Geoheritage Value of Three Localities from Kislovodsk in the Southern Central Ciscaucasus: A Resource of Large Resort Area
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
4. Results
4.1. Description of Geosites
4.1.1. Honey Waterfalls
4.1.2. Ring Mountain
4.1.3. Little Saddle
4.2. Assessment of Geosites
5. Discussion and Conclusions
5.1. Geosite Diversity of the Kislovodsk Area
5.2. Geoheritage Management in Resort Areas: Opportunities and Challenges
5.3. Conclusion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cameron, E. Objectivity in Geosites Inventorying and Assessment Methods. Geoheritage 2024, 16, 30. [Google Scholar] [CrossRef]
- Pijet-Migoń, E.; Migoń, P. Geoheritage and Cultural Heritage—A Review of Recurrent and Interlinked Themes. Geosciences 2022, 12, 98. [Google Scholar] [CrossRef]
- Yazdi, A.; Dabiri, R.; Mollai, H. Protection of Geological Heritage by a New Phenomenon in Earth Sciences: Geoconservation. J. Min. Environ. 2024, 15, 365–379. [Google Scholar]
- Gray, M. Case studies associated with the 10 major geodiversity-related topics. Philosophical Transactions of the Royal Society A: Mathematical. Phys. Eng. Sci. 2024, 382, 20230055. [Google Scholar]
- Henriques, M.H.; Castro, A.R.S.F.; Félix, Y.R.; Carvalho, I.S. Promoting sustainability in a low density territory through geoheritage: Casa da Pedra case-study (Araripe Geopark, NE Brazil). Resour. Policy 2020, 67, 101684. [Google Scholar] [CrossRef]
- Wadhawan, S.K. Geoheritage sites and potential geoparks in India strategies for sustainable development. Indian J. Geosci. 2020, 74, 354–362. [Google Scholar]
- Bush, V.A. The deep structure of the Scythian Plate basement. Geotectonics 2014, 48, 413–426. [Google Scholar] [CrossRef]
- Hasterok, D.; Halpin, J.A.; Collins, A.S.; Hand, M.; Kreemer, C.; Gard, M.G.; Glorie, S. New Maps of Global Geological Provinces and Tectonic Plates. Earth-Sci. Rev. 2022, 231, 104069. [Google Scholar] [CrossRef]
- Popov, S.V.; Shcherba, I.G.; Ilyina, L.B.; Nevessakya, L.A.; Paramonova, N.P.; Khondkarian, S.O.; Magyar, I. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 238, 91–106. [Google Scholar] [CrossRef]
- Karpunin, A.M.; Mamonov, S.V.; Mironenko, O.A.; Sokolov, A.R. Geological Monuments of Nature of Russia; Lorien: Moscow, Russia, 1998; 200p. (In Russian) [Google Scholar]
- Mikhailenko, A.V.; Zorina, S.O.; Yashalova, N.N.; Ruban, D.A. Promoting Geosites on Web-Pages: An Assessment of the Quality and Quantity of Information in Real Cases. Resources 2023, 12, 61. [Google Scholar] [CrossRef]
- Dubinina, E.O.; Nosova, A.A.; Avdeenko, A.S.; Aranovich, L.Y. Isotopic (Sr, Nd, O) systematics of the high Sr-Ba late miocene granitoid intrusions from the caucasian mineral waters region. Petrology 2010, 18, 211–238. [Google Scholar] [CrossRef]
- Fillimonova, E.; Kharitonova, N.; Baranovskaya, E.; Maslov, A.; Aseeva, A. Geochemistry and therapeutic properties of Caucasian mineral waters: A review. Environ. Geochem. Health 2022, 44, 2281–2299. [Google Scholar] [CrossRef] [PubMed]
- Gareev, B.M.; Sharipov, G.L. Single-Bubble Sonoluminescence as a New Technique for Determination of Metals in Mineral Water. J. Appl. Spectrosc. 2024, 91, 126–130. [Google Scholar] [CrossRef]
- Hess, J.C.; Lippolt, H.J.; Borsuk, A.M. The Neogene volcanism of the northern Great Caucasus. Isotope and age studies on rift-related alkali rhyolites. Neues Jahrb. Fur Mineral. Abh. 1987, 156, 63–80. [Google Scholar]
- Koronovskii, N.V.; Molyavko, V.G.; Ostafiichuk, J.A. Petrochemical peculiarities and conditions of formation of Neogene intrusives of Caucasus Mineral’nye Vody region. Izv. Akad. Nauk SSSR Seriya Geol. 1986, 6, 39–51. [Google Scholar]
- Naugolnykh, S.V. Paleosols and Tetrapod Tracks from the Lower Cretaceous of the Northern Caucasus. Paleontol. J. 2022, 56, 1491–1511. [Google Scholar] [CrossRef]
- Pekov, I.V.; Krivovichev, S.V.; Yapaskurt, V.O.; Chukanov, N.V.; Belakovskiy, D.I. Beshtauite, (NH4)2(UO2)(SO4)2·2H2O, a new mineral from Mount Beshtau, Northern Caucasus, Russia. Am. Mineral. 2014, 99, 1783–1787. [Google Scholar] [CrossRef]
- Polkovoy, K.S. A New Genus Kislovodskoceras (Desmoceratidae, Ammonoidea) from the Middle Aptian of the Vicinity of Kislovodsk (Northern Caucasus). Paleontol. J. 2021, 55, 520–528. [Google Scholar] [CrossRef]
- Stasenko, A.A.; Danilin, M.N.; Kharchenko, V.M.; Nerkararian, A.E. Geomorphological, geological and tectonic structure, geodynamic and ecological conditions of Mount Mashuk and the adjacent territory of the central part of the Caucasus Mineralnye Vody region. Geol. I Geofiz. Yuga Ross. 2023, 13, 47–58. [Google Scholar]
- Voitov, G.I.; Miller, Y.M.; Murogova, R.N.; Potapov, E.G.; Yakovleva, M.P. On isotopic composition of carbon CO2 of spontaneous gases of Kislovodsk deposit minerals waters. Dokl. Akad. Nauk 1996, 350, 681–683. [Google Scholar]
- Dikinov, A.H.; Kasaeva, T.V.; Kiseleva, N.N.; Kolyadin, A.P.; Rud, N.Y. Development of resort and tourist destinations in Caucasian mineral waters in the context of global and national tendencies. Eurasian J. Anal. Chem. 2017, 12, 653–661. [Google Scholar] [CrossRef]
- Glazyrina, I.P. Tourism in the East and West of Russia: A Comparative Analysis. Geogr. Nat. Resour. 2019, 40, 299–305. [Google Scholar] [CrossRef]
- Prokhorova, V.V. Methodology of economic evaluation of balneological (Spa) resorts of Russian Federation. Int. J. Econ. Financ. Issues 2016, 6, 202–207. [Google Scholar]
- Semenova, E.A.; Ogarkova, I.V.; Kartasheva, O.A. Problems and Prospects of Business Tourism Development in the Caucasus Mineralnye Vody Region. Lect. Notes Netw. Syst. 2021, 198, 1825–1832. [Google Scholar]
- Tikunov, V.S.; Belozerov, V.S.; Antipov, S.O. Evaluation of tourist activities and destination attraction capacity using geotags. Kartogr. I Geoinf. 2019, 18, 34–43. [Google Scholar] [CrossRef]
- Forte, A.M.; Gutterman, K.R.; van Soest, M.C.; Gallagher, K. Building a Young Mountain Range: Insight into the Growth of the Greater Caucasus Mountains from Detrital Zircon (U-Th)/He Thermochronology and 10Be Erosion Rates. Tectonics 2022, 41, e2021TC006900. [Google Scholar] [CrossRef]
- Kuznetsov, N.B.; Romanyuk, T.V. Peri-Gondwanan Blocks in the Structure of the Southern and Southeastern Framing of the East European Platform. Geotectonics 2021, 55, 439–472. [Google Scholar] [CrossRef]
- Mosar, J.; Mauvilly, J.; Koiava, K.; Gamkrelidze, I.; Enna, N.; Lavrishev, V.; Kalberguenova, V. Tectonics in the Greater Caucasus (Georgia—Russia): From an intracontinental rifted basin to a doubly verging fold-and-thrust belt. Mar. Pet. Geol. 2022, 140, 105630. [Google Scholar] [CrossRef]
- Stogny, G.A.; Stogny, V.V. The Scythian plate southern boundary in the system of block divisibility consolidated crust of the Greater Caucasus Central and Eastern segments. Geol. I Geofiz. Yuga Ross. 2023, 13, 6–18. [Google Scholar]
- Vasey, D.A.; Garcia, L.; Cowgill, E.; Trexler, C.C.; Godoladze, T. Episodic evolution of a protracted convergent margin revealed by detrital zircon geochronology in the Greater Caucasus. Basin Res. 2024, 36, e12825. [Google Scholar] [CrossRef]
- Snezhko, V.A.; Snezhko, V.V.; Sharpyonok, L.N. The Malka granite–leucogranite plutonic complex (Northern Caucasus). Regional’Naya Geol. I Metallog. 2021, 85, 5–20. (In Russian) [Google Scholar] [CrossRef]
- Rostovtsev, K.O.; Agaev, V.B.; Azarian, N.R.; Babaev, R.G.; Besnosov, N.V.; Hassanov, N.A.; Zesashvili, V.I.; Lomize, M.G.; Paitschadze, T.A.; Panov, D.I.; et al. Jurassic of the Caucasus; Nauka: St. Petersburg, Russia, 1992. (In Russian) [Google Scholar]
- Drushits, V.V.; Mikhailova, I.A. Biostratigraphy of the Lower Cretaceous of the Northern Caucasus; MGU: Moscow, Russia, 1966. (In Russian) [Google Scholar]
- Enson, K.V. Toward correlation of Aptian–Albian deposits in the central part of the Northern Caucasus and the Ciscaucasus. Article 2. Stratigraphy. Vestn. Mosk. Univ. Ser. 4. Geol. 2009, 4, 55–59. (In Russian) [Google Scholar]
- Mordvilko, T.A. Lower Cretaceous Deposits of the Northern Caucasus and Ciscaucasus; Academy of Sciences of USSR: Moscow, Russia, 1960. (In Russian) [Google Scholar]
- Snezhko, V.A.; Bogdanova, T.N.; Snezhko, V.V. Lower Cretaceous sediments in the central and eastern parts of the Greater Caucasus northern slope (paleontological and lithological comparison). Reg. Geol. I Metallog. 2018, 74, 59–70. (In Russian) [Google Scholar]
- Matte, P. Variscides between the Appalachians and the Urals: Similarities and differences between Paleozoic subduction and collision belts. Spec. Pap. Geol. Soc. Am. 2002, 364, 239–251. [Google Scholar]
- Okay, A.I.; Topuz, G. Variscan orogeny in the Black Sea region. Int. J. Earth Sci. 2017, 106, 569–592. [Google Scholar] [CrossRef]
- Omelchenko, V.L.; Ryabov, G.V.; Cherkashin, V.I. On the place of rocks of the Tokhanian series in the structural zone of the Peredovoi Ridge of the North Caucasus. Geol. I Geofiz. Yuga Ross. 2023, 13, 6–16. [Google Scholar]
- McCann, T.; Chalot-Prat, F.; Saintot, A. The Early Mesozoic evolution of the Western Greater Caucasus (Russia): Triassic-Jurassic sedimentary and magmatic history. Geol. Soc. Spec. Publ. 2010, 340, 181–238. [Google Scholar] [CrossRef]
- Adamia, S.; Alania, V.; Chabukiani, A.; Kutelia, Z.; Sadradze, N. Great Caucasus (Cavcasioni): A long-lived North-Tethyan back-arc basin. Turk. J. Earth Sci. 2011, 20, 611–628. [Google Scholar] [CrossRef]
- Yasamanov, N.A. Landscape-Climatic Conditions of the Jurassic, the Cretaceous and the Paleogene of the South of the USSR; Nedra: Moskva, Russia, 1978. (In Russian) [Google Scholar]
- Brilha, J. Inventory and Quantitative Assessment of Geosites and Geodiversity Sites: A Review. Geoheritage 2016, 8, 119–134. [Google Scholar] [CrossRef]
- Bruschi, V.M.; Cendrero, A. Geosite evaluation; can we measure intangible values? Alp. Mediterr. Quat. 2005, 18, 293–306. [Google Scholar]
- Ruban, D.A.; Mikhailenko, A.V.; Yashalova, N.N. Valuable geoheritage resources: Potential versus exploitation. Resour. Policy 2022, 77, 102665. [Google Scholar] [CrossRef]
- Suzuki, D.A.; Takagi, H. Evaluation of Geosite for Sustainable Planning and Management in Geotourism. Geoheritage 2018, 10, 123–135. [Google Scholar] [CrossRef]
- Tamang, L.; Mandal, U.K.; Karmakar, M.; Banerjee, M.; Ghosh, D. Geomorphosite evaluation for geotourism development using geosite assessment model (GAM): A study from a Proterozoic terrain in eastern India. Int. J. Geoherit. Parks 2023, 11, 82–99. [Google Scholar] [CrossRef]
- Duszyński, F.; Migoń, P.; Strzelecki, M.C. Escarpment retreat in sedimentary tablelands and cuesta landscapes—Landforms, mechanisms and patterns. Earth-Sci. Rev. 2019, 196, 102890. [Google Scholar] [CrossRef]
- Šilhán, K. Activity of flow-like landslides on the escarpment cuesta (tree-ring–based study on the eastern margin of the Bohemian Cretaceous Basin). Landslides 2024, 21, 517–528. [Google Scholar] [CrossRef]
- Stefanuto, E.B.; Lupinacci, C.M.; Carvalho, F.; Francos, M.; Úbeda, X. An evaluation of erosion in cuesta relief: São Paulo State, Brazil. Geomorphology 2022, 398, 108049. [Google Scholar] [CrossRef]
- Erhartič, B. Geomorphosite assessment. Acta Geogr. Slov. 2010, 50, 295–319. [Google Scholar] [CrossRef]
- Mucivuna, V.C.; Reynard, E.; Garcia, M.G.M. Geomorphosites Assessment Methods: Comparative Analysis and Typology. Geoheritage 2019, 11, 1799–1815. [Google Scholar] [CrossRef]
- Panizza, M. Geomorphosites: Concepts, methods and examples of geomorphological survey. Chin. Sci. Bull. 2001, 46, 4–6. [Google Scholar] [CrossRef]
- Reynard, E.; Fontana, G.; Kozlik, L.; Pozza, C.S. A method for assessing «scientific» and «additional values» of geomorphosites. Geogr. Helv. 2007, 62, 148–158. [Google Scholar] [CrossRef]
- Ruiz-Pedrosa, R.M.; González-Amuchástegui, M.J.; Serrano, E. Geomorphosites as Geotouristic Resources: Assessment of Geomorphological Heritage for Local Development in the Río Lobos Natural Park. Land 2024, 13, 128. [Google Scholar] [CrossRef]
- Fuertes-Gutiérrez, I.; Fernández-Martínez, E. Geosites Inventory in the Leon Province (Northwestern Spain): A Tool to Introduce Geoheritage into Regional Environmental Management. Geoheritage 2010, 2, 57–75. [Google Scholar] [CrossRef]
- Migoń, P.; Pijet-Migoń, E. Viewpoint geosites—Values, conservation and management issues. Proc. Geol. Assoc. 2017, 128, 511–522. [Google Scholar] [CrossRef]
- Mikhailenko, A.V.; Ruban, D.A. Environment of viewpoint geosites: Evidence from the Western Caucasus. Land 2019, 8, 93. [Google Scholar] [CrossRef]
- Mucivuna, V.C.; Garcia, M.D.G.M.; Reynard, E.; Rosa, P.A.D.S. Integrating geoheritage into the management of protected areas: A case study of the Itatiaia National Park, Brazil. Int. J. Geoherit. Parks 2022, 10, 252–272. [Google Scholar] [CrossRef]
- Tessema, G.A.; Poesen, J.; Verstraeten, G.; Van Rompaey, A.; Van Der Borg, J. The scenic beauty of geosites and its relation to their scientific value and geoscience knowledge of tourists: A case study from southeastern Spain. Land 2021, 10, 460. [Google Scholar] [CrossRef]
- Bindeman, I.N.; Melnik, O.E.; Guillong, M.; Utkin, I.V.; Wotzlaw, J.-F.; Schmitt, A.K.; Stern, R.A. Age of the magma chamber and its physicochemical state under Elbrus Greater Caucasus, Russia using zircon petrochronology and modeling insights. Sci. Rep. 2023, 13, 9733. [Google Scholar] [CrossRef] [PubMed]
- Dubinina, E.O.; Lavrushin, V.Y.; Kovalenker, V.A.; Avdeenko, A.S.; Stepanets, M.I. Origin of mineral springs of the Elbrus region, Northern Caucasus: Isotopic-geochemical evidence. Geokhimiya 2005, 43, 1078–1089. [Google Scholar]
- Dudarov, Z.I.; Dmitrieva, I.Y.; Sayapina, A.A.; Bagaeva, S.S. An Analysis of Swarm Earthquakes in the Area of the Elbrus Volcanic Center. J. Volcanol. Seismol. 2023, 17, 444–459. [Google Scholar] [CrossRef]
- Holobâcǎ, I.-H. Recent retreat of the Elbrus glacier system. J. Glaciol. 2016, 62, 94–102. [Google Scholar] [CrossRef]
- Koronovskii, N.V.; Demina, L.I.; Myshenkova, M.S. Fluidolite: A new genetic rock type of the Elbrus volcanic region. Dokl. Earth Sci. 2010, 434, 1222–1225. [Google Scholar] [CrossRef]
- Koronovsky, N.V.; Myshenkova, M.S. Elbrus Volcano without Its Glacier Cover. Mosc. Univ. Geol. Bull. 2023, 78, 1–11. [Google Scholar] [CrossRef]
- Kutuzov, S.; Lavrentiev, I.; Smirnov, A.; Nosenko, G.; Petrakov, D. Volume changes of Elbrus Glaciers from 1997 to 2017. Front. Earth Sci. 2019, 7, 153. [Google Scholar] [CrossRef]
- Lebedev, V.A.; Bubnov, S.N.; Yakushev, A.I. Magmatic activity within the Northern Caucasus in the Early Neopleistocene: Active volcanoes of the Elbrus center, chronology, and character of eruptions. Dokl. Earth Sci. 2011, 436, 32–38. [Google Scholar] [CrossRef]
- Milyukov, V.K.; Myasnikov, A.V. A Model for a New Peripheral Shallow Magma Chamber Beneath the Elbrus Volcanic Center. J. Volcanol. Seismol. 2023, 17, 210–218. [Google Scholar] [CrossRef]
- Milyukov, V.; Rogozhin, E.; Gorbatikov, A.; Mironov, A.; Myasnikov, A.; Stepanova, M. Contemporary State of the Elbrus Volcanic Center (The Northern Caucasus). Pure Appl. Geophys. 2018, 175, 1889–1907. [Google Scholar] [CrossRef]
- Rogozhin, E.A.; Stepanova, M.Y.; Kharazova, Y.V.; Gorbatikov, A.V. Deep Structure, Volcanic and Seismic Activity Regime in Elbrus Region. Geotectonics 2018, 52, 647–657. [Google Scholar] [CrossRef]
- Lapo, A.V.; Davydov, V.I.; Pashkevich, N.G.; Petrov, V.V.; Vdovets, M.S. Geological objects of all-world importance in the European part of Russia. Stratigrafiya Geol. Korrelyatsiya 1997, 3, 92–101. (In Russian) [Google Scholar]
- Ahmadi, M.; Derafshi, K.; Mokhtari, D.; Khodadadi, M.; Najafi, E. Geodiversity Assessments and Geoconservation in the Northwest of Zagros Mountain Range, Iran: Grid and Fuzzy Method Analysis. Geoheritage 2022, 14, 132. [Google Scholar] [CrossRef]
- Delikan, A.; Mert, M. Depositional and geochemical characteristics of geomorphologically controlled recent tufa deposits on the Göksü River in Yerköprü (Konya, southern Turkey). Carbonates Evaporites 2019, 34, 441441–459459. [Google Scholar] [CrossRef]
- Froede, C.R., Jr.; Akridge, A.J. Geologic factors in the formation and development of several natural bridges/arches in northern Alabama (U.S.A.). Southeast. Geol. 2014, 50, 123–133. [Google Scholar]
- Mallick, S.; Sahoo, K.C. Formation of Brahmani Natural Arch, Eastern India: A proposed geoheritage site of India. Geosystems Geoenvironment 2024, 3, 100246. [Google Scholar] [CrossRef]
- Miller, A.M. Natural arches of Kentucky. Science 1898, 7, 845–846. [Google Scholar] [CrossRef] [PubMed]
- Nagaraja Rao, B.K. A note on the natural arch in the Tirumala Hills, Chittour District, Andhra Pradesh. J. Geol. Soc. India 1980, 21, 148–150. [Google Scholar]
- Řihošek, J.; Slavík, M.; Bruthans, J.; Filippi, M. Evolution of natural rock arches: A realistic small-scale experiment. Geology 2019, 47, 71–74. [Google Scholar] [CrossRef]
- Caruana, J.; Wood, J.; Nocerino, E.; Menna, F.; Micallef, A.; Gambin, T. Reconstruction of the collapse of the ‘Azure Window’ natural arch via photogrammetry. Geomorphology 2022, 408, 108250. [Google Scholar] [CrossRef]
- Vařilová, Z.; Přikryl, R.; Cílek, V. Pravčice Rock Arch (Bohemian Switzerland National Park, Czech Republic) deterioration due to natural and anthropogenic weathering. Environ. Earth Sci. 2011, 63, 1861–1878. [Google Scholar] [CrossRef]
- Bailey, J.; Field, R.; Schrodt, F.; van Ree, D. Geodiversity for science and society. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2024, 382, 20230062. [Google Scholar] [CrossRef] [PubMed]
- Brilha, J.; Gray, M.; Pereira, D.I.; Pereira, P. Geodiversity: An integrative review as a contribution to the sustainable management of the whole of nature. Environ. Sci. Policy 2018, 86, 19–28. [Google Scholar] [CrossRef]
- Hjort, J.; Gordon, J.E.; Gray, M.; Hunter, M.L. Why geodiversity matters in valuing nature’s stage. Conserv. Biol. 2015, 29, 630–639. [Google Scholar] [CrossRef]
- Kubalíková, L.; Coratza, P. Reflections of geodiversity–culture relationships within the concept of abiotic ecosystem services. Geol. Soc. Spec. Publ. 2023, 530, 49–66. [Google Scholar] [CrossRef]
- Serrano, E.; Flano, P.R. Geodiversity. A theoretical and applied concept. Geogr. Helv. 2007, 62, 140–147. [Google Scholar] [CrossRef]
- Zwolinśki, Z.; Brilha, J.; Gray, M.; Matthews, J. International Geodiversity Day: From grassroots geoscience campaign to UNESCO recognition. Geol. Soc. Spec. Publ. 2023, 530, 313–335. [Google Scholar] [CrossRef]
- Kirillova, K. A review of aesthetics research in tourism: Launching the Annals of Tourism Research Curated Collection on beauty and aesthetics in tourism. Ann. Tour. Res. 2023, 100, 103553. [Google Scholar] [CrossRef]
- Kirillova, K.; Fu, X.; Lehto, X.; Cai, L. What makes a destination beautiful? Dimensions of tourist aesthetic judgment. Tour. Manag. 2014, 42, 282–293. [Google Scholar] [CrossRef]
- Kalisch, D.; Klaphake, A. Visitors’ satisfaction and perception of crowding in a German National Park: A case study on the island of Hallig Hooge. For. Snow Landsc. Res. 2007, 81, 109–122. [Google Scholar]
- Li, L.; Zhang, J.; Nian, S.; Zhang, H. Tourists’ perceptions of crowding, attractiveness, and satisfaction: A second-order structural model. Asia Pac. J. Tour. Res. 2017, 22, 1250–1260. [Google Scholar] [CrossRef]
- Ortanderl, F.; Bausch, T. Wish you were here? Tourists’ perceptions of nature-based destination photographs. J. Destin. Mark. Manag. 2023, 29, 100799. [Google Scholar] [CrossRef]
- Sanz-Blas, S.; Buzova, D.; Garrigos-Simon, F.J. Understanding crowding perceptions and their impact on place experience: Insights from a mixed-methods study. Psychol. Mark. 2024, 41, 1022–1035. [Google Scholar] [CrossRef]
- Sæþórsdóttir, A.D.; Hall, C.M. Visitor satisfaction in wilderness in times of overtourism: A longitudinal study. J. Sustain. Tour. 2020, 29, 123–141. [Google Scholar] [CrossRef]
- Liang, S.; Li, C.; Li, H.; Cheng, H. How do you feel about crowding at destinations? An exploration based on user-generated content. J. Destin. Mark. Manag. 2021, 20, 100606. [Google Scholar] [CrossRef]
- Ruiz, C.; Delgado, N.; García-Bello, M.Á.; Hernández-Fernaud, E. Exploring crowding in tourist settings: The importance of physical characteristics in visitor satisfaction. J. Destin. Mark. Manag. 2021, 20, 100619. [Google Scholar] [CrossRef]
- dos Santos Costa, S.S.; Junior, J.C.S.; Lima, Z.M.C.; do Nascimento, M.A.L.; da Silva, M.L.N. Coastal Cliffs of the Rio Grande do Norte State: Geoheritage Characterization and Valorization in Northeast Brazil. Geoheritage 2024, 16, 4. [Google Scholar] [CrossRef]
- Papp, D.C. Geological heritage in the Northern Apuseni Mountains (Romania): Degradation risk assessment of selected geosites. Int. J. Geoherit. Parks 2023, 11, 574–591. [Google Scholar] [CrossRef]
- Woo, K.S.; Worboys, G. Geological monitoring in protected areas. Int. J. Geoherit. Parks 2019, 7, 218–225. [Google Scholar] [CrossRef]
- Naugolnykh, S.V. Dinosaur Tracks from the Caucasian Mineral Waters Country in the Context of the Study of Lower Cretaceous Paleosols of This Region. Paleontol. J. 2020, 54, 769–778. [Google Scholar] [CrossRef]
Features | Geosites | ||
---|---|---|---|
Honey Waterfalls | Ring Mountain | Little Saddle | |
Geoheritage types | |||
Geomorphological | + | + | + |
Hydro(geo)logical | + | ||
Igneous | + | + | |
Sedimentary | + | m | |
Stratigraphical | + | m | |
Paleogeographical | + | m | |
Paleontological | ? | ||
Geohistorical | ? | ||
Geoheritage forms | |||
Natural outcrop | + | + | |
Natural landform (geomorphosite) | + | + | |
Road cutting | + | ||
Dynamic geosite | + | + | |
Viewpoints | + | + | + |
Touristic infrastructure | |||
Car/bus stops | + | + | |
Trails | + | + | + |
Advanced constructions (e.g., stairs) | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yashalova, N.N.; Ruban, D.A. Geoheritage Value of Three Localities from Kislovodsk in the Southern Central Ciscaucasus: A Resource of Large Resort Area. Geosciences 2024, 14, 134. https://doi.org/10.3390/geosciences14050134
Yashalova NN, Ruban DA. Geoheritage Value of Three Localities from Kislovodsk in the Southern Central Ciscaucasus: A Resource of Large Resort Area. Geosciences. 2024; 14(5):134. https://doi.org/10.3390/geosciences14050134
Chicago/Turabian StyleYashalova, Natalia N., and Dmitry A. Ruban. 2024. "Geoheritage Value of Three Localities from Kislovodsk in the Southern Central Ciscaucasus: A Resource of Large Resort Area" Geosciences 14, no. 5: 134. https://doi.org/10.3390/geosciences14050134
APA StyleYashalova, N. N., & Ruban, D. A. (2024). Geoheritage Value of Three Localities from Kislovodsk in the Southern Central Ciscaucasus: A Resource of Large Resort Area. Geosciences, 14(5), 134. https://doi.org/10.3390/geosciences14050134