Analysis of the Evolution of Lowland Landslides in Temperate Environments According to Climatic Conditions Based on LiDAR Data: A Case Study from Rilly (Champagne Vineyard Region, Northeastern France)
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BRGM | Bureau de Recherches Géologiques et Minières |
ONF | Office Nationale des Forêts |
CIVC | Comité Interprofessionnel des Vins de Champagne |
References
- Dikau, R.; Cavallin, A.; Jäger, S. Databases and GIS for landslide research in Europe. Geomorphology 1996, 15, 227–239. [Google Scholar] [CrossRef]
- Djuric, N.; Besevic, M.; Djuric, D.; Prokic, A.; Kukaras, D. Causes and Consequances of Certain Landslides in Republic of Srpska, Bosnia and Herzegovina. Procedia Earth Planet. Sci. 2015, 15, 159–164. [Google Scholar] [CrossRef]
- Prodan, M.V.; Peranic, J.; Jagodnik, V.; Setiawan, H.; Arbans, Z. Influence of precipitation and soil conditions on the Krbavcici landslide reactivation (Istria Peninsula, Croatia). In Proceedings of the 6th Regional Symposium on Landslides, Belgrade, Serbia, 15–18 May 2024. [Google Scholar] [CrossRef]
- Demoulin, A.; Pissart, A.; Schroeder, C. On the origin of late Quaternary palaeolandslides in the Liège (E Belgium) area. Int. J. Earth Sci. 2003, 92, 795–805. [Google Scholar] [CrossRef]
- Hadji, R.; Boumazbeur, A.; Limani, Y.; Baghem, M.; Chouabi, A.-M.; Demdoum, A. Geologic, topographic and climatic controls in landslide hazard assessment usgin GIS modeling: A case study of Souk Ahras region, NE Algeria. Quat. Int. 2013, 302, 224–237. [Google Scholar] [CrossRef]
- Fang, Z.; Barasal Morales, A.; Wang, Y.; Lombardo, L. Climate change has increased rainfall-induced landslide damages in central China. Int. J. Disaster Risk Reduct. 2025, 119, 105320. [Google Scholar] [CrossRef]
- Ramzan, M.; Cui, P.; Ualiyeva, D.; Mukhtar, H.; Bazai, N.A.; Baig, M.A. Impact of climate change on landslides along N-15 Highway, northern Pakistan. Adv. Clim. Change Res. 2025, in press. [Google Scholar] [CrossRef]
- Panek, T.; Hradecky, J.; Smolkova, V.; Silhan, K. Giant ancient landslide in the Alma water gap (Crimean Mountains, Ukraine): Notes to the predisposition structure, and chronology. Landslides 2008, 5, 367–378. [Google Scholar] [CrossRef]
- Panek, T.; Hradecky, J.; Smolkova, V.; Silhan, K. Gigantic low-gradient landslides in the northern periphery of the Crimean Mountains (Ukraine). Geomorphology 2008, 95, 449–473. [Google Scholar] [CrossRef]
- Preuth, T.; Glade, T.; Demoulin, A. Stability analysis of a human-influenced landslide in eastern Belgium. Geomorphology 2010, 120, 38–47. [Google Scholar] [CrossRef]
- Vranken, L.; Van Turnhout, P.; Van Den Eeckhaut, M.; Vanderkerckhove, L.; Poesen, J. Economic valuation of landslide damage in hilly regions: A case study from Flanders, Belgium. Sci. Total Environ. 2013, 447, 323–336. [Google Scholar] [CrossRef]
- Bollot, N.; Devos, A.; Pierre, G. Ressources en eau et glissements de terrain: Exemple du bassin versant de la Semoigne (bassin de Paris, France). Géomorphologie: Relief, Processus. Environnement 2015, 2, 121–132. [Google Scholar] [CrossRef]
- Berthe, J. Apport du LiDAR Aéroporté à la Comprehension des Hydrosystèmes—Exemple de la Montagne de Reims. Ph.D. Thesis, Université de Reims Champagne-Ardenne, Reims, France, 2024; 412p. [Google Scholar]
- Ortonovi, S.; Bollot, N. Modélisation des glissements de terrain du vignoble champenois. Vign. Champen. 2019, 9, 37–42. [Google Scholar]
- Ortonovi, S.; Bollot, N.; Pierre, G.; Devos, A.; Perarnau, R. Dynamique et modelé des versants cambrés de la vallée de l’Ardre (plateau éocène du Soissonnais, bassin de Paris, France). Géomorphol. Relief Process. Environ. 2020, 26, 117–126. [Google Scholar] [CrossRef]
- Ortonovi, S.; Bollot, N.; Pierre, G.; Deroin, J.-P. Cartographie de la susceptibilité aux glissements de terrain dans le vignoble champenois entre Epernay et Dormans (France): Apport de la télédétection multispectrale. Géomorphol. Relief Process. Environ. 2021, 27, 147–158. [Google Scholar] [CrossRef]
- Bollot, N.; Pierre, G.; Grandjean, G.; Fronteau, G.; Devos, A.; Lejeune, O. Internal structure and reactivations of a mass movement: The case study of the Jacotines landslide (Champagne vineyards, France). GeoHazards 2023, 4, 183–196. [Google Scholar] [CrossRef]
- Li, X.; Zhao, C.; Hölter, R.; Datcheva, M.; Lavasan, A. Modelling of a large landslide problem under water level fluctuation—Model calibration and verification. Geosciences 2019, 9, 89. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, C.; Li, L.; Feng, L.; Yang, W. Inventory of Landslides in the Northern Half of the Taihang Mountain Range, China. Geosciences 2024, 14, 74. [Google Scholar] [CrossRef]
- Xiong, L.; Wang, G.; Bao, Y.; Zhou, X.; Sun, X.; Zhao, R. Detectability of repeated airborne laser scanning for mountain landslide monitoring. Geosciences 2018, 8, 469. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, L.; Dong, J.; Dong, X.; Li, M.; Xu, Q.; Liao, M. Detection and characterization of slow-moving landslides in the 2017 Jiuzhaigou earthquake area by combining satellite SAR observations and airborne Lidar DSM. Eng. Geol. 2022, 305, 106730. [Google Scholar] [CrossRef]
- Laurain, M.; Guérin, H.; Durand, R.; Chertier, B.; Louis, P.; Marfaux, P.; Neiss, R. Note explicative de la feuille de Reims au 1/50,000. In Carte Géologique de France; BRGM: Orléans, France, 1981; p. 132. [Google Scholar]
- Cozeret, O. Les mouvements de terrain dans le secteur de Champillon-Dizy-Hautvillers (Marne). Trav. L’institut Géogr. Reims 1987, 69–72, 129–150. [Google Scholar] [CrossRef]
- Marre, A. Le mouvement de terrain de Rilly-la-Montagne du 23 août 1986, naissance et évolution. Trav. L’institut Géogr. Reims 1987, 69–72, 95–111. [Google Scholar] [CrossRef]
- Bollot, N.; Pierre, G.; Devos, A.; Lutz, P.; Ortonovi, S. Hydrogeology of a landslide: A case study in the Montagne de Reims (Paris basin, France). Quaterly J. Eng. Geol. Hydrogeol. 2022, 56, 2021–2041. [Google Scholar] [CrossRef]
- Jomard, H.; Lebourg, T.; Binet, S.; Tric, E.; Hernandez, M. Characterization of an internal slope movement structure by hydrogeophysical surveying. Terra Nova 2007, 19, 48–57. [Google Scholar] [CrossRef]
- De Bari, C.; Lapenna, V.; Perrone, A.; Puglisi, C.; Sdao, F. Digital photogrammetric analysis and electrical resistivity tomography for investigating the Picerno landslide (Basilicata region, southern Italy). Geomorphology 2011, 133, 34–46. [Google Scholar] [CrossRef]
- Grandjean, G.; Gourry, J.C.; Sanchez, O.; Bitri, A.; Garambois, S. Structural study of the Ballandaz landslide (French Alps) using geophysical imagery. J. Appl. Geophys. 2011, 75, 531–542. [Google Scholar] [CrossRef]
- Uhlemann, S.; Chambers, J.; Wilkinson, P.; Maurer, H.; Merritt, A.; Meldrum, P.; Kuras, O.; Gunn, D.; Smith, A.; Dijkstra, T. Four-dimensional imaging of moisture dynamics during landslide reactivation. J. Geophys. Res. Earth Surf. 2017, 122, 398–418. [Google Scholar] [CrossRef]
- Hu, S.; Wang, X.; Wang, N.; Yang, D.; Wang, D.; Ma, S.; Song, Z.; Cao, M. Dynamic process, influence, and triggering mechanism of slope remodelling by landslide clusters in the South Jingyang Tableland, China. Catena 2022, 217, 106518. [Google Scholar] [CrossRef]
- Jongmans, D.; Bièvre, G.; Renalier, F.; Schwartz, S.; Beaurez, N.; Orengo, Y. Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Eng. Geol. 2009, 109, 45–56. [Google Scholar] [CrossRef]
- Colangelo, G.; Lapenna, V.; Perrone, A.; Piscitelli, S.; Telesca, L. 2D Self-Potential tomographies for studying groundwater flows in the Varco d’Izzo landslide (Basilicata, southern Italy). Eng. Geol. 2006, 88, 274–286. [Google Scholar] [CrossRef]
- Göktürkler, G.; Balkaya, C.; Erhan, Z. Geophysical investigation of a landslide: The Altindag landslide site, Izmir (western Turkey). J. Appl. Geophys. 2008, 65, 84–96. [Google Scholar] [CrossRef]
- Gance, J.; Grandjean, G.; Samyn, K.; Malet, J.-P. Quasi-Newton inversion of seismic first arrivals using source finite bandwidth assumption: Application to subsurface characterization of landslides. J. Appl. Geophys. 2012, 87, 94–106. [Google Scholar] [CrossRef]
- Beltrando, G.; Bridier, S.; Madelin, M.-H.; Queno, H. Evaluation de l’impact d’un futur remblai de la ligne à grande vtesse Est Européenne sur le risque de gel dans le vignoble de Champagne. Hommes Terres Nord 2002, 1, 40–52. [Google Scholar] [CrossRef]
- Madelin, M.-H.; Beltrando, G.; Langellier, F.; Camblan, M. Amélioration de la prévision des gelées printanières dans le vignoble de la Marne en Champagne. Hommes Terres Nord 2002, 1, 53–62. [Google Scholar] [CrossRef]
- Briche, E.; Quenol, H.; Beltrando, G. Changement climatique dans le vignoble champenois. L’année 2003, préfigure t-elle les prévisions des modèles numériques pour le XXIème siècle? L’espace Géogr. 2011, 2, 164–175. [Google Scholar] [CrossRef]
- Mora, O.; Lenzano, M.-G.; Toth, C.-K.; Grejner-Brzezinska, A.; Fayne, J.-V. Landslide change detection based on multu-temporal airborne LiDAR-Derived DEMs. Geosciences 2018, 8, 23. [Google Scholar] [CrossRef]
- Azmoon, B.; Biniyaz, A.; Liu, Z. Use of High-Resolution Multi Temporel DEM Data for landslide detection. Geosciences 2022, 12, 378. [Google Scholar] [CrossRef]
- Berthe, J.; Devos, A.; Lejeune, O.; Bollot, N.; Fronteau, G.; Perarnau, R.; Ortonovi, S. Apport du LiDAR aéroporté sur la compréhension des facteurs d’exokarstification en contexte de bas plateau, exemple de la Montagne de Reims (France). Géomorphologie Relief Process. Environ. 2022, 28, 207–221. [Google Scholar] [CrossRef]
- Hu, S.; Qiu, H.; Wang, X.; Gao, Y.; Wang, N.; Wu, J.; Yang, D.; Cao, M. Acquiring high-resolution topography and performing spatial analysis of loess landslides by using low-cost UAVs. Landslides 2018, 15, 593–612. [Google Scholar] [CrossRef]
- Brezny, M.; Panek, T. Deep-seated landslides affecting monoclinal flysch morphostructure: Evaluation of LiDAR-derived topography of the highest range of the Czech Carpathians. Geomorphology 2017, 285, 44–57. [Google Scholar] [CrossRef]
- Chalupa, V.; Panek, T.; Silhan, K.; Brezny, M.; Tichavsky, R.; Grygar, R. Low-topography deep-seated gravitational slope deformation: Slope instability of flysch thrust fronts (Outer Western Carpathians). Geomorphology 2021, 389, 107833. [Google Scholar] [CrossRef]
- Panek, T.; Klimes, J. Temporal behavior of deep-seated gravitational slope deformations: A review. Earth-Sci. Rev. 2016, 156, 14–38. [Google Scholar] [CrossRef]
- Fernandez, T.; Perez, J.-L.; Colomo, C.; Cardenal, J.; Delgado, J.; Palenzuela, J.-A.; Irigaray, C.; Chacon, J. Assessment of the evolution of a landslide using digital photogrammetry and LiDAR techniques in the Alpujarras region (Granada, Southeastern Spain). Geosciences 2017, 7, 32. [Google Scholar] [CrossRef]
- Koshimizu, K.; Uchida, T. Time-Series Variation of Landslide Expansion in Areas with a Low Frequency of Heavy Rainfall. Geosciences 2023, 13, 314. [Google Scholar] [CrossRef]
- Gonzalez Diez, A.; Salas, L.; Diaz de Teran, J.R.; Cendrero, A. Late Quaternary climate changes and mass movement frequency and magnitude in the Cantabrian region, Spain. Geomorphology 1996, 15, 290–309. [Google Scholar] [CrossRef]
- Soldati, M.; Corsini, A.; Pasuto, A. Landslides and climate change change in the Italian Dolomites since the Late Glacial. Catena 2004, 55, 141–161. [Google Scholar] [CrossRef]
- Panek, T.; Margielewski, W.; Taborik, P.; Urban, J.; Hradecky, J.; Szura, C. Gravitationally induced caves and other discontinuities detected by 2D electrical resistivity tomography: Case studies from the Polish Flysch Carpathians. Geomorphology 2010, 123, 165–180. [Google Scholar] [CrossRef]
- Dapples, F.; Lotter, A.F.; van Leeuwen, J.F.N.; van der Knaap, W.O.; Dimitriadis, S.; Oswald, D. Peleolimnological evidence for increased landslide activity due to forest clearing and land-use since 3600 cal BP in the western Swiss Alps. J. Paleolimnol. 2002, 27, 239–248. [Google Scholar] [CrossRef]
- Remondo, J.; Soto, J.; Gonzalez Diez, A.; Diaz de Teran, J.R.; Cendrero, A. Human impact on geomorphic processes and hazards in mountain areas in northern Spain. Geomorphology 2005, 66, 69–84. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Marre, A.; Poesen, J. Comparison of two landslide susceptibility assessments in the Champagne-Ardenne region (France). Geomorphology 2010, 11, 141–155. [Google Scholar] [CrossRef]
- Wu, S.-J.; Chen, S.-R.; Wang, C.-D. Modeling ANN-Based Estimations of Probabilistic-Based Failure Soil Depths for Rainfall-Induced Shallow Landslides Due to Uncertainties in Rainfall Factors. Geosciences 2025, 15, 88. [Google Scholar] [CrossRef]
Age | Facies | Elemental Composition of Minerals | Plasticity Index of Atterberg (%) | Cohesion (kPa) | Angle of Internal Friction Cassangrande box (°) | Average Water Content (%) |
---|---|---|---|---|---|---|
Rupelian | Mudstones clays | Montmorillonite, illite, kaolinite | 75 | 24 | 17 | 26.6 |
Lutetian | Limestones and marls | Montmorillonite, illite, attapulgite | 75 | 25 | 28 | 36.8 |
Lower Ypresian | Clays, lignites | Montmorillonite, illite, kaolinite | 75 | 11 | 26 | 39.5 |
LiDAR 2018 (ONF) | LiDAR HD 2023 (IGN) | |
---|---|---|
Acquisition date | 21 to 23 February 2018 | 17 March 2023 |
Laser | Riegl LMS Q680 I | RIEGL VQ 1560 II |
Ground point density | ||
Number of points per m2 | Covered area (%) | |
NoData | 1.2 | 1.7 |
1–5 | 2.1 | 1.3 |
5–10 | 16.7 | 2.8 |
10–15 | 46.8 | 12.1 |
15–20 | 28.8 | 60.4 |
>20 | 4.4 | 21.6 |
LiDAR data accuracy | ||
Precision Z | 10 cm | 10 cm |
Precision Y | 25 cm | 50 cm |
Weather Station | Mailly (CIVC) | Epernay (CIVC) |
---|---|---|
No. station | 51338001 | 51230001 |
First measure | January 1976 | January 1820 |
Last measure | March 2025 | March 2025 |
Geographic coordinates—Lambert 93 | ||
Altitude (Z) | 182 m | 90 m |
Longitude (X) | 781,697 | 773,123 |
Latitude (Y) | 6,896,161 | 6,881,953 |
Evolution | Reactivation 1 | Reactivation 2 |
---|---|---|
Erosion volume (E) | 675 m3 | 228 m3 |
Accumulated volume (A) | 642 m3 | 201 m3 |
Surface affected (S) | 4525 m2 | 944 m2 |
Relative evolution ([E+A]/S) | 0.29 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bollot, N.; Benoit, A.; Berthe, J.; Combaz, D.; Krauffel, T.; Devos, A.; Lejeune, O.; Ancelin, P.-Y. Analysis of the Evolution of Lowland Landslides in Temperate Environments According to Climatic Conditions Based on LiDAR Data: A Case Study from Rilly (Champagne Vineyard Region, Northeastern France). Geosciences 2025, 15, 191. https://doi.org/10.3390/geosciences15060191
Bollot N, Benoit A, Berthe J, Combaz D, Krauffel T, Devos A, Lejeune O, Ancelin P-Y. Analysis of the Evolution of Lowland Landslides in Temperate Environments According to Climatic Conditions Based on LiDAR Data: A Case Study from Rilly (Champagne Vineyard Region, Northeastern France). Geosciences. 2025; 15(6):191. https://doi.org/10.3390/geosciences15060191
Chicago/Turabian StyleBollot, Nicolas, Auguste Benoit, Julien Berthe, Delphine Combaz, Théo Krauffel, Alain Devos, Olivier Lejeune, and Pierre-Yves Ancelin. 2025. "Analysis of the Evolution of Lowland Landslides in Temperate Environments According to Climatic Conditions Based on LiDAR Data: A Case Study from Rilly (Champagne Vineyard Region, Northeastern France)" Geosciences 15, no. 6: 191. https://doi.org/10.3390/geosciences15060191
APA StyleBollot, N., Benoit, A., Berthe, J., Combaz, D., Krauffel, T., Devos, A., Lejeune, O., & Ancelin, P.-Y. (2025). Analysis of the Evolution of Lowland Landslides in Temperate Environments According to Climatic Conditions Based on LiDAR Data: A Case Study from Rilly (Champagne Vineyard Region, Northeastern France). Geosciences, 15(6), 191. https://doi.org/10.3390/geosciences15060191