned for other Pliocene marine sites from west-central Portugal (see, [16], Figure 1). Abbreviations: Al—Alcobaça; Ca—Carnide (Pombal); CR—Caldas da Rainha; L—Leiria; MG—Marinha Grande; Nz—Nazaré; VFa—Vale Farpado (Pombal); VFr—Vale do Freixo (Pombal).
Table 1. Comparison between the species of bivalve molluscs from Subclass Protobranchia mentioned in this work for Vale Farpado and those mentioned for other Pliocene marine sites from west-central Portugal (see, [16], Figure 1). Abbreviations: Al—Alcobaça; Ca—Carnide (Pombal); CR—Caldas da Rainha; L—Leiria; MG—Marinha Grande; Nz—Nazaré; VFa—Vale Farpado (Pombal); VFr—Vale do Freixo (Pombal).
Bivalve SpeciesVFa
(This Work)
VFrCa *Al
MG
L
CR
Nz
Ennucula laevigata (J. Sowerby, 1818) [74] XX
Nucula nucleus (Linnaeus, 1758) [69] XX XX
Lembulus pella (Linnaeus, 1758) [69]XXX X
Saccella commutata (Philippi, 1844) [130] X
Total Protobranchia Species33113
* Includes the 1950s fossil sites of Bouchada, Carnide de Cima, Igreja de Carnide, Vale da Cabra, and Vale Farpado.
Table 2. Comparison between the species of bivalve molluscs from Subclass Autobranchia, Infraclass Pteriomorphia mentioned in this work for Vale Farpado and those mentioned for other Pliocene marine sites from west-central Portugal (see, [16], Figure 1). Abbreviations: Al—Alcobaça; Ca—Carnide (Pombal); CR—Caldas da Rainha; L—Leiria; MG—Marinha Grande; Nz—Nazaré; VFa—Vale Farpado (Pombal); VFr—Vale do Freixo (Pombal).
Table 2. Comparison between the species of bivalve molluscs from Subclass Autobranchia, Infraclass Pteriomorphia mentioned in this work for Vale Farpado and those mentioned for other Pliocene marine sites from west-central Portugal (see, [16], Figure 1). Abbreviations: Al—Alcobaça; Ca—Carnide (Pombal); CR—Caldas da Rainha; L—Leiria; MG—Marinha Grande; Nz—Nazaré; VFa—Vale Farpado (Pombal); VFr—Vale do Freixo (Pombal).
Bivalve SpeciesVFa
(This Work)
VFrCa *Al
MG
L
CR
Nz
Mytilus galloprovincialis Lamarck, 1819 [92] X
Modiolus sp. X X
Gregariella sp. X
Barbatia mytiloides (Brocchi, 1814) [46] XX X
Anadara diluvii (Lamarck, 1805) [131] X X
Anadara pectinata (Brocchi, 1814) [46] X XX
Striarca lactea (Linnaeus, 1758) [69] XXX X
Tetrarca tetragona Poli, 1795 [90] X XX
Glycymeris glycymeris (Linnaeus, 1758) [69] XXXXX
Glycymeris nummaria (Linnaeus, 1758) [69] XXX
Ostrea edulis Linnaeus, 1758 [69] XXXXX
Neopycnodonte cochlear (Poli, 1795) [90] X
Isognomon maxillatus (Lamarck, 1819) [92] X
Atrina fragilis (Pennant, 1777) [119] XX X
Pteria hirundo (Linnaeus, 1758) [69] XX
Aequipecten opercularis (Linnaeus, 1758) [69] X XX
Flexopecten flexuosus (Poli, 1795) [90]XX X
Flexopecten inaequicostalis (Lamarck, 1819) [92] X
Manupecten pesfelis (Linnaeus, 1758) [69] X
Pecten benedictus Lamarck, 1819 [92]XXXXX
Pecten jacobaeus (Linnaeus, 1758) [69] X
Perapecten scabrellus (Lamarck, 1819) [92] X
Lissochlamys excisa (Bronn, 1831) [25]XXXXX
Hinnites crispus (Brocchi, 1814) [46] X X
Mimachlamys varia (Linnaeus, 1758) [69] XX XX
Talochlamys ercolaniana (Cocconi, 1873) [132] X
Talochlamys multistriata (Poli, 1795) [90] XXXX
Similipecten similis (Laskey, 1811) [133] X
Anomia ephippium Linnaeus, 1758 [69] XX
Heteranomia squamula (Linnaeus, 1758) [69] XX
Pododesmus squama (Gmelin, 1791) [98] XX
Lima lima (Linnaeus, 1758) [69] X X
Limaria loscombi (G. B. Sowerby I, 1823) [134] X
Limaria tuberculata (Olivi, 1792) [129] XX X
Total Pteriomorphia Species926131124
* Includes the 1950s fossil sites of Bouchada, Carnide de Cima, Igreja de Carnide, Vale da Cabra, and Vale Farpado.
Table 3. Comparison between the species of bivalve molluscs from Subclass Autobranchia, Infraclass Heteroconchia mentioned in this work for Vale Farpado and those mentioned for other Pliocene marine sites from west-central Portugal (see, [16], Figure 1). Abbreviations: Al—Alcobaça; Ca—Carnide (Pombal); CR—Caldas da Rainha; L—Leiria; MG—Marinha Grande; Nz—Nazaré; VFa—Vale Farpado (Pombal); VFr—Vale do Freixo (Pombal).
Table 3. Comparison between the species of bivalve molluscs from Subclass Autobranchia, Infraclass Heteroconchia mentioned in this work for Vale Farpado and those mentioned for other Pliocene marine sites from west-central Portugal (see, [16], Figure 1). Abbreviations: Al—Alcobaça; Ca—Carnide (Pombal); CR—Caldas da Rainha; L—Leiria; MG—Marinha Grande; Nz—Nazaré; VFa—Vale Farpado (Pombal); VFr—Vale do Freixo (Pombal).
Bivalve SpeciesVFa
(This Work)
VFrCa *Al
MG
L
CR
Nz
Laevastarte fusca (Poli, 1791) [103] XXX X
Astarte af. concentrica Goldfuss, 1837 [135] X
Digitaria digitaria (Linnaeus, 1758) [69] XXXXX
Goodallia triangularis (Montagu, 1803) [123] X
Cardita calyculata (Linnaeus, 1758) [69] X X
Cardites antiquatus (Linnaeus, 1758) [69]XX X
Megacardita striatissima (Cailliaud in Mayer, 1868) [106]XXXXX
Centrocardita aculeata (Poli, 1795) [90] X
Cardita (Venericardia) matheroni Mayer, 1871 [136] X
Coripia corbis (Philippi, 1836) [108]X X
Scalaricardita scalaris (J. de C. Sowerby, 1825) [109]XXX X
Gastrochaena sp. X
Lucinoma borealis (Linnaeus, 1767) [121] XX
Lucinella divaricata (Linnaeus, 1758) [69] X X
Megaxinus transversus (Bronn, 1831) [25]XX
Loripinus fragilis (Philippi, 1836) [108] X
Ctena decussata (O. G. Costa, 1829) [137] X
Pharus legumen (Linnaeus, 1758) [69] XX X
Phaxas pellucidus (Pennant, 1777) [119] X
Ensis siliqua (Linnaeus, 1758) [69] XXX XX
Hiatella rugosa (Linnaeus, 1767) [121] X
Panopea glycimeris (Born, 1778) [138] XXX
Procardium diluvianum (Lamarck, 1819) [92] XX
Acanthocardia aculeata (Linnaeus, 1758) [69] X XX
Acanthocardia paucicostata (G. B. Sowerby II, 1834) [139] X
Papillicardium papillosum (Poli, 1791) [103] X X
Parvicardium scriptum (Bucquoy, Dautzenberg and Dollfus, 1892) [140] X
Laevicardium crassum (Gmelin, 1791) [98] XX
Europicardium multicostatum (Brocchi, 1814) [46]XXX
Arcopagia corbis (Bronn, 1831) [25] XXXX
Arcopagia crassa (Pennant, 1777) [119] XXX X
Gastrana fragilis (Linnaeus, 1758) [69] X XX
Gastrana laminosa (J. de C. Sowerby, 1827) [141] X
Macomopsis elliptica (Brocchi, 1814) [46] XX X
Bosemprella incarnata (Linnaeus, 1758) [69] X
Oudardia compressa (Brocchi, 1814) [46] X
Peronidia albicans (Gmelin, 1791) [98] X X
Donax limai Dollfus and Cotter, 1909 [2] X
Donax rugosus Linnaeus, 1758 [69] X
Donax trunculus Linnaeus, 1758 [69] X
Donax variegatus (Gmelin, 1791) [98] XX
Donax venustus Poli, 1795 [90] X
Gari depressa (Pennant, 1777) [119]XX X
Gari fervensis (Gmelin, 1791) [98] XX
Gari tellinella (Lamarck, 1818) [120]XX
Abra alba (W. Wood, 1802) [142] X X
Abra prismatica (Montagu, 1808) [143] XX
Chama gryphoides Linnaeus, 1758 [69] X X
Pseudochama gryphina (Lamarck, 1819) [92] X
Coralliophaga glabrata Brocchi, 1814 [46] X
Mactra stultorum (Linnaeus, 1758) [69] XXX X
Spisula solida (Linnaeus, 1758) [69] XXXX
Spisula subtruncata (da Costa, 1778) [86] XXXX
Eastonia rugosa (Helbling, 1779) [144] XX
Lutraria lutraria (Linnaeus, 1758) [69] X XX
Cardilia aff. michelottii Deshayes, 1844 [145] X
Diplodonta rotundata (Montagu, 1803) [123]XX
Callista chione (Linnaeus, 1758) [69] XXXXX
Chamelea gallina (Linnaeus, 1758) [69] XXX
Circomphalus foliaceolamellosus (Dillwyn, 1817) [146] XXX
Clausinella fasciata (da Costa, 1778) [86]XXXXX
Dosinia exoleta (Linnaeus, 1758) [69] XXX
Dosinia lupinus (Linnaeus, 1758) [69] XX
Gouldia minima (Montagu, 1803) [123] XX
Petricola lithophaga (Retzius, 1788) [147] X
Pitar rudis (Poli, 1795) [90] X
Polititapes vetulus (Basterot, 1825) [148] XX X
Timoclea ovata (Pennant, 1777) [119] XXX X
Venus casina Linnaeus, 1758 [69] XXX
Venus verrucosa Linnaeus, 1758 [69] X XX
Sportella aff. recondita (P. Fischer, 1872) [149] X
Scacchia oblonga (Philippi, 1836) [108] X X
Bornia sebetia (O. G. Costa, 1830) [150] X
Pseudopythina macandrewi (P. Fischer, 1867) [151] X
Corbula revoluta (Brocchi, 1814) [46]XX
Varicorbula gibba (Olivi, 1792) [129]XXX
Lentidium mediterraneum (O. G. Costa, 1830) [150] X
Sphenia anatina (Basterot, 1825) [148] X
Barnea parva (Pennant, 1777) [119] X
Pholadidea rugosa (Brocchi, 1814) [46] XX
Total Heteroconchia Species2256332542
* Includes the 1950s fossil sites of Bouchada, Carnide de Cima, Igreja de Carnide, Vale da Cabra, and Vale Farpado.
Table 4. Pliocene bivalve molluscs recorded from the Vale Farpado fossil site, with associated lifestyle classifications and trophic niches. Abbreviations: D—deposit feeder; En—endobenthic; Sen—semi-endobenthic; Epc—cemented epibenthic; Epb—byssate epibenthic; Eps—free-swimming epibenthic; S—suspension feeder. (After, [57,155,156].)
Table 4. Pliocene bivalve molluscs recorded from the Vale Farpado fossil site, with associated lifestyle classifications and trophic niches. Abbreviations: D—deposit feeder; En—endobenthic; Sen—semi-endobenthic; Epc—cemented epibenthic; Epb—byssate epibenthic; Eps—free-swimming epibenthic; S—suspension feeder. (After, [57,155,156].)
Bivalve Species Lifestyles Feeding Strategies
En Sen Epb Epc Eps D S
E. laevigata X X
N. nucleus X X
L. pella X X
S. lactea X X
G. glycymeris X X
O. edulis X X
F. flexuosus X X
P. benedictus X X
L. excisa X X
T. multistriata X X
H. squamula X X
P. squama X X
L. fusca X X
D. digitaria X
C. antiquatus X X
M. striatissima X X
C. corbis X
S. scalaris X
M. transversus X
E. cf. siliqua X X
E. multicostatum X X
A. crassa X X
G. depressa X
G. tellinella X
M. stultorum X X
D. rotundata X
C. chione X X
C. gallina X
C. fasciata X X
G. minima X
T. ovata X X
V. casina X X
C. revoluta X X
V. gibba X X
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Pimentel, R.J.; Callapez, P.M.; Pai, M.; Legoinha, P.; Dinis, P.A. Pliocene Marine Bivalvia from Vale Farpado (Pombal, Portugal): Palaeoenvironmental and Palaecological Significance. Geosciences 2025, 15, 309. https://doi.org/10.3390/geosciences15080309

AMA Style

Pimentel RJ, Callapez PM, Pai M, Legoinha P, Dinis PA. Pliocene Marine Bivalvia from Vale Farpado (Pombal, Portugal): Palaeoenvironmental and Palaecological Significance. Geosciences. 2025; 15(8):309. https://doi.org/10.3390/geosciences15080309

Chicago/Turabian Style

Pimentel, Ricardo J., Pedro M. Callapez, Mahima Pai, Paulo Legoinha, and Pedro A. Dinis. 2025. "Pliocene Marine Bivalvia from Vale Farpado (Pombal, Portugal): Palaeoenvironmental and Palaecological Significance" Geosciences 15, no. 8: 309. https://doi.org/10.3390/geosciences15080309

APA Style

Pimentel, R. J., Callapez, P. M., Pai, M., Legoinha, P., & Dinis, P. A. (2025). Pliocene Marine Bivalvia from Vale Farpado (Pombal, Portugal): Palaeoenvironmental and Palaecological Significance. Geosciences, 15(8), 309. https://doi.org/10.3390/geosciences15080309

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop