Milankovitch- and Millennial-Scale Sequences in the Late Piacenzian to Early Gelasian Shelf Succession of the Crotone Basin, Southern Italy
Abstract
1. Introduction
2. Geological Setting
3. Methods
4. The Studied Succession
5. Micropaleontological Analysis
5.1. Distribution of Benthic and Planktonic Foraminifera
5.2. Parameters for Sequence Stratigraphy
6. Sequence Stratigraphy
6.1. Higher Rank Sequences
6.2. Lower Rank Sequences
7. Discussion
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Posamentier, H.W.; Allen, G.P. Siliciclastic sequence stratigraphy—Concepts and applications. SEPM Concepts Sedimentol. Paleontol. 1999, 7, 210. [Google Scholar]
- Catuneanu, O. Principles of Sequence Stratigraphy; Elsevier: Amsterdam, The Netherlands, 2006; p. 386. [Google Scholar]
- Catuneanu, O. Principles of Sequence Stratigraphy, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022; p. 494. [Google Scholar]
- Zecchin, M.; Catuneanu, O. High-resolution sequence stratigraphy of clastic shelves I: Units and bounding surfaces. Mar. Pet. Geol. 2013, 39, 1–25. [Google Scholar] [CrossRef]
- Catuneanu, O. Scale in Sequence Stratigraphy. Mar. Pet. Geol. 2019, 106, 128–159. [Google Scholar] [CrossRef]
- Di Celma, C.; Cantalamessa, G. Sedimentology and high-frequency sequence stratigraphy of a forearc extensional basin: The Miocene Caleta Herradura Formation, Mejillones Peninsula, northern Chile. Sediment. Geol. 2007, 198, 29–52. [Google Scholar] [CrossRef]
- Zecchin, M.; Caffau, M.; Catuneanu, O. Recognizing maximum flooding surfaces in shallow-water deposits: An integrated sedimentological and micropaleontological approach (Crotone Basin, southern Italy). Mar. Pet. Geol. 2021, 133, 105225. [Google Scholar] [CrossRef]
- Zecchin, M.; Caffau, M.; Catuneanu, O. Identification of maximum flooding surfaces at different scales: The case of the Piacenzian to Gelasian Cutro Clay and Strongoli Sandstone (Crotone Basin, southern Italy). Mar. Pet. Geol. 2022, 146, 105971. [Google Scholar] [CrossRef]
- Zecchin, M.; Caffau, M.; Catuneanu, O. Zanclean to Gelasian high-frequency sequences of the Crotone Basin (southern Italy): Architectural variability and forcing mechanisms. Mar. Pet. Geol. 2024, 162, 106753. [Google Scholar] [CrossRef]
- Zecchin, M.; Catuneanu, O.; Caffau, M. High-resolution sequence stratigraphy of clastic shelves IX: Methods for recognizing maximum flooding conditions in shallow-marine settings. Mar. Pet. Geol. 2023, 156, 106468. [Google Scholar] [CrossRef]
- Amodio Morelli, L.; Bonardi, G.; Colonna, V.; Dietrich, D.; Giunta, G.; Ippolito, F.; Liguori, V.; Lorenzoni, S.; Paglionico, A.; Perrone, V.; et al. L’Arco Calabro-Peloritano nell’orogene Appenninico-Maghrebide. Mem. Soc. Geol. Ital. 1976, 17, 1–60. [Google Scholar]
- Van Dijk, J.P.; Bello, M.; Brancaleoni, G.P.; Cantarella, G.; Costa, V.; Frixa, A.; Golfetto, F.; Merlini, S.; Riva, M.; Torricelli, S.; et al. A regional structural model for the northern sector of the Calabrian Arc (southern Italy). Tectonophysics 2000, 324, 267–320. [Google Scholar] [CrossRef]
- Bonardi, G.; Cavazza, W.; Perrone, V.; Rossi, S. Calabria–Peloritani terrane and northern Ionian Sea. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins; Vai, G.B., Martini, I.P., Eds.; Kluwer Academic Publishers: Bodmin, UK, 2001; pp. 287–306. [Google Scholar]
- Malinverno, A.; Ryan, W.B.F. Extension in the Tyrrhenian Sea and shortening in the Apennines as a result of arc migration driven by sinking of the lithosphere. Tectonics 1986, 5, 227–245. [Google Scholar] [CrossRef]
- Faccenna, C.; Becker, T.W.; Lucente, F.P.; Jolivet, L.; Rossetti, F. History of subduction and back-arc extension in the Central Mediterranean. Geophys. J. Int. 2001, 145, 809–820. [Google Scholar] [CrossRef]
- Faccenna, C.; Civetta, L.; D’Antonio, M.; Funiciello, F.; Margheriti, L.; Piromallo, C. Constraints on mantle circulation around the deforming Calabrian slab. Geophys. Res. Lett. 2005, 32, L06311. [Google Scholar] [CrossRef]
- Sartori, R. The Tyrrhenian back-arc basin and subduction of the Ionian lithosphere. Episodes 2003, 26, 217–221. [Google Scholar] [CrossRef]
- Guillaume, B.; Funiciello, F.; Faccenna, C.; Martinod, J.; Olivetti, V. Spreading pulses of the Tyrrhenian Sea during the narrowing of the Calabrian slab. Geology 2010, 38, 819–822. [Google Scholar] [CrossRef]
- Critelli, S. Provenance of Mesozoic to Cenozoic Circum-Mediterranean sandstones in relation to tectonic setting. Earth-Sci. Rev. 2018, 185, 624–648. [Google Scholar] [CrossRef]
- Tripodi, V.; Muto, F.; Brutto, F.; Perri, F.; Critelli, S. Neogene-quaternary evolution of the forearc and backarc regions between the Serre and Aspromonte Massifs, Calabria (southern Italy). Mar. Pet. Geol. 2018, 95, 328–343. [Google Scholar] [CrossRef]
- Critelli, S.; Martín-Martín, M. Provenance, Paleogeographic and paleotectonic interpretations of Oligocene-Lower Miocene sandstones of the western-central Mediterranean region: A review. J. Asian Earth Sci. 2022, 8, 100124. [Google Scholar] [CrossRef]
- Critelli, S.; Martín-Martín, M. History of western Tethys Ocean and the birth of the circum-Mediterranean orogeny as reflected by source-to-sink relations. Int. Geol. Rev. 2024, 66, 505–515. [Google Scholar] [CrossRef]
- Van Dijk, J.P.; Okkes, F.W.M. Neogene tectonostratigraphy and kinematics of Calabrian basins; implications for the geodynamics of the Central Mediterranean. Tectonophysics 1991, 196, 23–60. [Google Scholar] [CrossRef]
- Zecchin, M.; Massari, F.; Mellere, D.; Prosser, G. Anatomy and evolution of a Mediterranean-type fault bounded basin: The Lower Pliocene of the northern Crotone Basin (Southern Italy). Basin Res. 2004, 16, 117–143. [Google Scholar] [CrossRef]
- Roda, C. Distribuzione e facies dei sedimenti Neogenici nel Bacino Crotonese. Geol. Romana 1964, 3, 319–366. [Google Scholar]
- Van Dijk, J.P. Sequence stratigraphy, kinematics and dynamic geohistory of the Crotone Basin (Calabria arc, central mediterranean): An integrated approach. Mem. Soc. Geol. Ital. 1990, 44, 259–285. [Google Scholar]
- Zecchin, M.; Mellere, D.; Roda, C. Sequence stratigraphy and architectural variability in growth fault-bounded basin fills: A review of Plio-Pleistocene stratal units of the Crotone Basin, southern Italy. J. Geol. Soc. Lond. 2006, 163, 471–486. [Google Scholar] [CrossRef]
- Zecchin, M.; Caffau, M.; Civile, D.; Critelli, S.; Di Stefano, A.; Maniscalco, R.; Muto, F.; Sturiale, G.; Roda, C. The Plio-Pleistocene evolution of the Crotone Basin (southern Italy): Interplay between sedimentation, tectonics and eustasy in the frame of Calabrian Arc migration. Earth Sci. Rev. 2012, 115, 273–303. [Google Scholar] [CrossRef]
- Zecchin, M.; Civile, D.; Caffau, M.; Critelli, S.; Muto, F.; Mangano, G.; Ceramicola, S. Sedimentary evolution of the Neogene-Quaternary Crotone Basin (southern Italy) and relationships with large-scale tectonics: A sequence stratigraphic approach. Mar. Pet. Geol. 2020, 117, 104381. [Google Scholar] [CrossRef]
- Massari, F.; Prosser, G. Late Cenozoic tectono-stratigraphic sequences of the Crotone Basin: Insights on the geodynamic history of the Calabrian arc and Tyrrhenian Sea. Basin Res. 2013, 25, 26–51. [Google Scholar] [CrossRef]
- Criniti, S.; Borrelli, M.; Falsetta, E.; Civitelli, M.; Pugliese, E.; Arcuri, N. Sandstone petrology of the Crotone basin, Calabria (Italy) from well cores. Rend. Online Soc. Geol. Ital. 2023, 59, 64–70. [Google Scholar] [CrossRef]
- Mangano, G.; Zecchin, M.; Civile, D.; Critelli, S. Tectonic evolution of the Crotone Basin (central Mediterranean): The important role of two strike-slip fault zones. Mar. Pet. Geol. 2024, 163, 106769. [Google Scholar] [CrossRef]
- Gliozzi, E. I terrazzi del Pleistocene superiore della Penisola di Crotone (Calabria). Geol. Romana 1987, 26, 17–79. [Google Scholar]
- Cosentino, D.; Gliozzi, E.; Salvini, F. Brittle deformations in the Upper Pleistocene deposits of the Crotone Peninsula, Calabria, southern Italy. Tectonophysics 1989, 163, 205–217. [Google Scholar] [CrossRef]
- Cita, M.B. Studi sul Pliocene e sugli strati di passaggio dal Miocene al Pliocene. VIII. Planktonic foraminiferal biozonation of the Mediterranean Pliocene deep-sea record. A revision. Riv. Ital. Paleontol. Stratigr. 1975, 81, 527–544. [Google Scholar]
- Rio, D.; Raffi, I.; Villa, G. Pliocene-Pleistocene calcareous nannofossil distribution patterns in the Western Mediterranean. Proc. Ocean. Drill. Program Sci. Results 1990, 107, 513–533. [Google Scholar]
- Lourens, L.J.; Antonarakou, A.; Hilgen, F.J.; Van Hoof, A.A.M.; Vergnaud-Grazzini, C.; Zachariasse, W.J. Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanography 1996, 11, 391–413. [Google Scholar] [CrossRef]
- Raffi, I.; Backman, J.; Fornaciari, E.; Pälike, H.; Rio, D.; Lourens, L.; Hilgen, F. A review of calcareous nannofossil astrobiochronology encompassing the past 25 million years. Quat. Sci. Rev. 2006, 25, 3113–3137. [Google Scholar] [CrossRef]
- Reading, H.G.; Collinson, J.D. Clastic Coasts. In Sedimentary Environments; Processes, Facies and Stratigraphy; Reading, H.G., Ed.; Blackwell Science: Oxford, UK, 1996; pp. 154–231. [Google Scholar]
- Clifton, H.E. A reexamination of facies models for clastic shorelines. In Facies Models Revisited; Posamentier, H.W., Walker, R.G., Eds.; SEPM Special Publication: Tulsa, OK, USA, 2006; Volume 84, pp. 293–337. [Google Scholar]
- Zecchin, M.; Caffau, M.; Catuneanu, O.; Lenaz, D. Discrimination between wave-ravinement surfaces and bedset boundaries in Pliocene shallow-marine deposits, Crotone Basin, southern Italy: An integrated sedimentological, micropaleontological and mineralogical approach. Sedimentology 2017, 64, 1755–1791. [Google Scholar] [CrossRef]
- Loeblich, A.R.; Tappan, H. Foraminiferal Genera and Their Classification; Van Nostrand Reinhold Company: New York, NY, USA, 1987; p. 970. [Google Scholar]
- Capraro, L.; Consolaro, C.; Fornaciari, E.; Massari, F.; Rio, D. Chronology of the middle-upper Pliocene succession in the Strongoli area: Constraints on the geological evolution of the Crotone Basin (southern Italy). In Tectonics of the Western Mediterranean and North Africa; Moratti, G., Chalouan, A., Eds.; Geological Society Special Publication: London, UK, 2006; Volume 262, pp. 323–336. [Google Scholar]
- Jorissen, F.J. The distribution of benthic foraminifera in the Adriatic Sea. Mar. Micropaleontol. 1987, 12, 21–48. [Google Scholar] [CrossRef]
- Abbott, S.T. Foraminiferal paleobathymetry and mid-cycle architecture of mid-Pleistocene depositional sequences, Wanganui Basin, New Zealand. Palaios 1997, 12, 267–281. [Google Scholar] [CrossRef]
- Naish, T.R.; Kamp, P.J.J. Foraminiferal depth palaeoecology of Late Pliocene shelf sequences and system tracts, Wanganui Basin, New Zealand. Sediment. Geol. 1997, 110, 237–255. [Google Scholar] [CrossRef]
- Stefanelli, S. Benthic foraminiferal assemblages as tools for paleoenvironmental reconstruction of the early-middle Pleistocene Motalbano Jonico composite section. Boll. Soc. Paleontol. Ital. 2003, 42, 281–299. [Google Scholar]
- Mendes, I.; Gonzalez, R.; Dias, J.M.A.; Lobo, F.; Martins, V. Factors influencing recent benthic foraminifera distribution on the Guadiana shelf (Southwestern Iberia). Mar. Micropaleontol. 2004, 51, 171–192. [Google Scholar] [CrossRef]
- Morigi, C.; Jorissen, F.J.; Fraticelli, S.; Horton, B.P.; Principi, M.; Sabbatini, A.; Capotondi, L.; Curzi, P.V.; Negri, A. Benthic foraminiferal evidence for the formation of the Holocene mud-belt and bathymetrical evolution in the central Adriatic Sea. Mar. Micropaleontol. 2005, 57, 25–49. [Google Scholar] [CrossRef]
- Murray, J.W. Ecology and Applications of Benthic Foraminifera; Cambridge University Press: New York, NY, USA, 2006; p. 426. [Google Scholar]
- Phipps, M.D.; Kaminiski, M.A.; Aksu, A.E. Calcareous benthic foraminiferal biofacies along a depth transect on the southwestern marmara shelf (Turkey). Micropaleontology 2010, 56, 377–392. [Google Scholar] [CrossRef]
- Milker, Y.; Schmiedl, G. A taxonomic guide to modern benthic shelf foraminifera of the western Mediterranean Sea. Palaeontol. Electron. 2012, 15, 134. [Google Scholar] [CrossRef]
- Donnici, S.; Serandrei-Barbero, R. The benthic foraminiferal communities of the North Adriatic continental shelf. Mar. Micropaleontol. 2002, 44, 93–123. [Google Scholar] [CrossRef]
- Fillon, R.H. Biostratigraphy and condensed sections in deepwater settings. In Introduction to the Petroleum Geology of Deepwater Settings; Weimer, P., Slatt, R., Eds.; AAPG Studies in Geology 57, AAPG/Datapages Discovery Series; American Association of Petroleum Geologists: Tulsa, OK, USA, 2007; Volume 8. [Google Scholar]
- Gutiérrez Paredes, H.C.; Catuneanu, O.; Romano, U.H. Sequence stratigraphy of the Miocene section, southern Gulf of Mexico. Mar. Pet. Geol. 2017, 86, 711–732. [Google Scholar] [CrossRef]
- Jorissen, F.; Nardelli, M.P.; Almogi-Labin, A.; Barras, C.; Bergamin, L.; Bicchi, E.; El Kateb, A.; Ferraro, L.; Mary McGann, M.; Morigi, C.; et al. Developing Foram-AMBI for biomonitoring in the Mediterranean: Species assignments to ecological categories. Mar. Micropaleontol. 2018, 140, 33–45. [Google Scholar] [CrossRef]
- Hunt, D.; Tucker, M.E. Stranded parasequences and the forced regressive wedge systems tract: Deposition during base-level fall. Sediment. Geol. 1992, 81, 1–9. [Google Scholar] [CrossRef]
- Helland-Hansen, W.; Martinsen, O.J. Shoreline trajectories and sequences: Description of variable depositional-dip scenarios. J. Sediment. Res. 1996, 66, 670–688. [Google Scholar]
- Van Wagoner, J.C.; Mitchum, R.M.; Campion, K.M.; Rahmanian, V.D. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops. AAPG Methods Explor. 1990, 7, 55. [Google Scholar]
- Abbott, S.T.; Carter, R.M. The sequence architecture of Mid-Pleistocene (c.1.1.-0.4Ma) cyclothems from New Zealand: Facies development during a Period of orbital control on sea-level cyclicity. In Orbital Forcing and Cyclic Sequences; De Boer, P.L., Smith, D.G., Eds.; IAS Special Publication: Hoboken, NJ, USA, 1994; Volume 19, pp. 367–394. [Google Scholar]
- Plint, A.G. Sharp-based shoreface sequences and offshore bars in the Cardium Formation of Alberta; their relationship to relative changes in sea level. In Sea Level Changes: An Integrated Approach; Wilgus, C.K., Hastings, B.S., Kendall, C.G.S.C., Posamentier, H.W., Ross, C.A., Van Wagoner, J.C., Eds.; SEPM Special Publication: Tulsa, OK, USA, 1988; Volume 42, pp. 357–370. [Google Scholar]
- Plint, A.G.; Nummedal, D. The falling stage systems tract: Recognition and importance in sequence stratigraphic analysis. In Sedimentary Responses to Forced Regressions; Hunt, D., Gawthorpe, R.L., Eds.; Geological Society Special Publication: Bath, UK, 2000; Volume 172, pp. 1–17. [Google Scholar]
- Swift, D.J. Coastal erosion and transgressive stratigraphy. J. Geol. 1968, 76, 444–456. [Google Scholar] [CrossRef]
- Demarest, J.M.; Kraft, J.C. Stratigraphic record of Quaternary sea levels: Implications for more ancient strata. In Sea-level Fluctuation and Coastal Evolution; Nummedal, D., Pilkey, O.H., Howard, J.D., Eds.; SEPM Special Publication: Tulsa, OK, USA, 1987; Volume 41, pp. 223–239. [Google Scholar]
- Nummedal, D.; Swift, D.J.P. Transgressive stratigraphy at sequence-bounding unconformities: Some principles derived from Holocene and Cretaceous examples. In Sea-Level Fluctuation and Coastal Evolution; Nummedal, D., Pilkey, O.H., Howard, J.D., Eds.; SEPM Special Publication: Tulsa, OK, USA, 1987; Volume 41, pp. 241–260. [Google Scholar]
- Zecchin, M.; Catuneanu, O.; Caffau, M. Wave-ravinement surfaces: Classification and key characteristics. Earth Sci. Rev. 2019, 188, 210–239. [Google Scholar] [CrossRef]
- Kidwell, S.M. Condensed deposits in siliciclastic sequences: Expected and observed features. In Cycles and Events in Stratigraphy; Einsele, G., Ricken, W., Seilacher, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 682–695. [Google Scholar]
- Naish, T.R.; Kamp, P.J.J. Sequence stratigraphy of sixth-order (41 k.y.) Pliocene-Pleistocene cyclothems, Wanganui basin, New Zealand: A case for the regressive systems tract. Geol. Soc. Am. Bull. 1997, 109, 978–999. [Google Scholar] [CrossRef]
- Catuneanu, O.; Zecchin, M. High-resolution sequence stratigraphy of clastic shelves II: Controls on sequence development. Mar. Pet. Geol. 2013, 39, 26–38. [Google Scholar] [CrossRef]
- Shackleton, N.J.; Hall, M.A.; Pate, D. Pliocene stable isotope stratigraphy of ODP Site 846. Proc. Ocean. Drill. Program Sci. Results 1995, 138, 337–356. [Google Scholar]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, PA1003. [Google Scholar] [CrossRef]
- Grant, G.R.; Sefton, J.P.; Patterson, M.O.; Naish, T.R.; Dunbar, G.B.; Hayward, B.W.; Morgans, H.E.G.; Alloway, B.V.; Seward, D.; Tapia, C.A.; et al. Mid- to late Pliocene (3.3–2.6 Ma) global sea-level fluctuations recorded on a continental shelf transect, Whanganui Basin, New Zealand. Quat. Sci. Rev. 2018, 201, 241–260. [Google Scholar] [CrossRef]
- Grant, G.R.; Naish, T.R.; Dunbar, G.B.; Stocchi, P.; Kominz, M.A.; Kamp, P.J.J.; Tapia, C.A.; McKay, R.M.; Levy, R.H.; Patterson, M.O. The amplitude and origin of sea-level variability during the Pliocene epoch. Nature 2019, 574, 237–241. [Google Scholar] [CrossRef]
- Ochoa, D.; Sierro, F.J.; Hilgen, F.J.; Cortina, A.; Lofi, J.; Kouwenhoven, T.; Flores, J.-A. Origin and implications of orbital-induced sedimentary cyclicity in Pliocene well-logs of the Western Mediterranean. Mar. Geol. 2018, 403, 150–164. [Google Scholar] [CrossRef]
- Saul, G.; Naish, T.R.; Abbott, S.T.; Carter, R.M. Sedimentary cyclicity in the marine Pliocene-Pleistocene of the Wanganui basin (New Zealand): Sequence stratigraphic motifs characteristic of the past 2.5 m.y. GSA Bull. 1999, 111, 524–537. [Google Scholar] [CrossRef]
- Amorosi, A.; Centineo, M.C.; Colalongo, M.L.; Fiorini, F. Millennial-scale depositional cycles from the Holocene of the Po Plain, Italy. Mar. Geol. 2005, 222–223, 7–18. [Google Scholar] [CrossRef]
- Hampson, G.J.; Rodriguez, A.B.; Storms, J.E.A.; Johnson, H.D.; Meyer, C.T. Geomorphology and high-resolution stratigraphy of progradational wave-dominated shoreline deposits: Impact on reservoir-scale facies architecture. In Recent Advances in Models of Siliciclastic Shallow-Marine Stratigraphy; Hampson, G.J., Steel, R.J., Burgess, P.M., Dalrymple, R.W., Eds.; SEPM Special Publication: Tulsa, OK, USA, 2008; Volume 90, pp. 117–142. [Google Scholar]
- Ainsworth, R.B.; Vakarelov, B.K.; MacEachern, J.A.; Rarity, F.; Lane, T.I.; Nanson, R.A. Anatomy of a shoreline regression: Implications for the high-resolution stratigraphic architecture of deltas. J. Sediment. Res. 2017, 87, 425–459. [Google Scholar] [CrossRef]
Facies | Lithology and Thickness | Sedimentary Structures and Bioturbation | Fossils | Interpretation |
---|---|---|---|---|
Facies A1 | Silty clay to sandy silt ca. 62.5 m thick | Diffuse bioturbation, faint planar lamination. Sharp, erosional boundary with the overlying Facies A2. Sharp but non-erosional surfaces, occasionally underlined by substrate-controlled Glossifungites Ichnofacies, mark minor grain size changes. Occasional planar laminae of very fine-grained sand. | Sparse, small and thin bivalves (mainly venerids in the lower and middle part, mainly pectinids in the upper part), small gastropods, worm tubes, occasional Dentalium sp. and rare plant debris. | Middle to inner shelf [8,39] |
Facies A2 | Very fine- to fine-grained quartz sandstone ca. 5 m thick | Planar lamination, dm-scale sharp-based layers in the lower and middle parts of the sand body, sparse bioturbation. Sharp, erosional lower boundary with Facies A1. | Medium-size bivalves (venerids, pectinids and ostreids), gastropods and occasional worm tubes. Fossils can be sparse or organized to form a ca. 0.3 m thick, sharp-based shell bed in the middle of the sand body. | Lower shoreface [7,39,40,41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zecchin, M.; Caffau, M.; Catuneanu, O. Milankovitch- and Millennial-Scale Sequences in the Late Piacenzian to Early Gelasian Shelf Succession of the Crotone Basin, Southern Italy. Geosciences 2025, 15, 210. https://doi.org/10.3390/geosciences15060210
Zecchin M, Caffau M, Catuneanu O. Milankovitch- and Millennial-Scale Sequences in the Late Piacenzian to Early Gelasian Shelf Succession of the Crotone Basin, Southern Italy. Geosciences. 2025; 15(6):210. https://doi.org/10.3390/geosciences15060210
Chicago/Turabian StyleZecchin, Massimo, Mauro Caffau, and Octavian Catuneanu. 2025. "Milankovitch- and Millennial-Scale Sequences in the Late Piacenzian to Early Gelasian Shelf Succession of the Crotone Basin, Southern Italy" Geosciences 15, no. 6: 210. https://doi.org/10.3390/geosciences15060210
APA StyleZecchin, M., Caffau, M., & Catuneanu, O. (2025). Milankovitch- and Millennial-Scale Sequences in the Late Piacenzian to Early Gelasian Shelf Succession of the Crotone Basin, Southern Italy. Geosciences, 15(6), 210. https://doi.org/10.3390/geosciences15060210